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Abstract

Visual question answering (VQA) aims at answering

questions about the visual content of an image or a video.

Currently, most work on VQA is focused on image-based

question answering, and less attention has been paid into

answering questions about videos. However, VQA in video

presents some unique challenges that are worth studying:

it not only requires to model a sequence of visual features

over time, but often it also needs to reason about associ-

ated subtitles. In this work, we propose to use BERT, a

sequential modelling technique based on Transformers, to

encode the complex semantics from video clips. Our pro-

posed model jointly captures the visual and language in-

formation of a video scene by encoding not only the sub-

titles but also a sequence of visual concepts with a pre-

trained language-based Transformer. In our experiments,

we exhaustively study the performance of our model by tak-

ing different input arrangements, showing outstanding im-

provements when compared against previous work on two

well-known video VQA datasets: TVQA and Pororo.

1. Introduction

Answering questions automatically is considered as one

of the highest goals for an intelligent system. To achieve

such a goal, visual question answering (VQA) aims to an-

swer questions about images by extracting the semantic in-

formation contained in both the language content (i.e. the

question) and the visual content (i.e. the image). A typi-

cal VQA system [42, 1] takes an image and a question pair

as input, encodes their visual and language features into

high-dimensional vectors, and processes them using atten-

tion mechanisms [43] to predict the correct answer.

In the last few years, VQA has attracted a lot of at-

tention and the field has experienced outstanding advance-

ments [11, 1, 16, 2, 34]. However, current frameworks

still present some limitations. For example, whereas VQA

has been mainly focused on modelling static image-related

questions, less attention has been paid to answer questions

Figure 1. Our proposed model for video-QA based on BERT.

about videos, which requires reasoning over temporal se-

quences of images. Moreover, most of the efforts in VQA

systems are mainly focused on extracting better visual rep-

resentation from images [23, 6, 26], leaving the modelling

of the semantic language contribution to standard recurrent

neural networks (RNN).

To address VQA in temporal sequences, video question

answering (video-QA) where models need to correctly an-

swer questions about video clips, has been recently stud-

ied [36]. Due to the temporal nature of videos, video-QA

presents some unique challenges with respect to standard

VQA: 1) it requires to understand the temporal coherence

in a set of frames [49, 28], and 2) it often needs to con-

sider plot-related questions based on the associated subti-

tles [21, 18, 8]. This means that video-QA models need to

process considerably more input data than standard VQA

systems, and hence they need specific methods to extract

and represent such amount of visual and language content.

Most models for video-QA introduced so far [36, 21, 18]

encode the language information from the questions and the

subtitles using RNNs, especially long short-term memory

(LSTM) networks [13]. However, LSTM representations

may be failing at capturing semantic relationships in long
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text sequences, such as the ones that appear in the subtitles

of long video clips (e.g. about 30 seconds).

In this work, we propose to improve video-QA by cap-

turing the visual and language semantic information from

the video clips using BERT representations [7]. BERT is

a powerful bidirectional network based on language Trans-

formers [39] and it has been shown to outperform LSTMs in

several natural language processing tasks [7, 9, 24]. How-

ever, BERT has been barely explored in computer vision

applications. For video-QA, Lei et al. [22] proposed to use

BERT off-the-shelf to extract pre-trained representations

from the language information (i.e. questions, answers, and

subtitles). In this work, we go a step further and perform

a deep study about BERT representations for video under-

standing. We not only fine-tune the network for the task of

interest, but also rely on BERT for encoding both the lan-

guage and the visual information, as shown in Fig. 1.

We address video-QA as a multiple choice task [21, 18].

In our proposed model, we first extract the visual seman-

tic information from each video frame as visual concepts

using Faster-RCNN [32] fine-tuned on the Visual Genome

dataset [20]. Then, the subtitles and the extracted visual

concepts are processed in two independent flows along with

the question and candidate answers. In each flow, a fine-

tuned BERT network is used to predict the correct answer.

The outputs of the two flows are jointly processed to ob-

tain the final prediction. We extensively evaluate our model

on two well-known video-QA datasets: TVQA [21] and

Pororo [18]. In our experiments, we conduct several abla-

tion studies and comparisons against previous work, show-

ing that our proposed framework improves the accuracy

of video-QA by at least 3.34% on the TVQA dataset and

4.89% on the Pororo dataset compare with TVQA model

[21] and MDAM [17], respectively.

