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Abstract

Modern neural network-based algorithms are able to

produce highly accurate depth estimates from stereo im-

age pairs, nearly matching the reliability of measurements

from more expensive depth sensors. However, this accuracy

comes with a higher computational cost since these methods

use network architectures designed to compute and process

matching scores across all candidate matches at all loca-

tions, with floating point computations repeated across a

match volume with dimensions corresponding to both space

and disparity. This leads to longer running times to pro-

cess each image pair, making them impractical for real-time

use in robots and autonomous vehicles. We propose a new

stereo algorithm that employs a significantly more efficient

network architecture. Our method builds an initial match

cost volume using traditional matching costs that are fast

to compute, and trains a network to estimate disparity from

this volume. Crucially, our network only employs per-pixel

and two-dimensional convolution operations: to summa-

rize the local match information at each location as a low-

dimensional feature vector, and to spatially process these

“cost-signature” features to produce a dense disparity map.

Experimental results on KITTI show that our method de-

livers competitive accuracy at significantly higher speeds—

running at 48 frames per second on a modern GPU.

1. Introduction

The availability of real and synthetic datasets [5, 14, 15]

and use of deep neural networks [3, 11, 20, 22] has made

stereo estimation increasingly reliable. As evidenced by

their performance on realistic benchmarks [15], modern al-

gorithms are able to produce depth estimates from stereo

image pairs with reliability that nearly matches depth mea-

surements from more expensive devices such as LIDARs.

However, a significant roadblock to practically using these

algorithms for depth perception in robots and autonomous

vehicles is their computational expense. While traditional

stereo methods were able to generate dense depth estimates

in real time, albeit with lower accuracy, modern neural

Figure 1. Accuracy-Speed Trade-off in Stereo Estimation. We

show the error rate vs speed of different stereo algorithms on the

KITTI 2015 [15] benchmark. Our method yields accuracy com-

petitive with state-of-the-art networks for stereo estimation while

being significantly faster, and therefore practical for real systems.

network-based stereo methods take more than half a sec-

ond (often much more) to process a single stereo pair at a

standard resolution.

The processing pipeline of a stereo algorithm has two

computational components: computing a matching cost vol-

ume based on similarities between all pairs of reference and

matching candidate points in the stereo pair, and processing

this volume to yield robust depth estimates by reasoning

about smoothness, planarity, etc. in natural scenes. Since

the cost volume itself is large (of size equal to number of

pixels times the number of candidate disparity values), tra-

ditional stereo algorithms emphasized efficient operations

for both constructing [25] and processing [6] this volume.

However, neural network-based methods must instanti-

ate these computations using cascades of layers and hence

incur significant expense due to the large number of floating

point operations repeated across the three-dimensional cost

volume. Recent methods cast these as three-dimensional

(3D) convolutions [3, 11, 20] to improve parallelism and

data flow, but they are still much slower than traditional
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stereo methods, and indeed, than typical neural networks

that use only two-dimensional (2D) convolutional layers to

process regular images.

In this paper, we propose a new neural network-based

method for accurate stereo estimation with an architecture

highly optimized for computational efficiency. Our ap-

proach is motivated by the success of methods for depth

completion [13] that are able to reconstruct highly accurate

depth maps given a small number of sparse depth measure-

ments and a reference color image as guide. These meth-

ods demonstrate that even weak or noisy depth cues can be

sufficient to estimate depth accurately, when using a neural

network that also learns to exploit monocular depth infor-

mation present in a color image of a natural scene. This in

turn suggests that precise matching with expensive learned

costs may not be entirely necessary, and motivates the use of

traditional matching costs that are somewhat less powerful

but significantly more efficient computationally.

Our method first constructs an initial cost volume using

multiple traditional matching costs that are efficient to com-

pute. It then converts the set of all scores for different dis-

parities at each pixel to a low-dimensional “cost-signature”

feature vector. This conversion is learned as a set of in-

dependent per-pixel layers that produce a succint summary

of the stereo depth information at each pixel location. An

encoder-decoder network then uses 2D convolutions to pro-

cess this 2D feature map, rather than the more expensive 3D

convolutions on a cost volume, and produces an estimate

of the final disparity map. The conversion and encoder-

decoder layers are learned jointly with end-to-end training.

