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Abstract

We consider the task of re-calibrating the 3D pose of a

static surveillance camera, whose pose may change due to

external forces, such as birds, wind, falling objects or earth-

quakes. Conventionally, camera pose estimation can be

solved with a PnP (Perspective-n-Point) method using 2D-

to-3D feature correspondences, when 3D points are known.

However, 3D point annotations are not always available

or practical to obtain in real-world applications. We pro-

pose an alternative strategy for extracting 3D information

to solve for camera pose by using pedestrian trajectories.

We observe that 2D pedestrian trajectories indirectly con-

tain useful 3D information that can be used for inferring

camera pose. To leverage this information, we propose a

data-driven approach by training a neural network (NN) re-

gressor to model a direct mapping from 2D pedestrian tra-

jectories projected on the image plane to 3D camera pose.

We demonstrate that our regressor trained only on synthetic

data can be directly applied to real data, thus eliminating

the need to label any real data. We evaluate our method

across six different scenes from the Town Centre Street and

DUKEMTMC datasets. Our method achieves an improve-

ment of ∼ 50% on both position and orientation prediction

accuracy when compared to other SOTA methods.

1. Introduction

Our task is to re-evaluate the 3D pose of a stationary

single-view camera continually. The camera pose changes

over time because of external forces, including winds,

earthquakes, and other factors. For instance, a bird jumping

on a calibrated security camera could cause a change in the

looking angle of this camera. Thus, the camera pose needs

to be re-estimated. PnP [15] methods seem to be a good

solution to this problem except that they require 2D-to-3D

correspondences. Annotating 3D points is expensive, espe-

cially when continuous camera pose estimation is required.

Therefore in this task, we assume that the 3D point anno-

tations are unavailable and solve the problem with only 2D

information inputs. We find that 2D pedestrian trajectories

Figure 1: The structure of our proposed method. The train-

ing pipeline is connected with blue arrows, the test pipeline

is connected with red arrows. The training data is synthetic

data, the test data is extracted from real videos.

contain useful information for estimating 3D camera pose.

According to the study from Carey [10] on 815 pedes-

trians across ages, genders, fitness etc., pedestrians walk in

a roughly constant speed of about 1.4m/s. This statistical

information can be leveraged for estimating camera pose.

If we assume that a pedestrian is walking at a strictly con-

stant speed, the points on the 3D trajectory of this pedestrian

should be equally spaced which can serve as a geometric

constraint for solving camera pose. Formally, we define the

real camera pose as P∗, an estimated camera pose as P̃ ,

and the pedestrian walking speed as V . We use P̃ to project

the observed 2D pedestrian trajectory T to the 3D ground.

As a result, when P̃ is a close to P∗, points on the projected

3D trajectory should be equally spaced by V . Thus, we can

build a mapping from a 2D pedestrian trajectory to the 3D

camera pose: P∗ = f(T ;V ). However, the assumption

that the pedestrian walks at a constant speed of V is too

strong. Instead, the walking speed of a pedestrian is un-

known and unlikely to be constant over time. Nevertheless,
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Carey [10] shows that the statistical average of pedestrian

speeds is generally constant (∼ 1.4m/s) over time. We

thus propose a method to leverage the statistical informa-

tion and solve the problem of camera pose estimation in a

data-driven manner, by training a neural network regressor

to learn an end-to-end mapping from a 2D trajectory to the

3D camera pose.

The structure of our proposed approach is presented in

Figure 1. The input of our network is a 2D trajectory, con-

sisting of points whose 2D coordinates represent the pedes-

trian position in the image. The output of our network is

the 3D camera pose, including position and orientation. As

shown in Figure 1, our network is trained only with syn-

thetic data. For most data-driven methods, training data col-

lection is costly. We thus bypass this process by training our

network with synthetic pedestrian trajectories. Specifically,

given a rough estimate of the camera pose and a human mo-

tion model, we can generate synthetic trajectories for train-

ing. First, we sample a set of camera poses {Pi} around

an estimation P o. Our hypothesis is that the perturbation

the real camera pose P ∗ is close to a camera pose in {Pi}.