2. Related Work

Image-Based Question Answering Image-based ques-

tion answering, or standard VQA, takes an image and a

related question as input, extracts features from the im-

age and the question, and fuse them to predict the correct

answer. Lots of methods have been proposed in the last

few years. For example, in Spatial Memory Network [42],

neuron activations from different regions of the image are

stored in a memory; in [29], an entity graph based ques-

tion answering is proposed, where graph convolutional net-

work is used to simulate the reasoning about the correct

answer; in interactive question answering [10], a task of

answering questions that require an autonomous agent to

interact with a dynamic visual environment is introduced;

in [14], a graph network for bridging the gap between the

neural and symbolic artificial intelligence is proposed. Be-

sides these improvements, many other related work, such as

[33, 25, 30, 12, 3, 46, 11, 1, 16, 2, 34], has contributed to

the advancement of the field.

Video-Based Question Answering In contrast to image-

based VQA, video-based question answering, or video-QA,

needs a joint understanding of the question and candidate

answers, a temporal sequence of video frames, and also the

associated subtitles. In the last few years, some work re-

lated to video-QA has been proposed. For example, [21]

proposes a method to answer video-based questions where

the visual and language features are embedded by a LSTM,

whereas the same authors improve the results in [22] with a

network that grounds evidence in both the spatial and tem-

poral domains; in [8] a video understanding task by fusing

external knowledge and video-QA is introduced; in [15] a

video question answering framework that requires to simul-

taneously retrieve the relevant moments and referenced vi-

sual concepts is proposed; in [49] video-QA is studied in

the temporal domain to do inference and prediction; and in

[47] a scalable approach to automatically harvest videos and

descriptions online and generate candidate QA pairs is pro-

posed. Other related work can be found in [41, 40, 36, 48].

Different from previous studies, we use BERT to model the

information captured in the video clips in our work.

Language Representations Language representations

associate each word in a sentence with a real-valued vec-

tor. They are widely used for processing the language infor-

mation in question answering models and different meth-

ods have been proposed in the last few years. For example,

GloVe [31] is proposed to leverage statistical information

by training only on the non-zero elements in a word-word

co-occurrence matrix; Skip-Thoughts [19] learns a generic,

distributed sentence encoder in an unsupervised way; in

[35], sentiment tree banks and recursive neural tensor net-

works are used to represent language features; in [27],

a LSTM encoder from attentional sequence-to-sequence

model is used to contextualize word vectors; in [44], XL-

Net, a generalized auto-regressive pretraining method that

enables learning bidirectional contexts by maximizing the

expected likelihood over all permutations of the factoriza-

tion order is proposed. Besides these methods, some other

language representations [5, 38] have also been proposed.

3. Proposed Framework

The basic structure of our proposed framework, which

aims at answering multiple choice video-QA questions, is

shown in Fig. 2. We process the visual and language infor-

mation in two independent flows, which are lately fused to

obtain the jointly answer prediction. In the visual flow, we

represent the visual semantic information from each video

frame as the set of objects and attributes that appear in the

scene, named visual concepts. In the language flow, the
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Question: 
Where is Meredith when 
George approaches her? 

Video frames: 

 

Candidate answers: 
a0: Cafeteria 
…… 
a4: Outside 

Question: 
Where is Meredith when 
George approaches her? 

Subtitles 
 
- Meredith! Tell me where 
she is. 
…… 
- (George:)We're just having 
one of our stupid fights. 

Candidate answers: 
a0: Cafeteria 
…… 
a4: Outside 

 
Faster-RCNN 

Rearrangement 
V+Q+a0 
V+Q+a1 
V+Q+a2 
V+Q+a3 
V+Q+a4 
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S+Q+a3 
S+Q+a4 

 
BERT 
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Figure 2. The framework of our proposed model.

language semantic information is extracted from the sub-

titles. For each flow, visual concept features and subtitles,

respectively, are processed along with the question and each

candidate answer with a BERT network.