Experimental results on the standard KITTI [15] bench-

mark demonstrate that our models produces estimates with

accuracy that is only slightly worse than the state-of-the-

art, and higher than traditional stereo methods. But cru-

cially, this accuracy comes at very low computational cost:

our network is able to process stereo pairs at 48 frames

per second on a modern GPU. As shown in Fig. 1, our ap-

proach affords a favorable trade-off between accuracy and

speed, making it both reliable and practical for deployment

in robots and autonomous vehicles.

2. Background and Related Work

Depth estimation using stereo images from a calibrated

camera pair requires establishing correspondences between

pixels in the two images by searching over epipolar lines.

When the cameras are related by only horizontal translation

(or the images have been rectified to simulate this setup),

all epipolar lines are horizontal and the problem reduces to

finding the horizontal shift, or disparity, between the x−
co-ordinates of the projected location of a surface point in

the image pair. Stereo estimation is typically cast as the

problem of estimating a dense disparity map—the value of

disparity at every location in the co-ordinate system of one

of the two images chosen as reference. Scene depth can

then be derived from disparity given knowledge of relative

camera poses.

Estimating disparity by finding dense correspondences

is challenging due to the presence of smooth regions, re-

peating textures, specular highlights, and half-occlusions.

Stereo algorithms proceed by first computing an initial

score of match quality between each pixel in the reference

pixels and all candidate matches. These candidates are in-

dexed by a finite discrete set of candidate disparity val-

ues common to all pixels—typically integer pixel dispari-

ties ranging from zero to some maximum value—and cor-

respondingly, the matching scores are organized in a cost

“volume” along the spatial and disparity dimensions. Tradi-

tionally, stereo algorithms used hand-crafted similarity met-

rics for matching that take into account local neighborhoods

around pixels for robustness, while also being efficient to

compute [25].

However, these matching scores are still ambiguous and

thus local reasoning alone is insufficient for accurate dispar-

ity estimation. This is why stereo algorithms have a second

“globalization” stage, where the local match information in

the cost-volumes is aggregated while promoting properties

such as smoothness, piece-wise planarity, etc. in the esti-

mated disparity maps. This aggregation was traditionally as

optimization of an energy function [2, 6, 23], again with an

emphasis on computational efficiency.

Z̆bontar and LeCun [21, 22] demonstrated that using

deep neural networks for stereo estimation could deliver

significant improvements in accuracy over traditional stereo

pipelines. Their work only replaced the local matching

stage—they proposed learning networks that took a pair of

9 × 9 patches in the left and right image as input to pro-

duce a matching score. Once this network was trained, it

was applied on all candidate match pairs to populate the

cost volume, which was then smoothed using traditional ag-

gregation techniques [6]. Surprisingly, by just replacing the

matching cost with a learned metric, this method was able to

achieve significant gains in accuracy. However, these gains

came with a reduction in speed, taking more than a minute

to process a single stereo pair. Z̆bontar and LeCun [22] also

considered faster architectures, as did Luo et al. [12], but

these were less accurate and still took 0.7 [12] and 0.8 [22]

seconds to process a stereo pair.

These methods were driven by the presence of moderate-

sized real stereo datasets [5, 15] with ground-truth data

captured using a LIDAR. Noting the benefits of learned

methods for stereo, Mayer et al. [14] introduced a much

larger, synthetically rendered, dataset to enable training of

more complex networks—with layers that carry out both

matching and globalization computations (the latter replac-

ing traditional aggregation) and are trained end-to-end. GC-

Net [8] uses shared 2D convolutions to extract features from
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Figure 2. Proposed Stereo Estimation Pipeline. We propose a new computationally efficient architecture that avoids the use of learned

matching costs and expensive 3D convolutions. We begin by constructing cost volumes at half-resolution by using different efficient

traditional matching costs. We then generate a 2D cost-signature map using per-pixel layers to summarize the different costs at all disparities

into a low-dimensional feature vector at each location. This is followed by spatial processing with an encoder-decoder architecture to

produce an estimate of the final disparity map. Both the cost-signature and spatial processing layers are trained end-to-end.