In the next step, we generate synthetic trajectories for each

sampled camera pose Pi with the human motion model and

use the data to train our NN regressor. At test time, we ex-

tract real pedestrian trajectories from videos and feed them

into the trained regressor. We use the average of the pre-

dictions from all test trajectories as the estimated camera

pose P̃ ≈ P ∗. To verify the effectiveness, we evaluate our

approach across six real camera settings from Town Cen-

tre Street [3] and DUKEMTMC [39] datasets. Compared

to baseline methods using an image as input, our approach

reduces the prediction error by ∼ 50% for both translation

and rotation while exponentially decreasing training time

cost. We summarize our contributions as follows.

- We propose an approach to regress the 3D pose of a

stationary camera from only 2D pedestrian trajecto-

ries. Our approach could serve as a potential alter-

native solution for camera pose estimation, especially

when 3D information is unavailable.

- We demonstrate with experimental results that our NN

regressor trained only on synthetic data can be directly

applied to real data, therefore saving on the cost of col-

lecting training data and has good generalizability.

2. Related Work

Geometric Methods are the conventional solution for cam-

era pose estimation. When 3D information is available,

PnP methods [15] are the preferred choice. These methods

[26, 50, 22, 8, 29] solve for the camera pose by minimiz-

ing the reprojection error of 2D-to-3D feature correspon-

dences, usually inside a RANSAC [14] loop to eliminate

noisy data. When 3D information is not available, meth-

ods have been proposed to employ constraints from geo-

metric relationships, such as parallelism and orthogonality

[23, 46, 49, 47, 9, 13], for estimating camera pose. Geomet-

ric methods are usually accurate. However, 2D-to-3D cor-

respondences are not readily available in real applications,

and geometric shapes are usually missing in many scenes.

To deal with this, we attempt to use a ubiquitous existing 2D

information, pedestrian trajectories, to solve camera pose.

Learning-based Methods for camera pose estimation have

shown encouraging results in recent years. One class of

learning-based methods regress camera pose end-to-end

from an image or a video clip. A representation of these

methods is PoseNet [20], which regresses the 6-DoF cam-

era pose directly from a monocular image. Since PoseNet,

many methods have been proposed. These methods either

utilize different network architectures [19, 48, 35, 33] or

leverage temporal information from the input [45, 12] or

introduce geometric constraints [19, 25, 6] to improve per-

formance. The second class of learning-based methods put

a learnable neural network module into a structural pipeline,

establishing correspondences between 2D pixels and 3D

points, then solve camera pose by solving the RANSAC

PnP problem. These methods include DSAC/DSAC++

[4, 5], BTBRF [34], InLoc [43] etc. Some other works treat

camera pose estimation as a multi-task learning [37, 27] or

a metric learning [2] problem. Generally, all these methods

do not require annotated 2D-to-3D correspondences. How-

ever, training data for these methods is still expensive to

collect. To avoid such costs, Chen et al. [11] propose to

use synthetic training images for Sports Camera Calibra-

tion. We leverage a similar idea but use low-dimensional

synthetic pedestrian trajectories as training data instead of

high-dimensional images.

Camera Pose Estimation Using Pedestrians have been

well investigated in the last decade. Some methods [38, 1]

simultaneously solve tracking and camera pose estimation

using pedestrian trajectories by assuming a constant veloc-

ity of the moving object. Other methods [31, 32, 24, 18, 28]

leverage the prior knowledge about the distribution of rel-

ative human heights to perform camera pose estimation.

A third class of methods [16, 44, 17, 7, 31] make use of

head and foot location information to calculate the vanish-

ing points and line to further estimate camera pose. Our

work also leverages the geometric information in pedestrian

trajectory to estimate the 3D camera pose. On contrary to

these methods, we chose to solve the problem in a learning-

based manner. Our intuition is to leverage the good expres-

sive ability of neural networks to learn a mapping from in-

put to camera pose while improving noise-robustness.

3. Approach

As mentioned in Section 1, the 3D pose of a static cam-

era can be estimated from 2D pedestrian trajectories, under
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(a) Position ambiguity. (b) Orientation ambiguity.