3.1. Introduction to BERT

BERT is a language representation model designed to

extract pre-trained deep bidirectional representations [7]. It

uses bi-directional Transformers [39], meaning every word

attends to the context to both sides in every layer of the net-

work. Pre-trained BERT representations can be fine-tuned

automatically, achieving state-of-the-art performance in a

wide range of tasks [7, 9, 24].

For a given input sequence of word tokens, the input rep-

resentation of each token is the combination of the corre-

sponding token embeddings, segment embeddings and po-

sition embeddings. An example of input representation is

shown in Fig. 3, where segment embeddings denote the sen-

tence of each token (A: the former sentence; B: the latter

sentence) and position embeddings denote the position of

each token within the input sequence. The first token in ev-

ery sentence is [CLS], which is used to obtain the output in

classification tasks. The [SEP] token is added to indicate

the separation between two sentences.

3.2. Feature Representations and Predictions

We use two independent BERT networks to predict the

correct answer of each question based on the information

obtained from the visual concept features and subtitles.

Visual Representations Recent work [45, 21] has found

that using detected object labels as input has comparable or

better performance to using CNN features directly in image

captioning and video-QA tasks. Thus, to represent the se-

mantic content of the video scene we use detected object la-

bels, named as visual concept features. The visual concept

features contain both objects and attributes, such as grey

pants, woman, blonde hair, etc. We extract visual concept

features from each video frame using Faster R-CNN [32]

fine-tuned on the Visual Genome [20] as in [1]. Frames

are extracted at 3 fps. In every extracted frame, the visual

concept features are represented by corresponding words

or noun phrases. The unique visual concept features from

a whole scene v are then obtained by aggregating the vi-

sual concepts from all the frames and removing duplicates.

Then, the question q, the unique visual concept features and

each candidate answer ai (i=0,1,2,3,4) are concatenated and

rearranged into a single string ci. Each rearranged string is

tokenized to obtain the sequence Tci .

ci = [v, q, ai] (1)

Tci = tokenize(ci) (2)

Here, the concatenation of v and q, [v, q], is set as the for-

mer sentence and [ai] is set as the latter sentence. The last

token(s) in the former and latter sentences are truncated un-

til the number of words in Tci is no more than a maximum

number of words L .

Next, Tci is fed into the BERT network, which outputs

Vci , a matrix containing the vector representation of each
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He is a teacher. He loves singing. E[CLS] E He E is E a E teacher E [SEP] E He E loves E sing E ##ing E [SEP] 

Original sentence 

BERT embeddings 

Segment 

Position 

He is a teacher. (A) He loves singing. (B) 

0 1 2 3 4 5 6 7 8 9 10 

Figure 3. An example of input representation using BERT.

word in the input sentence. The output vector correspond-

ing to the [CLS] token V 0

ci
is fed to a fully connected layer

to obtain the visual flow prediction Rci for answer i, where

Fc is a trainable parameter.

Vci = BERTc(Tci) (3)

Rci = FcV
0

ci
(4)

Language Representations Similarly, in the language

flow, we concatenate the subtitles s, the question q and the

candidate answer items ai (i=0,1,2,3,4) to form the string

wi. The rearranged string is tokenized to form the sequence

of tokens Twi
, which is fed into the BERT network to obtain

Vwi
. The language flow prediction Rwi

for answer i, then,

is obtained as:

wi = [s, q, ai] (5)

Twi
= tokenize(wi) (6)

Vwi
= BERTw(Twi

) (7)

Rwi
= FwV

0

wi
(8)

Prediction Finally, the predictions of visual and language

flows for each candidate answer are summed to obtain Rpi
,

and softmax is used to convert the summed vector into the

answer scores Rf :

Rpi
= Rci +Rwi

(9)

Rp = [Rp0
, Rp1

, Rp2
, Rp3

, Rp4
] (10)

Rf = softmax(Rp) (11)

The answer with the maximum score is selected as the final

predicted answer ap, with:

p = argmax(Rf ) (12)

4. Experiments

Experimental Settings Our evaluation is performed on a

computer with Core i7 8700K CPU (3.70GHz), 32G RAM

and Nvidia TITAN RTX GPU. We use BERTBASE un-

cased model, which has 12 layers, 768 hidden sizes, 12

self-attention sizes, 110 million parameters and makes no

distinction between upper case and lower case tokens. The

learning rate is set to 2e-5, the number of epochs is set to

10, the batch size is set to 8 and L, the maximum number

of tokens per sequence, is set to 128.