each image in the stereo pair, concatenates them to form

a 4D tensor (indexed by spatial dimensions, disparity, and

features) and then uses 3D convolution layers to process this

cost volume. Since then, a number of methods have used

a similar approach to using 3D convolutions with innova-

tions in network architecture for cost-volume construction

and processing [3, 11, 18, 20], yielding improvements in ac-

curacy and run-times. The fastest among these is the smaller

DES-net architecture in [11], which primarily allocates lay-

ers for accurate cost computation and achieves a run-time

of 0.05 seconds per stereo pair.

The goal of our work is accurate but real-time stereo es-

timation, which we achieve through the use of traditional

matching costs and 2D (instead of 3D) convolution layers.

In this context, it is useful to discuss the work of Kuzmin

et al. [10], who also use traditional matching costs as well

as a largely traditional pipeline for aggregation, using a

learned deep network to control the parameters of this ag-

gregation in different regions. This allows them to achieve

a low run-time of 0.034 seconds (i.e., 29.4 frames per sec-

ond) but with significantly lower accuracy than state-of-

the-art methods. Meanwhile, Park et al. [16] use dispar-

ity maps computed entirely using traditional methods as in-

put to a neural network for refinement—but crucially, these

are combined with disparity data derived from LiDAR mea-

surements. Their method can be seen as an extension to

[13]’s approach of processing sparse and noisy depth mea-

surements, in this case, also including information derived

from simple stereo matching. However, when working with

stereo data alone, disparity maps derived directly from tra-

ditional cost volumes are often too noisy, and introduce an

information bottleneck by discarding distributional infor-

mation about the relative costs of different disparity values.

This is why the input to our spatial processing network are

cost signatures, that are trained to optimally summarize this

distributional information.

Other examples of fast stereo methods include the Disp-

NetC architecture introduced in [14] that uses 2D convolu-

tions, like us, for spatial reasoning—applied on a feature

map derived from computing cross-correlations between

per-image feature maps at different disparity shifts. This

also leads to reduced run-times (0.06 seconds in their case)

but lower accuracy. Our method is able to achieve higher

accuracy as well as lower run-times (0.021 seconds) than

both these methods. Very recently, Tonioni et al. [19] and

Duggal et al. [4] proposed network architectures with the

goal of maintaining accuracy while achieving real-time, or

near real-time performance. Among these, [19] achieves a

run-time similar to ours but is unable to maintain as high

a level of accuracy. On the other hand, the fastest version

of [4] is somewhat more accurate than ours, but is roughly

three times slower. It is worth noting that their approach

to speeding up computation is different from ours—since

they still rely on learned features for matching—and it is

likely that their architecture design innovations could be

combined with our approach to achieve further speed-ups

or higher accuracy at the same speed.

3. Proposed Method

We now describe our processing pipeline and network ar-

chitecture for stereo estimation, summarized also in Fig. 2.

Our pipeline follows the standard stereo framework of lo-

cal matching followed by globalization, but with the goal

of maximizing computational efficiency, we use traditional

matching costs and a learned network for globalization. As

our experiments will show, this allows us to produce high-

quality disparity maps with high computational efficiency.

We leverage multiple traditional efficient matching costs

to build initial cost volumes to represent local belief about

disparity, summarize this information through a learned

pixel-wise mapping as a low-dimensional 2D feature map,

and finally use 2D convolutions within an encoder-decoder

architecture to yield the final disparity estimates. This
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allows our network to avoid repeating expensive floating

point computations across different disparity candidates

(i.e., 3D convolutions across a cost volume). All our com-

putations are also carried out at half resolution (as is com-

mon) for further efficiency, with a final interpolation step in

the end to yield a disparity map at the original resolution.

3.1. Initial Matching with Traditional Costs

The input to our network are the left and right images,

downsampled by a factor of two. The first step in a typi-

cal stereo pipeline is to use local evidence to build a cost-

volume, or a belief distribution over different possible val-

ues of disparity for each pixel in the reference left im-

age. Most neural network-based methods attempt to learn

a matching cost to build such a cost-volume. However, this

proves to be much more expensive than traditional matching

costs [25], since the cost functions must be approximated as

a sequence of layers, with floating point operations repeated

for all pairs of reference pixels and candidate disparities.

