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Figure 1: This paper presents a semi-supervised learning framework for an object co-segmentation task from multiview

images. In particular, we consider wide baseline images where photometric matching does not apply. We formulate a novel

cross-view self-supervision method to transfer a segmentation mask from one view to the other. This allows us to effectively

segment foreground objects with the limited number of labeled images instances including monkey, Indian dancer, and a

public dataset of social videos captured by handheld cameras.

Abstract

This paper presents a method to co-segment an object

from wide baseline multiview images using cross-view self-

supervision. A key challenge in the wide baseline im-

ages lies in the fragility of photometric matching. Inspired

by shape-from-silhouette that does not require photomet-

ric matching, we formulate a new theory of shape belief

transfer—the segmentation belief in one image can be used

to predict that of the other image through epipolar geom-

etry. This formulation is differentiable, and therefore, an

end-to-end training is possible. We analyze the shape belief

transfer to identify the theoretical upper and lower bounds

of the unlabeled data segmentation, which characterizes the

degenerate cases of co-segmentation. We design a novel

triple network that embeds this shape belief transfer, which

is agnostic to visual appearance and baseline. The result-

ing network is validated by recognizing a target object from

realworld visual data including non-human species and a

subject of interest in social videos where attaining large-

scale annotated data is challenging.

1. Introduction

This paper addresses the problem of co-segmentation for

a novel object class from a set of multiview images. In

particular, we consider wide baseline1 images where pho-

tometric matching across views is highly fragile without a

non-trivial scene assumption [10,37,64]. This problem set-

ting of the wide baseline reflects the nature of the practical

multi-camera deployment in our daily lives. For instance,

there is an emerging trend of social videos [3, 5, 22, 53]—a

collection of videos that record an activity of interest (e.g.,

political rally, concert, and wedding) from social members

at the same time2. The camera placement of such social

videos are, by definition, driven by mobile users who be-

have in accordance with the social norm of proxemics [27],

which naturally produces multiview images with wide base-

line (bottom row of Fig. 1). Further, the capability of co-

segmenting a novel object class for wide baseline cameras

1The baseline is defined in relation to the depth of an object, i.e., inci-

dent angle of triangulation [56].
2There exist multiple online repositories such as Rashomon Project [1]

and CrowdSync cellphone app [2] that host the social videos.
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enables the volumetric reconstruction of non-human species

such as monkeys, which gives rise to significant scientific

impact [35, 81] (top row of Fig. 1).

However, co-segmentation of wide baseline images in-

volves with three matching challenges. (1) Local visual

features are highly fragile for establishing correspondences

between wide baseline images, and thus, geometric con-

straints (e.g., epipolar geometry, multiview stereo [37], and

3D volumetric reasoning [10, 64]) cannot be used to vali-

date multiview segmentation. (2) Graph matching using the

spatial relationship between superpixels [11, 36, 57, 59, 69]

is prone to severe self-occlusion caused by the huge view

difference. Further, the spurious superpixels due to moving

occluding boundary makes the photometric matching unre-

liable. (3) Recognition based matching, e.g., semantic seg-

mentation [14, 48] can only apply to the object classes that

belong to the existing datasets such as MS COCO [47], i.e.,

a novel object (e.g., monkey) co-segmentation is impossible

without a major modification of the dataset.

To address these matching challenges, we propose

to learn the shape of object through cross-view self-

supervision. A key innovation is that integrating the mul-

tiview geometric constraint into the segmentation task in a

differentiable fashion, resulting in end-to-end training. We

derive a new formulation of shape belief transfer—the seg-

mentation belief in one image can be used to predict that of

the other image through epipolar geometry. In fact, this is

an inverse problem of shape-from-silhouette [21,26,41,42]

that reconstructs a 3D object volume (visual hull) from the

foreground segmentation of multiview images without ex-

plicit photometric matches [39, 43, 50]. The shape belief

transfer is a composition of two belief transfers: (a) 3D

shape reconstruction by triangulating the segmentation map

(confidence) in multiview source images; and (b) 2D pro-

jection of the reconstructed 3D shape onto a target view to

approximate its segmentation map.