Datasets We use two video-QA datasets: TVQA [21]

and Pororo [18]. TVQA is based on six TV shows with

of 152,500 question-answer pairs (Q/A pairs) from 21,800

clips, while Pororo dataset is based on a children’s cartoon

video series called Pororo with 8,834 Q/A pairs from 171

episodes. In both datasets, the subtitles corresponding to

each video scene are provided and questions are formulated

as a multiple-choice task with one correct answer out of five

candidates. The questions in both datasets require a joint

understanding about visual and language features to find the

correct answer. In TVQA, the corresponding video and lan-

guage elements are annotated with time stamps in each Q/A

pair to denote the related segment of the question. Since the

number of total submissions to the test server is limited, we

split 15,253 Q/A pairs from the training set to form a test*

set, while the validation set is kept the same. We also report

some results on the official test set. In Pororo dataset, be-

sides the videos and subtitles, descriptions about the scenes

are given. For comparison, we report results on TVQA [21],

STAGE [22] and MDAM [17]. We also wanted to compare

against [15] and perform experiments on MovieQA [37],

but the dataset was not available when we wrote this paper.

Input Sequence We consider three ways of rearranging

the input sequences of tokens, ci and wi:

1)[CLS]+V/S+Q+[SEP]+A

2)[CLS]+V/S+.+Q+[SEP]+A

3)[CLS]+V/S+[SEP]+Q+[SEP]+A

(13)
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Table 1. Accuracy (in %) of proposed method on TVQA dataset with time stamp annotations. Note that one only has limited chances to

submit their results to the test server for evaluation, thus we only show representative results of our method.

Input Name Visual Language Val Test* Test

Q+A
TVQA [21] - GloVe + LSTM 42.77 - 43.50

Ours [CLS]+Q+[SEP]+A - BERT 46.88 47.54 -

V+Q+A

TVQA [21] GloVe + LSTM - 45.03 - 45.44

Ours [CLS]+V+Q+[SEP]+A BERT - 48.91 49.45 -

Ours [CLS]+V+.+Q+[SEP]+A BERT - 48.95 49.23 -

Ours [CLS]+V+[SEP]+Q+[SEP]+A BERT - 48.74 49.53 -

S+Q+A

TVQA [21] - GloVe + LSTM 65.15 - 66.36

Ours [CLS]+S+Q+[SEP]+A - BERT 70.08 69.42 -

Ours [CLS]+S+.+Q+[SEP]+A - BERT 70.09 70.13 -

Ours [CLS]+S+[SEP]+Q+[SEP]+A - BERT 70.65 70.22 -

V+S+Q+A

TVQA [21] GloVe + LSTM GloVe + LSTM 67.70 - 68.48

STAGE [22] GloVe + LSTM BERT 70.50 - 70.23

Ours [CLS]+V/S+Q+[SEP]+A BERT BERT 72.06 72.54 73.57

Ours [CLS]+V/S+.+Q+[SEP]+A BERT BERT 72.41 72.23 72.71

Ours [CLS]+V/S+[SEP]+Q+[SEP]+A BERT BERT 72.35 72.50 73.06

where V means visual concepts, S means subtitles, Q means

question and A means answer. V/S means visual concept

and subtitles are taken in the visual and subtitle flows, re-

spectively. Ablation studies are made by removing both

visual concepts and subtitles (Q+A), only visual concepts

(S+Q+A) or only subtitles (V+Q+A).

Results on TVQA Dataset Results on TVQA dataset are

in Table 1. We report results using the provided time stamp

annotations, meaning that we only input the visual concepts

and subtitles corresponding to each time stamp. For com-

parison, we report results of the TVQA model [21], using

LSTM for both visual and language representations, and

STAGE [22], using LSTM for visual and BERT for lan-

guage representations. Results show that when we use both

visual and subtitle representations, our method obtains an

accuracy up to a 5.09% higher than the one obtained with

GloVe + LSTM and up to 3.34% higher than STAGE.