Instead, we use multiple traditional matching costs to

construct a set of cost volumes {Ci}, one for each kind

of cost, from the input images. Each volume is of size

H × W × D where H,W are the height and width of

the (downsampled) image, and D is the number of pos-

sible disparity values (we consider integer disparities go-

ing from 0 to 127 pixels at the half resolution). Each ele-

ment Ci(x, y, d) of each volume measures the dis-similarity

between pixels or regions at (x, y) in the left image and

(x − d, y) in the right image (when x − d < 0, we fill in

values from the first valid pixel for d in the same row y).

To apply different matching costs for spatial and color in-

formation, we convert the input images from RGB to YUV

color space. The first volume C1 is then computed by com-

paring spatial variations in the Y (i.e., luminance) chan-

nels of the left and right images, as hamming distances be-

tween 5× 5 census transforms [25]. The census cost found

common use in traditional stereo algorithms due to its ro-

bustness to global intensity scaling, and its computational

efficiency—it requires computing a census code once for

each location in the left and right images based on local

comparisons, following which all entries of the cost volume

can be computed by computing the hamming distance be-

tween corresponding codes (which only requires counting

1s in the bit-wise XOR of the two codes).

To exploit color information, the other two cost volumes

C2 and C3 are populated with the absolute difference of the

U and V values of the corresponding pixels in the left and

right image. We normalize each volume separately so that

their costs have zero mean and unit-variance (as determined

across volumes created from images in a training set).

3.2. Mapping to Low-dimensional Cost Signatures

The cost volumes {Ci} summarize the depth informa-

tion present in correspondences between the left and right

image, and allow us to carry out all remaining remaining

computations in our pipeline in the reference co-ordinate

frame of the left image. However, the cost-volumes are still

high-dimensional, with 3D numbers at each pixel.

Therefore, the next stage of our pipeline converts the

set of different matching costs at all candidate disparities

for each reference pixel (x, y) into a more tractable low-

dimensional cost signature S(x, y) ∈ R
32. We begin by

concatenating the three cost volumes into one 3D tensor of

size H × W × (3D). This is treated as a 2D feature map

A0(x, y) ∈ R
3D, where each A0(x, y) contains a vector of

all costs at all disparities:

A0(x, y) = [C1(x, y, 0), . . . C1(x, y,D−1), C2(x, y, 0), . . .],
(1)

and learn a mapping from A0 to the lower-dimensional

S. This is different from other neural network-based ap-

proaches [3, 8, 11, 18, 20] that construct 4D tensors corre-

sponding to 3D feature maps, to enable operations between

neighboring disparities. We also do not combine the differ-

ent costs with a weighted sum as in traditional stereo meth-

ods [2, 23], and let the cost-signature S(x, y) be a more

general functions of different costs at different disparities.

The dimensionality reduction from 3D (which is 384 in

our setting of three costs and 128 candidate disparities) in

A0 to 32 in S is carried out by four layers that operate inde-

pendently on each pixel location, and reduce dimensions to

192,96,48, and finally 32 feature channels. We instantiate

these as 1× 1 convolution layers, and use batch normaliza-

tion [7] and ReLU activations at the output of each layer.

3.3. Globalization with CNN on Cost Signatures

The final stage of our architecture mimics the globaliza-

tion step of a traditional stereo pipeline, which is typically

based on performing spatial processing based on local dis-

parity distributions as well as gradient information from the

reference image. In our architecture, we use a network with

only 2D convolution layers to estimate a disparity map from

the cost-signature feature map S. We begin by concate-

nating the left input image (at half resolution) to the cost-

signature map, and sending these through an initial set of

three convolution layers—all with 3 × 3 kernels, 32 chan-

nel outputs, and batch normalization and ReLU activations.

We then take this output, concatenate it again with the left

image, and feed it to a UNet [17]-like encoder-decoder ar-

chitecture.