Figure 2: Location and orientation ambiguities when estimating 3D camera pose with only pedestrian trajectories. In each

subfigure, C1 is the real camera pose, C2 represents an alternative fake camera pose that has the same observation as C1.

the assumption that the pedestrian is moving at a constant

speed. Formally, consider a pedestrian moving with a con-

stant speed V on the ground plane πg being observed by a

camera. We aim to build a mapping from a 2D projection

of the trajectory T to the 3D camera pose P ,using a neu-

ral network approximation function f(·; θ), where θ are

learnable network parameters:

P = f(T (V ); θ) (1)

In this section, we first make necessary explanations on

the definition of camera pose P and the evaluation metrics.

We then describe the proposed neural network architecture

and give the loss which we use to supervise the learning.

Finally, we explain synthetic training data generation.

3.1. Evaluation Metrics

The 3D pose of a camera C is conventionally defined as

the location and orientation of the camera in a world coor-

dinate system. The location of C is often specified by a

vector t ∈ R
3 with respect to the world origin. The orien-

tation of C can be described with several representations,

such as a rotation matrix, a set of Euler angles, or a quater-

nion. Among these representations, the quaternion q ∈ R
4

is most commonly used to describe the camera orientation.

A tuple then represents the overall 3D camera pose:

P = (t, q) (2)

Most deep pose regressors directly predict the camera

pose P as a 7-dimensional vector. However, if the pedes-

trian trajectory is the only information input for estimat-

ing the camera pose, then there will be ambiguities in the

predicted camera pose, as shown in Figure 2. From Fig-

ure 2, we observe that the 2D trajectory can only decide

1-dimensional location (height) and 2-dimensional orienta-

tion (pitch and roll angle) of the camera. In the implemen-

tation, we focus on the relative position between the camera

and the scene and only predict the height of the camera Zc:

t = [Zc]. For the estimation of camera orientation, we still

predict the quaternion q, but we fix the yaw angle at training

and test. (Note that: Other deep pose regressors also have

the ambiguity problem. However, since they use images

as input and it is unlikely to get the same images at differ-

ent places, so the ambiguity problem does not affect them

much. However, as a cost, lighting and seasonal changes

will have dramatic impacts on those deep pose regressors.)

The performance of a pose estimator is estimated by the

location prediction error terr and orientation prediction er-

ror rerr . terr is defined as the Euclidean distance between

the real location t∗ and the predicted location t:

terr = ‖t∗ − t‖
2

(3)

rerr is measured by the angle between the real orientation

q∗ and predicted orientation q [42]:

rerr = 2 cos−1(|〈q∗, q〉|) (4)

3.2. Network Architecture

The architecture of our proposed NN regressor is pre-

sented in Figure 3. The input of our network is a 2D pedes-

trian trajectory T ∈ R
2×N , where N is the length of the

trajectory, and 2 is the dimension of the pixel coordinate of

each point on the image plane. The output of our network

is the camera pose P as given in Equation 2.

Considering the input of our network is a trajectory with

variable length, we first use an RNN Feature Encoder (FE)

to encode the input trajectory T to feature u with a fixed

dimension. After the FE module, we concatenate a Joint-

feature Extractor (JE) to learn a common feature v that

helps predict both location and orientation. Finally, the

camera location and orientation are separately predicted

from v with a Location Branch (LB) and an Orientation

Branch (OB).

FE is a bi-directional LSTM [41] with a 64-dimensional

hidden layer whose input is T ∈ R
2×N . It has two hid-

den layers, and connects the output of the two hidden layers

of opposite directions as a final output u ∈ R
128. In the

implementation, we found that bi-directional LSTM signif-

icantly outperforms single-directional LSTM in terms of the

prediction accuracy of camera pose.

JE is a multi-layer perceptron (MLP) consisting of three

fully connected layers. The sizes of the three layers are

2581



128 × 256, 256 × 1024, 1024 × 512 respectively. The in-

put is the feature u ∈ R
128 from FE, and the output is the

joint-feature v ∈ R
512.