Results on Pororo Dataset Results on Pororo dataset are

in Table 2. As input, we only use the video scenes and sub-

titles and we do not use the provided video scene descrip-

tions. We compare our method against MDAM [17] and

TVQA [21] models. We obtain an accuracy up to 4.89%
higher than MDAM and up to 11.26% higher than TVQA.

Note that we do not report DEMN model [18] results as they

use the video scene descriptions.

Ablation Study Table 1 shows that when visual concepts

along with questions and answers are used on the TVQA

dataset, the accuracy improves by about 2% compared to

those using questions and answers only. On the Pororo

dataset, the improvement is by more than 13%. We also

find that the use of subtitles makes a big leap in the accuracy

Table 2. Accuracy (in %) of proposed method on Pororo dataset.

Input Name Model Val Test

S+Q+A

MDAM [17] LSTM - 42.50

TVQA [21] LSTM 37.60 33.90

Ours [CLS]+S+Q+A BERT 55.57 52.54

Ours [CLS]+S+.+Q+A BERT 48.93 50.04

Ours [CLS]+S+[SEP]+Q+A BERT 56.49 55.41

V+S+Q+A

MDAM [17] LSTM - 48.90

TVQA [21] LSTM 37.78 42.53

Ours [CLS]+V/S+Q+A BERT 48.93 48.42

Ours [CLS]+V/S+.+Q+A BERT 54.14 53.79

Ours [CLS]+V/S+[SEP]+Q+A BERT 52.45 52.18

of video-QA tasks. When subtitles along with questions and

answers are contained in the input on the TVQA dataset, the

accuracy increase by more than 20% compared to those us-

ing questions and answers only. These results indicate the

importance of a strong visual and language representation

model in video-QA tasks.

In the TVQA dataset, all of the three proposed rearrange-

ment methods from Eq. (13) give a better prediction than the

TVQA model and STAGE. However, there are small dif-

ferences between each method, implying that BERT deals

with the three rearrangements (especially with the separa-

tion marks such as "." and [SEP]) in different ways. When

the inputs are visual concepts, subtitles, questions, and an-

swers, [CLS]+V/S+.+Q+[SEP]+A performs the best in vali-

dation set, while [CLS]+V/S+Q+[SEP]+A performs the best

in both test* and test sets.

5. Discussion

Training Time On the TVQA dataset, it takes about 3

hours to train an epoch for either the visual or the language

flow, while it takes about 5.5 hours to train an epoch for both

flows. As reference, the TVQA model [21] on the same ma-
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Table 3. Accuracy results (in %) on the TVQA dataset using full length subtitles (without timestamps annotations). Note that one only has

limited chances to submit their results to the test server for evaluation, thus we only show representative results of our method.

Input Visual and Language Representation Val Test* Test

V+S+Q+A

TVQA [21] 64.42 - 66.46

PAMN [15] - - 66.77

STAGE [22] 68.56 - 69.67

Ours [CLS]+V/S+Q+[SEP]+A 60.17 60.48 -

Ours [CLS]+V/S+.+Q+[SEP]+A 60.42 60.47 -

Ours [CLS]+V/S+[SEP]+Q+[SEP]+A 61.97 61.67 -

Ours [CLS]+V/S+Q+[SEP]+A with pruning 63.07 62.77 62.72

Ours [CLS]+V/S+.+Q+[SEP]+A with pruning 62.05 61.94 -

Ours [CLS]+V/S+[SEP]+Q+[SEP]+A with pruning 62.87 62.54 -

chine and the same batch size takes about 2.25 hours to train

an epoch for either the visual or the language flow, while it

takes about 4.25 hours to train an epoch for both flows. This

difference is because BERT encodes the answers along with

the question and visual concepts or subtitles, respectively,

making it time-consuming and memory-consuming in the

tokenization and training. Usually, the best validation accu-

racy can be obtained within 2 epochs in both flows.

Evaluation with Full-Length Elements To test the per-

formance of our model under non-annotation situations, we

use the full-length elements (i.e. visual concepts and sub-

titles without time stamp annotations) instead of the time

stamp annotated elements. The maximum number of tokens

per input, L, is 512. The results are in Table 3. The best val-

idation accuracy of our proposed method is 61.97% being

2.45% lower than the TVQA model without time stamp an-

notations and 6.59% lower than STAGE [22]. The drop in

performance with respect using the time stamp annotations

may be because the input sequence is limited in size by the

maximum number of tokens L, being many full-length sub-

titles longer than 512.