We characterize the shape belief transfer, providing the

theoretical upper and lower bounds of unlabeled data seg-

mentation: its gap approaches asymptotically to zero as the

number of labeled views increases. We further show that

the shape belief transfer can be implemented by transform-

ing the operation of 2D projection to max-pooling opera-

tion, which allows bypassing 3D shape reconstruction that

has been used in existing approaches [7,8,34,63,68,70,78]

for cross-view supervision. Based on the theory, we design

a triplet network that takes as input multiview image with

the limited number of the labeled data and outputs the ob-

ject segmentation on unlabeled data as shown in Fig. 1. The

network is trained by minimizing the geometric inconsis-

tency of multiview segmentation.

This framework is flexible: (1) segmentations can be

customized as it does not require a pre-trained model, i.e.,

we train a segmentation model from scratch with man-

ual annotations for each sequence; (2) it can be built on

any segmentation network design such as DeepLab [13],

SegNet [4], and Mask R-CNN [29] that outputs an ob-

ject segmentation confidence; (3) it can apply to general

multi-camera systems including social videos (e.g., differ-

ent multi-camera rigs, number of cameras, and intrinsic pa-

rameters).

The core contributions of this paper include (I) a new for-

mulation of a differentiable shape belief transfer to integrate

multiview geometry into the object segmentation task; (II)

theoretical analysis of the shape belief transfer that charac-

terizes degenerate cases; (III) a unique triple network design

that embeds the shape belief transfer to perform cross-view

supervision for unlabeled data in an end-to-end fashion; and

(IV) application to realworld challenging visual data cap-

tured from wide baseline cameras, including non-human

species and a subject of interest in social videos where at-

taining large-scale annotation data is infeasible. We quanti-

tatively show that our approach with cross-view supervision

consistently outperforms the the existing models.

2. Related Work

This work lies in the intersection between object co-

segmentation and cross-view self-supervision, which en-

ables learning from a small set of the labeled data pos-

sible. While there exist a large volume of literature on

self-supervised segmentation such as temporal supervision

on videos [19, 20, 51], we will focus on cross-view self-

supervision.

Semi-supervised Segmentation To use image segmenta-

tion in practice requires a wide variety of object classes

and a large number of annotations for each class. More-

over, the process of pixel-level labeling requires substantial

manual efforts. This problem can be alleviated by semi-

supervised settings, in which segmentation model is trained

with weak labels that are much easier to obtain such as

scene class [52, 54, 55] or bounding box [18] with a small

amount of labeled data. An encoder-decoder framework is

trained with large number of scene class level annotated

data and a few fully-annotated data [30]. The adversar-

ial discriminators [31] is used to differentiate the predicted

probability maps from ground truth instead of being used

to classify the input as real or fake. Therefore, this dis-

criminator enables semi-supervised learning by finding the

trustworthy regions in prediction of unlabeled data.

Co-segmentation Object co-segmentation is the task of de-

tecting and segmenting the common objects from a group

of images [74], which segments common parts in an im-

age pair and by extension to more images [33, 69]. A

deep dense conditional random field framework is applied

on co-segmentation task in [75]. They use co-occurrence

map to measure the objectness for object proposals, and

the similarity evidence for proposals is generated by se-

lective search which uses SIFT feature. Therefore, this is
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not end-to-end training. An end-to-end training framework

for co-segmentation is proposed in [45]. They present a

CNN-based method to jointly detect and segment the com-

mon object from a pair of images. An attention based co-

segmentation model is proposed in [12]. The model con-

sists of an encoder, a semantic attention learner, and a de-

coder. The semantic attention learner takes the encoded fea-

tures to learn to pay attention to the common objects.