LB and OB are two branches taking v from JE as in-

put. LB is a 3-layer MLP with the sizes 512 × 256,

256 × 128, 128 × 1. OB is another 3-layer MLP with the

sizes 512 × 256, 256 × 128, 128 × 4. The output of LB is

camera location t ∈ R
1, and the output of OB is a quater-

nion q ∈ R
4 representing camera orientation. We found

that separately predicting t and q leads to higher predic-

tion accuracy than predicting them together with one fully-

connected layer. Our intuition is that since t and q are mea-

sured with different scales (meter vs radian), it is better to

predict them with separate branches.

All the fully-connected layers except for the last layers

of LB and OB are concatenated with a non-linear layer. The

activation function is ReLU.

3.3. Loss

The regression function f(·; θ) from a trajectory T to

the camera pose P is presented in Equation 1. We aim to

solve for an optimal θ = θ∗ such that the difference be-

tween the predicted camera pose P and the real camera

pose P∗ is minimized. The loss function for supervising

training is given in Equation 5. It consists of two parts: the

Location Loss (L Loss) and the Orientation Loss (O Loss).

J(T ) = ‖t∗ − t‖
2

︸ ︷︷ ︸

LocationLoss

+α ·

∥
∥
∥
∥
q ∗ −

q

‖q‖
2

∥
∥
∥
∥
2

︸ ︷︷ ︸

OrientationLoss

(5)

in which, t∗ and q∗ represent the real camera pose, and α is

an adjustable scale factor used to balance the prediction ac-

curacies of location and orientation. The first term describes

the location loss, which is the Euclidean distance between

the predicted location t and the real location t∗. The sec-

ond term is the orientation loss, measuring the difference

between the predicted quaternion q and the real quaternion

q∗. Euclidean distance is used to approximate the spheri-

cal distance for the orientation loss, which has been proved

effective by Kendall et al. [20].

The parameter α in PoseNet needs to be carefully tuned

for different scenes. However, we found that the value of

α does not have much impact on the performance of our

regressor. We’ve trained networks across different camera

pose settings using α ∈ [1, 10000], and the difference in

the prediction accuracies is negligible. We guess it is be-

cause our input is a 2D trajectory, which contains less re-

dundant information than a colorful image. It is easier for

the network to learn the difference between location and ori-

entation, even without tuning α. Therefore, we set α = 1
in all our experiments.

Figure 3: Architecture of our proposed NN regressor.

3.4. Synthetic Training Data

To save the cost of training data collection and annota-

tion, we propose to train our NN regressor with synthetic

data and directly apply to real data. To generate synthetic

training data, we consider the following scenario: 1) A non-

accurate estimation of the camera pose is available. As an

example, the estimation can be from past measurements.

2) The intrinsic parameters are known, which is reasonable

since the intrinsic parameters will not change once the cam-

era is produced. In such a scenario, we can generate syn-

thetic data for training.

Training with Synthetic Data When a non-accurate esti-

mation of the camera pose is available, we can hypothesize

that the real camera pose is in a reasonably close range to

the estimated one. Let the estimated camera pose be Po:

Po = (to, θo)

to = (tox, t
o
y, t

o
z)

θo = (θo
x, θ

o
y, θ

o
z)

(6)

in which to is the estimated location, and θo is the esti-

mated orientation. We then sample a set of camera poses

{Pi} around Po. In implementation, we use the ground

truth camera pose given in the dataset as Po, around which

we sample {Pi} and make sure Po /∈ {Pi}. In real appli-

cation, Po can be obtained from a past measurement.

For sampling location, we keep [tox, t
o
y] fixed and sample

camera height from [min (0, toz − 3m), toz + 3m]. For

sampling orientation, since we use the x-conventional Eu-

ler angles in the experiments, θo
x represents the yaw an-

gle. We keep θo
x fixed and sample other two angles from

[θ̃ − 15◦, θ̃ + 15◦], in which θ̃ ∈ {θ̃o
y, θ̃

o
z}. We make

uniform samplings for both location and orientation and set

the sampling steps to be 0.4m and 2◦ respectively.