To overcome this limitation, we follow [4] and prune

the irrelevant part of the subtitles using similarities between

their TF-IDF sentence representations. First, we generate a

vocabulary of about about 44,000 words with all the tokens

that appear in the TVQA train set at least 5 times. Then, we

segment the tokenized subtitles into sections of 400 tokens

and compute the cosine similarity between the TF-IDF rep-

resentations of each section and the question. Finally, we

select the section with the highest cosine similarity as the

input subtitle. The best validation accuracy of our proposed

method with pruning is a 1.1% higher than without pruning,

however, on the test server, the result is still 4.05% lower

than PAMN [15] and 6.95% lower than STAGE.

By analysing the results in detail, there may be two main

reasons for this phenomena. First, full-length elements

contain too many words to be covered in the embeddings.

Our method embeds the visual concepts/subtitles, the ques-

tion, and candidate answers altogether, and truncating the

Table 4. Statistics of the input sequences on the TVQA test* set.

Max Min Avg >128 >256 >512

Visual flow 527 20 135.73 45.11% 3.94% 0.01%

Subtitle flow 684 18 95.58 15.30% 3.30% 0.75%

remaining words when the input sequence is longer than

L. However, in [21, 15, 22], the questions, the answers,

the subtitles and the visual features are embedded indepen-

dently, enabling the tokenized input to contain more words

and convey more information. Second, our work does not

use attention mechanisms to find the corresponding part of

visual/subtitle elements that is related to the question. Even

if we are using TF-IDF for pruning, there are about 20% of

the the pruned tokens are more than 512 words. In TVQA

model, context matching modules are used to build context-

aware vectors, which is helpful for prediction. In PAMN,

dual memory embedding is adopted to enable pinpointing

different temporal part for each module. In STAGE, guided

attention is applied to match the words in questions/answers

to the visual concepts and subtitles. In our future work we

will explore attention mechanisms to improve the prediction

in the full-length elements.

Evaluation with Different Sequence Lengths Next, we

explore whether different L values have influence on the

video-QA accuracy. The maximum number of words, the

minimum number of words, the average number of words

and the percentage of having more than 128, 256, and 512

words with time stamp annotations are calculated in Table 4

for the visual and language sequence of the TVQA dataset

test* set. There are more than 45% of the sequences having

more than 128 words in visual flow, and more than 15% of

the sequences with more than 128 words in subtitle flow.

We can also see that the percentage of sequence with more

than 512 words in both flows is less than 1%.

We evaluate our model with three different values of L

(128, 256, and 512) on the TVQA dataset test* set with time

stamp annotations. The results are shown in Table 5. When

L increases, the test* accuracies of our model also rise up.

The reason is that L implies the amount of information con-
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Table 5. Accuracy results (in %) on te TVQA test* set using dif-

ferent L values (128, 256, and 512).

Input Sequence 128 256 512

[CLS]+V/S+Q+[SEP]+A 72.54 72.82 73.05

[CLS]+V/S+.+Q+[SEP]+A 72.23 72.68 72.79

[CLS]+V/S+[SEP]+Q+[SEP]+A 72.35 72.96 73.15

Table 6. Accuracy results (in %) on TVQA test* set without

<eos> and ".".
Input Sequence Original EOS EOS, "."

[CLS]+V/S+Q+[SEP]+A 72.54 73.15 72.67

[CLS]+V/S+.+Q+[SEP]+A 72.23 72.71 72.79

[CLS]+V/S+[SEP]+Q+[SEP]+A 72.50 72.94 72.79

veyed into the BERT network.

Evaluation with Minor Embedding Changes To exam-

ine how the prediction is affected by minor changes in

the embeddings, we remove the <eos> mark and both

<eos> and full stop (".") in the TVQA dataset subtitles

before tokenization on test* set with time stamp annota-

tions. L is set as 128. The results are shown in Ta-

ble 6. By applying these changes, the accuracy increases.