Multiview Self-supervision Learning a view invariant rep-

resentation is a long-standing goal in visual recognition

research, which requires to predict underlying 3D struc-

ture from a single view image. Geometrically, it is an

ill-posed problem while two data driven approaches have

made promising progress. (1) Direct 3D-2D supervision:

for a few representative objects such as furniture [46], ve-

hicles [71], and human body [49], their 3D models (e.g.,

CAD, point cloud, and mesh) exist where the 3D-2D re-

lationship can be directly regressed. The 3D models can

produce a large image dataset by projecting onto all possi-

ble virtual viewpoints where the object’s pose and shape

can be learned from 3D-2D pairs. This 3D model pro-

jection can be generalized to scenes measured by RGBD

data [8, 24, 32, 40, 65, 70] and graphically generated photo-

realistic scenes [15, 58] where visual semantics associated

with 3D shape can be encoded. (2) Indirect supervision via

non-rigid graph matching: to some extent, it is possible to

infer the common shape and appearance from a set of single

view image instances without 3D supervision. For instance,

tables have a common shape expressed by four legs and pla-

nar top. Such holistic spatial relationship can be unveiled by

casting it as a graph matching problem where local shape

rigidity and appearance models can describe the relation-

ship between nodes and edges [6, 9, 16, 44, 66, 77]. Fur-

ther, leveraging a underlying geometric constraint between

instances (e.g., cyclic consistency [79, 80], volumetric pro-

jection [17, 67, 68], and kinematic chain [62, 66, 72]) can

extend the validity of graph matching. These existing ap-

proaches require many correspondences between domains

that are established by manual annotations. In contrast, our

approach will leverage self-supervision via multiview ge-

ometry to adapt to a novel scene with minimal manual ef-

forts.

3. Multiview Cross-view Supervision

We present a semi-supervised learning framework to

train an object segmentation model (network) by leverag-

ing unlabeled multiview images with wide baseline where

the amount of unlabeled data is larger than that of labeled

data (< 4% of unlabeled data). Consider a segmentation

network that takes an input image I and outputs a per-pixel

object confidence, i.e., φ(I;w) ∈ [0, 1]W×H×2 where W

and H are the width and height of the output distribution,

respectively. This is equivalent to a binary segmentation
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Figure 2: (a) Inspired by shape-from-silhouette, we super-

vise object segmentation in the target image from source

images. (b) The shape is transferred through epipolar ge-

ometry to the target image. Note that the transferred shape

P̂t is always bigger than the true shape.

(object and background). The network is parametrized by

the weight w learned by minimizing the following loss:

minimize
w

LL + λsLS + λpLP , (1)

where LL, LS , and LP are the losses for labeled supervi-

sion, cross-view supervision, and bootstrapping prior, and

λs and λp are the weights that control their importance.

For the labeled data DL, we use the sum of pixelwise

cross entropy to measure the segmentation loss:

LL = −
∑

j∈DL

∑

x∈X

yj(x) log φ(Ij)|
x
, (2)

where yj(x) ∈ {0, 1} is the ground truth label of the jth

labeled data at pixel location x, and X is the domain of x.

3.1. Shape Transfer

Inspired by the image-based shape-from-silhouette [50],

we formulate a method of cross-view supervision for co-

segmentation using 3D shape belief transfer. Consider a

point x ∈ R2 in the target image It. Without loss of gen-

erality, the camera projection matrix of the target image is

set to P = K
[
I3 0

]
where K is the intrinsic parameter.

The point in an image is equivalent to a 3D ray Lx = K
−1

x̃

emitted from the target camera where x̃ is the homogeneous

representation of x [28]. A 3D point along the ray can be

represented as X(λ) = λLx where any scalar depth λ > 0.

A series of projections of X(λ) onto a source image, Is1
form the epipolar line l1 = F1x̃ where F1 is the fundamen-

tal matrix between the target and source image. This indi-

cates the point on the epipolar line can be parametrized by

λ as shown in Fig. 2(a), i.e., x1(λ) ∈ l1
3. Likewise a point

xi in the ith source image Ii can be described accordingly.