Once we have {Pi}, we can generate synthetic trajecto-

ries. Considering that pedestrians generally walks with an

constant average speed V ≈ 1.4m/s [10], we assume V
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follows a Gaussian distribution:

V ∼ N (V̄ , σ2) (7)

in which V̄ = 1.4m/s and σ = 0.1m/s. For each

camera pose Pi, we randomly sample 10 pedestrian

speeds {Vj}, j ∈ [1, 10], j ∈ R
N. By doing this, we can

guarantee that p(Vj ∈ [V̄ − 3σ, V̄ + 3σ]) = 99.74%.

Namely, the sampled pedestrian speeds will fall into

the interval of [1.1m/s, 1.7m/s] with a probability of

99.74%, which is reasonable in real-life scenarios. For

each combination of camera pose and pedestrian speed

{Pi, Vj}, we generate 1 synthetic 2D trajectory Tij with

the camera projection model and a human motion model:

Tij = g(Pi, Vj) (8)

in which g(·) is the trajectory generation function, and

Tij ∈ R
2×N , N ∈ [11, 31] is the length of Tij .

At training, we generate a synthetic dataset {Tij;Pi}
to train our NN regressor. Figure 4 presents a comparison

between synthetic pedestrian trajectories and real pedestrian

trajectories. We can see that the synthetic data are almost

indistinguishable from the real data.

Test on Real Data At test time, we extract pedestrian tra-

jectories {Tk}, k ∈ [1,K], from videos captured by the

camera, feed each Tk to a trained regressor f(·; θ∗) to get

a camera pose prediction P̃k. Finally, we leverage the prior

knowledge on the statistical average of pedestrian speeds

and take the mean of the predictions from all the trajecto-

ries as the final estimation of the real camera pose P∗:

P̃ =
1

K

K∑

k=1

P̃k =
1

K

K∑

k=1

f(Tk; θ
∗) ≈ P∗ (9)

4. Experiments

In this section, we evaluate our approach on real cam-

era settings and present the results and analysis. Section

4.1 introduces the datasets and necessary implementation

details. Section 4.2 compares our approach with learning-

based baseline methods. Section 4.3 compares our approach

with a geometric baseline method. Section 4.4 gives a qual-

itative result of our approach. Section 4.5 provides the ab-

lation study results.

4.1. Datasets and Training Details

The six real scenes that we used to evaluate our approach

are from Town Centre Street [3] and DUKEMTMC [40].

These two datasets contain a large number of pedestrians

moving at roughly constant speeds. Figure 5 shows the real

pedestrian trajectories we use for testing.

Town Centre Street (TCS) [3] is an outdoor dataset con-

taining a video sequence of a busy street with up to thirty

(a) Pedestrian trajectories from real video

(b) Synthetic pedestrian trajectories

Figure 4: Pedestrian trajectories extracted from real videos

and synthetic trajectories generated from our simulator.

Figure 5: Real pedestrian trajectories of for test. Only the

trajectories on the same ground plane are used.

pedestrians visible at a time. The video is 5 minutes long at

25 fps and 1080p resolution. Camera intrinsic and extrinsic

parameters and bounding boxes for each pedestrian at each

frame are available.

DUKEMTMC (DM) [39] is a manually annotated and cali-

brated multi-camera dataset recorded outdoors on the Duke

University campus with 8 synchronized cameras. It consists

of 8 static cameras × 85 minutes of 1080p 60 fps video for

a total of more than 2,000,000 manually annotated frames

and more than 2,000 identities. The camera extrinsic and

intrinsic parameters are provided. The ground plane coor-

dinates of all the identities are accurately labeled. We pick

5 of the most densely populated scenes from the total of 8

scenes to evaluate our method.
The model is implemented using PyTorch [36] and op-

timized using ADAM [21] with β1 = 0.9, β2 = 0.999,

and an initial learning rate of 0.01. We train on one NVIDIA

Titan X (Pascal) GPU with a batch size of 1024 and each

round consisting of 50 epochs.