Intuitively, the input sequence has more content words

when <eos> and full stop are removed. Results show

that when [CLS]+V/S+.+Q+[SEP]+A is adopted, the accu-

racy of removing <eos> and "." is higher than removing

merely <eos>. However, when [CLS]+V/S+Q+[SEP]+A and

[CLS]+V/S+[SEP]+Q+[SEP]+A are adopted, the accuracy of

removing <eos> and "." is lower than removing merely

<eos>. This implies that there is some influence of these

token marks in the sentence segmentation. For example,

when a full stop is input, the network may identify a sen-

tence before it, and when both <eos> and full stops are re-

moved, the network may be find it hard to segment the input

sequence. From our experiments, "." mark has a stronger

influence than <eos> in making correct predictions.

Qualitative Results We show some examples of suc-

cessful and unsuccessful predictions of our framework and

TVQA model in Fig. 4. [CLS]+V/S+[SEP]+Q+[SEP]+A em-

bedding is used. The words or the boxes in blue are hints

to the correct prediction. Questions 1, 3 and 6 are related to

the visual features, while questions 2, 4 and 5 are related to

the subtitles.

Our framework correctly predicts question 1, 2 and 5,

but incorrectly predicts 3, 4 and 6. In question 1, the scene

looks like an office. Even if the time annotated subtitles

are long, our framework captures the visual features related

to an office in the video scene, so it gives a correct predic-

tion. In question 2, the answer can be found from the subti-

tles, where Sheldon explains the difference between comics

and comic books. This question spans about 12 seconds

and is quite challenging. Our model gives the correct pre-

diction according to the subtitles. In question 3, we can

see that Cameron is staring at the computer while talking in

the video frame, but our framework finds it difficult to cap-

ture this feature, as there are many people in the scene. In

question 4, we can read from the subtitles Stuart says that

"your mother already gave me the money", then Howard

says "What?". Our model also failed to predict the correct

answer to this question. This may be because our frame-

work find "Stuart" and "mother" in the same line, but can-

not tell who is the person that gives the money. In question

5, the answer can be directly found from the subtitles, say-

ing "But the bad memories crowded out the good and she

ran". In question 6, Bernadette’s face shows a sad expres-

sion, which is very challenging to capture using the visual

concepts extracted by Faster R-CNN.

From these examples, we can see that our model is able

to solve both visual and language related questions that can-

not be solved by LSTM. However, when the answer is not

explicit in the video frames or the subtitles and needs out-

side knowledge sources, our method gives a bad predic-

tion. The reason may be that BERT uses a self-attention bi-

directional structure, making every word to attend its con-

text on both sides, while in LSTM, the follow-up words

in the long sentence may have a weak attendance to its

long previous words. However, the attention mechanism in

TVQA model helps to pinpoint relevant words, which might

be the reason for correctly predicting questions 3 and 4.

6. Conclusion

In this work, we proposed an improved framework for

video-QA tasks. We used language representations for vi-

sual concept features and subtitles based on BERT to cap-

ture the semantics in both the video scenes and subtitles

more accurately. Experiments were conducted to test the

performance of our model by taking different input arrange-

ments, subtitles with/without time stamp annotations, dif-

ferent maximum length and some minor changes of the

input sentence into BERT models. Results show that our

model gave correct predictions from the language and visual

representations on TVQA and Pororo datasets. Our model

improved the performance by 5.09% compared to the pre-

vious work based on LSTM, and 3.34% compared with the

STAGE network. However, our model present some limita-

tions when using full-length subtitles. As a future work, we

will explore the use of attention mechanism to identify the

relevant part of the long full-length subtitles.
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(1) 
Subtitles: 
00:00:21,578 --> 00:00:23,346 

I told him he was gonna get us both killed. 

00:00:23,413 --> 00:00:26,115 

(Castle:)But he only got himself killed. Trying 

to save you. 

00:00:27,685 --> 00:00:30,586 

(Beckett:)We have an audio recording of 

Boothe from that night. 