3We use an abuse of notation: x ∈ l is equivalent to x̃
T
l = 0, i.e., the

point x belongs to the line l
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The image-based shape-from-silhouette computes a bi-

nary map zt : R
2 → {0, 1} that determines the pixel belong

to object if one, and zero otherwise. This binary map can be

approximated by the logical operations between the binary

maps from the n source images (zs1 , · · · , zsn ):

ẑt(x) =

{
1 if ∃ λ > 0 s.t.

∧
i zsi(xi(λ)) = 1

0 otherwise.
(3)

The geometric interpretation of Eq. (3) is that the object

map for x is computed by sweeping across all 3D points

along the ray Lx to see if the ray intersects with the 3D

volumetric shape defined by the foreground maps from n

views. This shape-from-silhouette ẑt(x) from n views is

always inclusive of the true object zt(x), i.e., {x|zt(x) =
1} ⊆ {x|ẑt(x) = 1} as shown in Fig. 2(b).

The implication of Eq. (3) is significant for cross-view

supervision for unlabeled data because it is possible to

transfer a shape belief in one image to another. Let Pi :
R

2 → [0, 1] be the segmentation map (confidence) of the

ith source image, i.e., Pi(x) = φ(Ii;w)|
x

. The distribu-

tion over the ray Lx emitted from the target image can be

computed by projecting the ray onto the ith image:

ξi→t(λ;Lx) = Pi(xi(λ)) where xi(λ) ∈ Fix̃, (4)

where ξi→t(λ;Lx) is object confidence (distribution) over

the ray parametrized by the depth λ.

From Eq. (4), the object confidence in the target image

Pt : R2 → [0, 1] can be approximated by a 3D line max-

pooling over joint probability over n views:

P̂t(x) = sup
λ>0

n∏

i=1

ξi→t(λ;Lx), (5)

where P̂t(x) is the object confidence transferred from n

views. Eq. (5) is equivalent to Eq. (3) where it takes the

probability of a 3D point most likely being in the volumet-

ric shape (Fig. 2).

Note that similar to ẑt, the P̂t provides the upper bound

of the Pt, i.e., {x|Pt(x) > ǫ} ⊆ {x|P̂t(x) > ǫ}. Therefore,

direct distribution matching using KL divergence [38] does

not apply. Instead, we formulate a new loss DS using one-

way relative cross-entropy as follow:

LS = DS(Pt||P̂t) =
∑

x∈X

(1− P̂t(x))Pt(x), (6)

where X is the range of the target image coordinate. Note

that the distance measure is not symmetric. It penalizes only

the set of pixels {x|P̂t(x) < Pt(x)}.

The main benefits of Eq. (6) are threefold. (1) Multi-

view segmentation involves two processes: 3D reconstruc-

tion of the shape with source views and 2D projection onto

the target view. The requirement of 3D reconstruction in-

troduces an additional estimation such as multiview [20,37]

or single view depth prediction [34, 68, 78] where the accu-

racy of the segmentation is bounded by the reconstruction

quality. Eq. (6) integrates the 3D reconstruction and projec-

tion through the joint probability over the epipolar lines and

supremum operation, which bypass the 3D reconstruction.

(2) By minimizing Eq. (6), it can provide a pseudo-label for

unlabeled data transferred from labeled data. As the num-

ber of labeled data increases, the transferred segmentation

label approaches to the true label of unlabeled data [39,50],

which allows cross-view supervision, i.e., segmentation in

a label image can supervise that in an unlabeled image. (3)

Not only for unlabeled data, but also it can correct the geo-

metrically inconsistent object segmentation for labeled data.

This is a significant departure from the existing object co-

segmentation that cannot recover erroneous segmentation

label, which often arises from per-pixel manual annotations.