4.2. Compare with Learning­based method

We compare our method with other learning-based pose

estimators in this experiment. Current learning-based pose

estimators can be generally divided into two classes. The

first class of methods regress the camera pose end-to-end

from an image or video clip, such as PoseNet [20] and

its variants. The second class of methods embed a learn-

2583



Method TCS DM1 DM2 DM4 DM5 DM8 Average

α = 1 0.27m, 4.99
◦

0.74m, 5.08
◦

0.56m, 4.92
◦

0.26m, 5.26
◦

0.90m, 4.99
◦

0.35m, 4.45
◦

0.51m, 4.95
◦

10 0.23m, 5.13
◦

0.42m, 4.89
◦

0.48m, 5.06
◦

0.22m, 5.11
◦

1.03m, 4.71
◦

0.24m, 4.97
◦

0.44m, 4.98
◦

50 0.29m, 4.96
◦

0.78m, 5.00
◦

0.57m, 5.03
◦

0.23m, 5.22
◦

0.87m, 4.57
◦

0.32m, 5.04
◦

0.51m, 4.82
◦

100 0.26m, 4.85
◦

0.43m, 4.99
◦

0.53m, 5.14
◦

0.25m, 5.06
◦

1.09m, 3.81
◦

0.29m, 5.05
◦

0.48m, 4.97
◦

500 0.22m, 4.41
◦

0.51m, 5.01
◦

0.58m, 2.49
◦

0.19m, 4.99
◦

1.18m, 2.02
◦

0.27m, 4.81
◦

0.49m, 3.96
◦

1000 0.34m, 4.60
◦

0.63m, 4.68
◦

0.71m, 2.82
◦

0.18m, 4.85
◦

0.92m, 1.87
◦

0.32m, 5.20
◦

0.52m, 4.00
◦

2000 0.26m, 4.62
◦

0.66m, 4.70
◦

0.49m, 2.28
◦

0.33m, 3.76
◦

1.12m, 1.70
◦

0.23m, 4.69
◦

0.52m, 3.63
◦

PoseNet [20]

5000 0.26m, 4.34
◦

0.96m, 5.10
◦

0.60m, 1.57
◦

0.29m, 3.46
◦

0.86m, 1.86
◦

0.36m, 4.97
◦

0.56m, 3.55
◦

Best fine-tuned result 0.22m, 4.41
◦

0.42m, 4.89
◦

0.49m, 2.28
◦

0.18m, 4.85
◦

0.86m, 1.86
◦

0.23m, 4.69
◦

0.40m,3.83
◦

Ours 0.21m,2.16
◦

0.31m,2.02
◦

0.16m,1.29
◦

0.18m,0.76
◦

0.22m,1.88
◦

0.26m,3.73
◦

0.22m,1.97
◦

Table 1: Location and orientation prediction errors of our approach and the PoseNet [20] baselines with scale factor α of

different values. “TCS” denotes Town Center Street, “DMi” denotes DUKEMTMC scene-i. (The denotations will be the

same for all following tables unless explicitly explained.) Our approach outperforms the best results of all baseline models.

Methods TCS DM1 DM2

DSAC++ [5] 12.99m, 123.97
◦
23.57m, 99.55

◦
44.87m, 118.10

◦

Ours 0.21m,2.16
◦

0.31m,2.02
◦

0.16m,1.29
◦

DM4 DM5 DM8

37.24m, 128.01
◦
35.46m, 104.08

◦
38.63m, 116.35

◦

0.18m,0.76
◦

0.22m,1.88
◦

0.26m,3.73
◦

Table 2: Location and orientation prediction errors of

DSAC++ [5] and our method on six real camera settings.

DSAC++ fails on this task, while our method performs well.

able DNN module into a structural pipeline to solve cam-

era pose, such as DSAC/DSAC++ [4, 5]. We use PoseNet

and DSAC++ as the learning-based method baselines in this

experiment. Note that PoseNet and DSAC++ are used for

solving the relocalization tasks, and their input data are im-

ages captured from different view angles. However, in our

task, the camera view angle does not change over time. The

observations at different time are identical except for the

positions of the pedestrians. To eliminate the impact of the

static background on the prediction of the baseline meth-

ods, we set the input of the pose estimators to be a black

and white image containing only a single pedestrian trajec-

tory, as shown in Figure 4.