Q: Where were Castle and Beckett 
when they were talking to Trey about 
Lance's death? 
a0: In a jail cell 
a1: In an office 
a2: In a squad car 
a3: At the crime scene 
a4: In the parking lot 

Film: Castle 
Time stamp: 21.81-29.82 

Our prediction: 1 (√) 
TVQA prediction: 0 (×) 

(4) 
Subtitles: 
00:00:27,494 --> 00:00:28,924 
(Stuart:)I appreciate the offer, 
00:00:28,928 --> 00:00:31,898 
(Stuart:)but actually your mother already gave 
me the money. 
00:00:33,700 --> 00:00:36,000 
(Howard:)What? 
00:00:36,002 --> 00:00:38,202 
(Stuart:)Yeah. I told her it was too much, 
00:00:38,204 --> 00:00:41,304 
(Stuart:)but she said she was happy to help out 
her bubala. 

Q: Who does Stuart say gave him 
money to reopen his comic book store 
after Howard offers him some? 
a0: He inherited some money from a 
relative 
a1: Stuart's mom 
a2: Sheldon 
a3: Leonard 
a4: Howard's mom 

Film: The Big Bang Theory 
Time stamp: 28.07-41.19 

Our prediction: 1 (×) 
TVQA prediction: 4 (√) 

(3) 
Subtitles: 
00:00:08,067 --> 00:00:12,231 
(Cameron:)House would let you out of 
it in a heartbeat.  
Or he wouldn't, just to jerk me around. 

Q: Who is sitting at the computer when 
the group is talking? 
a0: Cameron 
a1: Chase 
a2: Foreman 
a3: House 
a4: Cuddy 

Film: House 
Time stamp: 9.83-11.17 

Our prediction: 2 (×) 
TVQA prediction: 0 (√) 

(5) 
Subtitles: 
00:00:26,373 --> 00:00:28,568 
(Masters:)If it's hit her brain, that could 
mean she doesn't have long. 
00:00:28,676 --> 00:00:32,203 
So then the question becomes, "Will the 
sister show up at the funeral?" 
00:00:32,279 --> 00:00:33,541 
(Chase:)She tried to reconcile. 
00:00:33,614 --> 00:00:36,242 
(Chase:)But the bad memories crowded 
out the good and she ran. 
00:00:36,350 --> 00:00:37,749 
(House:)Nobody's perfect. 

Q: What reason did Chase give for the 
patient's sister not talking to her when 
talking to House on the phone? 
a0: The sister is actually her mother 
a1: She didn't remember her 
a2: They hate each other 
a3: She doesn't have a sister 
a4: Bad memories 

Film: House 
Time stamp: 27.6-36.5 

Our prediction: 4 (√) 
TVQA prediction: 4 (√) 

(6) 
Subtitles: 
00:00:00,222 --> 00:00:03,862 
(Howard:)...before my dad left me and 
my mom... 
00:00:03,859 --> 00:00:07,399 
(Howard:)he used to... take me to the 
comic book store. 
00:00:08,463 --> 00:00:11,963 
(Howard:)It was one of the few things 
we did together. 
00:00:11,967 --> 00:00:14,837 
(Bernadette:)Oh. Howie, I had no idea. 

Q: How did Bernadette feel when 
Howard told about his dad? 
a0: Happy 
a1: Sad 
a2: Nervous 
a3: Anxious 
a4: Angry 

Film: The Big Bang Theory 
Time stamp: 0-14.18 

Our prediction: 3 (×) 
TVQA prediction: 3 (×) 

(2) 
Subtitles: 
00:00:23,334 --> 00:00:26,464 
Oh, hey, could you pick me up a few 
comics for my nephew's birthday? 
00:00:26,629 --> 00:00:28,629 
No, I think you mean comic books. 
00:00:28,798 --> 00:00:30,678 
Comics are feeble attempts at humor... 
00:00:30,841 --> 00:00:33,631 
(Sheldon:)...featuring talking babies and 
anthropomorphized pets... 
00:00:33,803 --> 00:00:38,053 
(Sheldon:)...found traditionally in the 
optimistically named "funny pages." 

Q: What does Sheldon explain the difference 
between after Penny asks for a favor? 
a0: Nuclear fusion and nuclear fission. 
a1: Sausage and sausage patties. 
a2: Comics and Comic books. 
a3: A yard and a meter. 
a4: Organic chemistry and inorganic 
chemistry. 

Film: The Big Bang Theory 
Time stamp: 25.84-37.81 

Our prediction: 2 (√) 
TVQA prediction: 3 (×) 

Figure 4. Successful and unsuccessful predictions of our framework and TVQA model.
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