3.2. Crossview Supervision via Shape Transfer

In practice, embedding Eq. (6) into an end-to-end neu-

ral network is not trivial because (a) a new max-pooling

operation over oblique epipolar lines needs to be defined;

(b) sampling interval for max-pooling along the line is ar-

bitrary, i.e., uniform sampling does not encode geometric

meaning such as depth; and (c) sampling interval across dif-

ferent epipolar line parameters is also arbitrary, which may

introduce sampling artifacts.

We introduce a new operation inspired by stereo rectifi-

cation, which warps the segmentation confidence such that

the epipolar lines become parallel (horizontal). This rectifi-

cation allows converting the oblique line max-pooling into

regular row-wise max-pooling.

Eq. (4) can be re-written by rectifying the segmentation

confidence of the source view with respect to the target

view:

ξ1→t(u;Lx) = P 1

([
u

v1

])
, s.t. KR1K

−1
x̃ ∝




x

v1
1


 ,

where KR1K
−1

x̃ is the rectified coordinate of the target

view, R1 ∈ SO(3) is the relative rotation for the rectifi-

cation. See Appendix for more details. Note that ξ is no

longer a function of the depth scale λ but the x coordinate

(disparity), which eliminates irregular sampling across pix-

els with the y coordinate v1.

The key advantage of this rectification is that the x coor-

dinate of the ith view can still be parametrized by the same

u, i.e., the coordinate is linearly transformed to from the

first view to the rest views:

ξi→t(aiu+ bi;Lx) = P i

([
aiu+ bi

vi

])

where ai and bi are the linear re-scaling factor and bias be-

tween the first and ith views accounting for camera intrinsic
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Figure 3: We design a novel triplet network to perform cross-view supervision via shape transfer. Two source images Is1
and Is2 are fed into a segmentation network to produce the object confidence maps Ps1 and Ps2 , respectively. These shape

are transferred to the target image with rectification to form P̂t. This transferred shape supervises the object confidence map

of the targe image Pt. The label loss is measured for the target image if labeled. Otherwise, the bootstrapping loss is used.

and cropping parameters. φi is computed by the rectified

segmentation confidence of the ith view P i with respect to

the target view. See Appendix for more details. This sim-

plifies the supremum operation over the 3D ray in Eq. (5) to

the max operation over the x coordinates:

P̂t(x) = max
u∈[0,W ]

ξ1(u;Lx)

n∏

i=2

ξi(aiu+ bi;Lx). (7)

3.3. Bootstrapping Prior

Eq. (3) is often highly effective to generate a prior for 3D

shape given the binary label. Inspired by multiview boot-

strapping [63, 73], we approximate the 3D shape using the

pre-trained neural network φ. Note that unlike keypoint de-

tection, RANSAC [23] outlier rejection approaches cannot

be applied because pixel correspondences are not available

for semantic segmentation. We binarize the probability of

the foreground segment to compute the ith source binary

map zsi(x) = 1 if Pi(x) > 0.5, and zero otherwise. Us-

ing all source binary maps, a pseudo-binary map for the jth

unlabeled data ẑj can be computed and used for the boot-

strapping prior, i.e.,

LP =
∑

j∈DU

∑

x∈X

(1− ẑj(x))Pj(x) (8)

Similar to Eq. (6), ẑj provides the superset of the ground

truth, which requires the one-way relative cross entropy as

a prior loss.

3.4. Network Design

We design a novel triplet network that allows measuring

three losses: LL, LS , and LP . Fig. 3 illustrates the overall

design of the triplet. All subnetworks share their weights

w. Two source images Is1 and Is2 are fed into a segmen-

tation network to produce the object confidence maps Ps1

and Ps2 , respectively. These two confidence maps are trans-

ferred to the target image by applying stereo rectification

Figure 4: Different image pairs (top two rows) can be used

to supervise one target view (bottom). We use such multiple

triplets to supervise each other’s view.