Table 1 gives a quantitative comparison of the predicted

camera location error and orientation error between our ap-

proach and the PoseNet [20] baselines with fine-tuning the

scale factor α. We observe that our proposed method al-

most doubles the prediction accuracy on both location and

orientation comparing to the best result of the fine-tuned

baseline models. Our model does not require fine-tuning α,

saving the training cost. Results show that 1) 3D camera

pose can be estimated from only 2D pedestrian trajectories

using learning-based methods and 2) our model trained on

synthetic data can be directly applied to real test data.

Table 2 gives the quantitative comparison between

Methods TCS DM1 DM2 DM4 DM5 DM8

VP-1 86.22
◦

70.48
◦

46.11
◦

45.12
◦

32.81
◦

38.10
◦

VP-2 84.28
◦

44.64
◦

55.37
◦

64.04
◦

28.26
◦

41.63
◦

VP-3 89.22
◦

52.68
◦

38.37
◦

36.54
◦

19.65
◦

18.77
◦

Ours 2.16
◦

2.02
◦

1.29
◦

0.76
◦

1.88
◦

3.73
◦

Table 3: Orientation prediction errors of the vanishing-point

calibration baseline [17] and our approach. Three different

sets of orthogonal vanishing points are used, ‘VP-i’ denotes

the i-th set. The output of baseline changes with different

sets of VP. Our approach outputs stable accurate results.

DSAC++ [5] and our method. We observe that SOTA

DSAC++ fails on this task, while our method achieves low

prediction errors. We believe that DSAC++ fails because it

relies on an image as input, which in our case is a mostly

black image with sparse trajectory locations marked with

white. The first module of DSAC++, which is an FCN [30],

maps from a 2D image to 3D points. The black areas of

different location inside an image or on the same locations

of different images would have the same pixel values, ze-

ros, but different depths. However, the FCN is trained to

map the pixels with the same zero values to 3D points with

different depths, which leads to the collapse of DSAC++.

4.3. Compare with Geometric method

We compare our approach with traditional geomet-

ric methods in this section. Geometric methods usually

requires 2D-3D feature correspondences or objects with

known geometric patterns, neither of which is available in

our task. However, Huang et al. [17] proposed a method,

using a pedestrian trajectory to find the three orthogonal

vanishing points (VP) which can be applied for camera ori-

entation (or rotation) estimation. This method also leverage

pedestrian trajectory information and can be applied in our
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Figure 6: Visualization of the real ground plane and the re-projected ground plane. The blue dotted plane in each image

represents the real position of the ground plane, while the pink dotted plane represents the ground plane projected with the

camera pose P̃ predicted by our NN regressor. Our approach works reasonably well across all scenes.

Figure 7: The detected head and feet positions used in the

vanishing-point calibration baseline.

experiment scenarios. We compare our approach with the

VP calibration method in this experiment.

Table 3 gives the rotation prediction errors of the VP cal-

ibration baseline [17] and our approach. One set of orthog-

onal vanishing points can be detected from each walking

pedestrian. We use 3 different identities (or three different

sets of orthogonal vanishing points) in this experiment. We

observe that the results computed by VP calibration base-

line are inaccurate and variate with different sets of vanish-

ing points, while our approach achieves accurate and stable

results. Our understanding is that, the VP baseline calcu-

lates a rotation between the camera coordinate system and

the 3D coordinate defined by the three detected vanishing

points. With different sets of vanishing points, the results

will be different. On the contrary, our approach estimates

the rotation between the camera coordinate system and the

world coordinate system, and this rotation is unique and im-

plicitly embedded in the training data. Figure 7 shows the

detected head and feet positions used in the VP baseline.

4.4. Qualitative Result

To obtain an intuitive understanding of the camera pose

prediction error, we annotate the ground plane in each

scene, project it to the 3D world with real camera pose P∗,

Figure 8: Efficiency comparison between our approach and

baselines. The left 3 bars are the result of baseline with

α = 1, the middle 3 bars are the result of baseline with α
fine-tuning, the right 3 bars are the result of our method.

then re-project it back to the 2D image with our estimated

camera pose P̃ . Figure 6 shows the result. We observe that

the re-projected ground planes generally overlap well with

the real ground planes. Note that, the re-projected ground

plane not overlapping well with the ground truth does not

means the prediction error is large, the visualization result

also impact by the camera looking angle. However, in gen-

eral, our approach works reasonably well across all scenes.