(Eq. (7)). This transferred and rectified confidence map P̂t

is used to supervise the confidence map computed from the

target image Pt. The cross-view loss LS is measured by

using Eq. (6). The label loss LL is measured by comparing

with the ground truth yt if it is available. If the ground truth

label is not available for the target image, the bootstrapping

loss LP is measured instead. All operations in the network

is differentiable, and therefore, end-to-end training is possi-

ble. Fig. 4 is an example which shows that one target view

can be supervised by multiple different image pairs during

training in practice.

4. Degenerate Case Analysis

Eq. (6) has a degenerate case: a trivial solution Pt = 0
is the global minimizer. Therefore, when the unlabeled data

sample is used for the target view, the cross-view super-

vision via shape transfer based on the labeled data is not

possible, i.e., P̂U = P+
U > PU .
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Figure 5: The upper bound of the probability for the unla-

beled data becomes tighter as the number of the labeled data

increases.

Theorem 1. There exists the lower bound of the probability

of the unlabeled data sample, P−
U .

Proof. Consider an inverse shape transfer for the unlabeled

data in Eq. (5), φU (λ;Lx), to explain the first labeled data

sample P̂L1
:

P̂L1
(x) = sup

λ>0
ξU (λ;Lx)

n∏

i=2

ξLi
(λ;Lx), (9)

where P̂Li
is the probability of the ith labeled data. Since

the supremum in Equation (9) is a non-decreasing func-

tion with respect to ξU (λ;Lx), there exists ξ−U (λ;Lx) <

ξU (λ;Lx) that cannot explain P̂L1
(x):

P̂L1
(x) > sup

λ>0
ξ−U (λ;Lx)

n∏

i=2

ξLi
(λ;Lx). (10)

Therefore, there exists the lower bound of PU .

From Theorem 1, Eq. (6) can provide both upper and

lower bounds of the unlabeled data if used as the target and

source views, i.e., P−
U < PU ≤ P+

U , and P−
U asymptoti-

cally approaches to P+
U as the number of labeled views in-

creases [39, 50], i.e., lim|DL|→∞(P+
U − P−

U ) = 0. Fig. 5

shows the upper bound becomes tighter as the number of

labeled data increases

We leverage this asymptotic convergence of the shape

transfer to self-supervise the unlabeled data, i.e., the unla-

beled data are fed into both the target and source views,

which allows the gradient induced by the error in the loss

function of Eq. (6) can be backpropagated through the neu-

ral network to reduce the gap between P+
U and P−

U .

5. Result

We evaluate our semi-supervised learning approach for

an object co-segmentation task on realworld data where the

number of annotations is limited.

Implementation We build a model per subject without a

pre-trained model. The DeepLab v3 [13] network is used

for our base network (segmentation network in Fig. 3).

Each network takes as an input RGB image (200×200×3),

and outputs two confidence maps (object and background)

with the input size. We use the batch size 5, learning rate

10−5, batch normalization with epsilon 10−5 and 0.9997.

We use the ADAM optimizer of TensorFlow trained on a

single NVIDIA GTX 1080. Fig. 6 illustrates the progres-

sion of training process for unlabeled data at every 2,000

iterations. The cross-view supervisionary signals are prop-

agated through unlabeled data and eventually recognize the

correct segment of monkey and Indian dancer.

Datasets We validate our semi-supervised semantic seg-

mentation framework on multiple sequences of diverse real-

world subjects and environments including monkeys, In-

dian dancer, and social videos captured in multi-camera

systems. These cameras form wide baseline images, i.e.,

while physical distance between two cameras is small, the

foreground object appears significantly different due to the

short distance to the object as shown in Fig. 4. We used syn-

chronized images extracted from multiview videos. These

videos contain both dynamic and relatively static back-

ground, and the background subtraction methods [25, 76]

fail on these videos. (1) Monkey subject 35 GoPro HD

cameras running at 60 fps are installed in a large cage

(9′×12′×9′) that allows the free-ranging behaviors of mon-

keys. There are diverse monkey activities include groom-

ing, hanging, and walking. The monkey body was stretched

to a variety of shapes and background constantly changed

during activities. The camera produces 1280 × 960 im-

ages. We uniformly sampled 15 frames from total 1,800

frames, and for each frame, we randomly annotate 8 views

as labeled data an the rest views are unlabeled data. (2)

Indian dancer Multi-camera system composed of 69 syn-

chronized HD cameras (1024×1280 at 30 fps) in three lay-

ers with different heights are used to capture the peformance

of an Indian dancer. We uniformly sampled 17 frames from

total 2,000 frames, and for each frame, we randomly an-

notate 8 views as labeled data an the rest views are unla-

beled data. This dataset has most number of camera views

and static background. (3) Social videos A public social

video dataset [3] is used to validate wide baseline image

co-segmentation. We focus on a sequence of break dancers

who were surround by 16 audiences. They freely move

around the dancers: the average distance between cameras

is approximately 2m. GoPro cameras (1024×960 at 30

fps) are used for capture the performance. We use standard

structure-from-motion algorithm [60,61] to reconstruct the

scene geometry and camera intrinsic and extrinsic. We uni-

formly sampled 24 frames from total 1,300 frames, and for

each frame, we randomly annotate 7 views as labeled data

an the rest views are unlabeled data.

Baselines We compare our approach with four differ-

ent baseline algorithms. Since multiview object co-

segmentation on wide baseline images is a new task, we

adapt existing algorithms to our task with a minor modi-

fication. Note that the work by Kowdle et al. [37] is not

compared because it builds upon multiview stereo, which

is not applicable to wide baseline co-segmentation. For all

1947



Figure 6: We visualize the prediction result of our semi-supervised framework on unlabeled data every 2000 training itera-

tions.

Number of labeled data

Monkey (IoU) Dance (IoU) Social (IoU) Monkey (Pixel Acc.) Dance (Pixel Acc.) Social (Pixel Acc.)

2 5 8 2 5 8 2 5 7 2 5 8 2 5 8 2 5 7

Supervised learning 0.73 0.76 0.77 0.66 0.71 0.74 0.70 0.73 0.73 0.91 0.92 0.93 0.84 0.87 0.89 0.85 0.87 0.87

Bootstrapping [63] 0.76 0.83 0.85 0.67 0.76 0.76 0.53 0.55 0.54 0.92 0.95 0.96 0.82 0.89 0.90 0.73 0.77 0.76

Attention-based [12] 0.72 0.77 0.83 0.17 0.31 0.33 0.31 0.51 0.44 0.93 0.94 0.96 0.68 0.71 0.73 0.70 0.72 0.73

Adversarial network [31] 0.78 0.81 0.82 0.55 0.78 0.83 0.35 0.52 0.60 0.83 0.84 0.84 0.72 0.74 0.75 0.68 0.71 0.72

Ours 0.82 0.85 0.87 0.77 0.80 0.81 0.71 0.73 0.74 0.94 0.95 0.96 0.90 0.91 0.92 0.87 0.87 0.88

Table 1: Mean IoU and pixel accuracy result on different datasets with different number of labeled views

algorithms, we evaluate the performance on unlabeled data.

(1) Supervised learning: we use the limited labeled data

to train our base network [13]. This algorithm is not acces-

sible to unlabeled data during the training. (2) Bootstrap-

ping: we leverage labeled data to provide a bootstrapping

prior [63] to unlabeled data (Section 3.3). This algorithm

has an access to unlabeled data during training while it is

highly biased to the bootstrapping. (3) Attention-based

co-segmentation: state-of-the-art attention network is used

to perform object co-segmentation task [12]. This network

does not encode cross-view supervision. (4) Adversarial

segmentation: state-of-the-art adversarial network [31] is

used to segment an object in a semi-supervised fashion.