4.5. Ablation Study

4.5.1. Analysis of Efficiency

Figure 8 shows the location and orientation prediction

errors vs the training time costs of our approach and the

learning-based baselines. For the baseline without fine-

tuning α, we set α = 1 as what we did for training our

model. We observe that, if we do not fine-tune α, the base-

line model will have high prediction errors on both location

and orientation. However, if we fine-tune α, the training

time cost will go up by almost an order. Comparing with

the baseline model with fine-tuning α, our model reduces

50% of both the location and orientation prediction error.

Meanwhile, the training time cost of our model is exponen-

tially less even than the baseline model without fine-tuning.
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Figure 9: Location and orientation prediction errors of our approach over different synthetic speeds. x-axis measures the

synthetic speed, y-axis measures the prediction error. When the synthetic speed is close to human speed, the error is small.

Figure 10: Test trajectories with and without height varia-

tions used to test the same trained model.

4.5.2. Analysis of Trajectory Height Variation

For a better understanding of how the height variations

in the trajectories impact the performance, we test the same

trained model on both trajectories that have height varia-

tions and trajectories that do not. We conduct this experi-

ment on DM2, DM5, and DM8, since the stairs in the three

scenes will lead to significant trajectory height variations.

We generate two test sets for each scene and make sure the

two sets have the same size. One set contains trajectories

passing through stairs, and another set contains trajectories

on the ground plane. The same trained model is tested on

both sets. A visualized comparison of the two test datasets

is presented in Figure 10, and the result is given in Table 4.

We observe that height variation will damage the prediction

accuracy, especially the location prediction accuracy. Our

explanation is, the stairs will impact the absolute distance of

two adjacent points (step length) on the image plane. which

will lead to high location (or depth) prediction error.

4.6. Analysis of Synthetic Pedestrian Speed

Since we use synthetic data to train our regressor, the

distribution similarity between the synthetic trajectories

and the real trajectories will, to a large extent, determine

the performance of our approach. To measure the im-

pact of synthetic speed, we conduct the following experi-

ment. For each real test scene, we generate multiple training

datasets, with the synthetic speed uniformly sampled from

Test Data DM2 DM5 DM8

w/ 0.22m, 1.31
◦

0.32m, 1.78
◦

0.38m, 3.49
◦

w/o 0.17m,1.12
◦

0.21m,2.07
◦

0.16m,2.95
◦

Table 4: Position and orientation prediction errors when tra-

jectories are w/ or w/o height variations. The result shows

trajectory height variations impact the performance.

[0.2m/s, 4.0m/s]. The sampling step is 0.2m/s. Then

for each training dataset, we train a separate regressor and

test the trained regressor with the same real test dataset. We

conduct this experiment on all the six scenes and present in

Figure 9 the result. We have the following observations:

- The synthetic speed has a significant impact on the lo-

cation prediction accuracy while does not affect the

orientation prediction accuracy that much.

- The location error plots for all the six datasets shape as

a “bowl” over the synthetic speed. We guess that the

synthetic speed, which leads to the smallest location

prediction error is the real average pedestrian speed.

For 5 out of 6 datasets, the optimal synthetic speed is

close to 1.4m/s, which accords with Carey [10].

- The optimal synthetic speed for DM1 is abnormally

around 3.5m/s, which is almost as fast as the bicycle

speed. We guess that the given FPS parameter of DM1

is incorrect. If we eliminate the result for DM1, the

prediction errors will become 0.21m and 1.96◦.

5. Conclusion

In this paper, we have proposed a learning-based ap-

proach to end-to-end regress the 3D camera pose from 2D

pedestrian trajectories. Experiments on six real scenes has

demonstrated that our approach can achieve high camera

pose prediction accuracy across a variety of real-life cam-

era settings. We also verified with experiments that our pro-

posed NN regressor could be trained on synthetic data only

and directly applied to real test data.
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