For last two baselines, we use their publicly available al-

gorithms without the pre-trained model.

Metric We evaluate our approach based on two metrics:

mean IoU (intersection over union) and mean pixel accu-

racy.

Accuracy For each dataset, we manually annotate all the

views in about 20 randomly selected frames sampled from

videos as the test data. Note that sampled frames are not

used for training. Figs. 7(a)–7(f) illustrate the performance

comparison of our cross-view supervision with the baseline

algorithms, and Table 1 summarizes mean IoU and accu-

racy. Since all semi-supervised learning have an access to

unlabeled data during training, their performance on unla-

beled data is superior to the supervised learning. Among

semi-supervised learning frameworks, our approach that

leverages cross-view supervision to transfer shape outper-

forms other approaches with a large margin. The attention-

based co-segmentation and adversarial segmentation shows

inferior performance comparing to bootstrapping approach

as the baseline of the cameras are fairly wide where learn-

ing common visual semantics is difficult. We also evaluate

the impact of the labeled data on performance. Note that

in Figs. 7(e) and 7(f), for social camera data where cam-

eras are moving, the supervised method is nearly on a par

without our approach. We identified that the main source of

performance degradation was the geometric inconsistency

caused by errors in synchronization.

Label Data Sensitivity We conduct an experiment to iden-

tify the label data sensitivity, i.e., how the choice of labeled

data matters. We measure the segmentation accuracy with

respect to the distance to the labeled data in time. For in-
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(a) Monkey IoU
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(b) Monkey accuracy
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(e) Social video IoU
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(f) Social video accuracy
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(g) Label sensitivity IoU
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(h) Label sensitivity accuracy

Figure 7: (a-f) We compare our approach with four baseline algorithms: supervised learning, bootstrapping [63], attention-

based co-segmentation [12], and adversarial segmentation [31]. Our approach outperforms these baselines in terms of IoU

and accuracy. (g-h) We test label data sensitivity.

Time distance (frames)

IoU Pixel Accuracy

100 200 300 400 500 100 200 300 400 500

Attention-based [12] 0.51 0.43 0.47 0.57 0.45 0.83 0.82 0.82 0.80 0.78

Adversarial network [31] 0.61 0.54 0.62 0.60 0.41 0.84 0.84 0.83 0.82 0.80

Ours 0.60 0.60 0.63 0.56 0.58 0.93 0.93 0.94 0.91 0.90

Table 2: Mean IoU and pixel accuracy result of different

time distance

stance, the appearance on monkey changes significantly as

moving, i.e., the unlabeled data closer to the labeled data in

time are more likely to look similar. We sample unlabeled

data at every 100 frame (3 seconds) to compare the per-

formance on the unlabeled data. Figs. 7(g) and 7(h) show

that both IoU and pixel accuracy decrease as the differ-

ence between two time instances increases. However, our

cross supervision have better ,performance than the semi-

supervised learning baselines [12, 31] in both metrics, and

the performance degradation is much milder than two meth-

ods. The numerical results can be found in Table 2.

Qualitative Result The qualitative result is shown in Fig. 1.

Our cross-view supervision via shape transfer can handle

wide baseline multiview images and correct the segmenta-

tion errors in the baselines by leveraging multiview images

jointly. This becomes more evident on the boundaries or

protruding body parts, e.g., monkey’s paws and tails, hu-

man’s legs and hands. See Appendix for more result.

6. Summary

We present a semi-supervised framework to train an ob-

ject co-segmentation network by leveraging multi-view im-

ages. The key novelty is a method of shape belief transfer—

using segmentation belief in one image to predict that of the

other image through epipolar geometry analogous to shape-

from-silhouette. The shape belief transfer provides the up-

per and lower bounds of the segmentation for the unlabeled

data. We introduce a triplet network which embeds comput-

ing of transferred shape. We also use multi-view images to

bootstrap the unlabeled data for training data augmentation.
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