This encoder-decoder network features five levels of

downsampling in the encoder and upsampling in the de-

coder (each time by a factor of 2), with skip-connections

(joined by concatenation) between corresponding scales of
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the encoder to the decoder. We use two 3 × 3 convolu-

tion layers each in the decoder and encoder at each scale,

and achieve downsampling by a 2 × 2 max-pool opera-

tion with stride 2, and upsampling by a learned convolution

layer. While the original UNet [17] recommends doubling

the number of feature channels at each scale, we choose to

only increase the channels by 16 each time to reduce com-

putation. We do not use batch-normalization in these layers.

The output of the final decoder layer is a 32-channel fea-

ture map at half-resolution. We use a single per-pixel layer

to map this to a single channel disparity map, and then up-

sample this map to the full resolution. During training, we

simply use nearest neighbor upsampling, while at test time

we use a simple discontinuity-aware interpolation scheme:

we produce both nearest-neighbor and bilinearly interpo-

lated disparity maps, and at each pixel select the interpo-

lated version when the difference between the two is less

than 1 pixel, and the nearest-neighbor version otherwise.

3.4. Training Loss

Note that the first stage of our pipeline (Sec. 3.1) is

fixed and need not be learned. We train the cost-signature

(Sec. 3.2) and spatial processing (Sec. 3.3) layers end-to-

end based on a loss defined on the quality of the final full-

resolution disparity map (i.e., after upsampling). We use a

robust regression loss, between estimated and ground-truth

disparities d̂ and dGT :

L(dGT , d̂) = max(τ, dGT − d̂)1/8. (2)

The sub-linear exponent makes the loss robust to outliers

(i.e., where the disparity error is too high), with clipping by

τ used to ensure that gradients of the loss are stable (we

set τ = 1 in our experiments). Note that the loss func-

tion is only computed over pixels with valid disparity values

present in the ground truth.

4. Experiments

We implement our network architecture in Tensor-

flow [1], using custom GPU operations for the initial

cost volume computation in Sec. 3.1, and evaluate our

method on the KITTI 2012 [5] and 2015 [15] benchmarks.

We report running times using an NVIDIA GTX 1080Ti

GPU. For training, we adopt the standard practice of pre-

training our network on the synthetic dataset of [14]—

specifically, on images from the “FlyingThings3D” and

“Driving” sub-sets. We then fine-tune on images from

the KITTI 2012 and 2015 training sets—although, we re-

move a subset of 20 images from the KITTI 2015 train-

ing set and use it for validation. Our reference imple-

mentation along with trained model weights is available at

https://projects.ayanc.org/fdscs/.

Step Time

Traditional Cost Computation 0.0067s

Conversion to Cost Signatures 0.0087s

Spatial Processing 0.0057s

Total 0.021s

Table 1. Running Time breakdown.

Model Avg Err. > 3px Time

Full Model 0.72 2.41 0.021s

Only Census Cost 0.75 2.60 0.016s

Only 3-Level Enc-Dec 0.90 3.65 0.020s

Table 2. Ablation Study on Validation Set.

4.1. Training

We train our network with the loss in (2) and weight de-

cay of 10−5 using the Adam optimizer [9]. We begin by

training for 350k iterations on the synthetic dataset [14],

with a learning rate of 10−4 (after initially training for 5k it-

erations at a lower rate of 10−5 for stability). Although our

network is designed to only produce disparities with respect

to the co-ordinates of the left image, this dataset provides

dense ground-truth disparity maps with respect to both the

left and right images. To train also with the right image dis-

parity map, we form an additional pair by swapping the left

and right images and flipping both images and the disparity

map horizontally. We train with a batch size of four original

pairs (which yields eight total pairs per batch).

We then fine-tune on images from KITTI, and since this

is a smaller dataset with sparse ground-truth data, we use

scale augmentation: scaling the left, right, and ground truth

images by a random scale factor in (1.0, 1.5), and dividing

the ground truth disparities by the same value. We use a

batch size of four, and train for 150k iterations with a learn-

ing rate of 10−4, and additional 50k iterations at learning

rates of 10−5 and 10−6 each.

4.2. Run-time Analysis and Ablation

We begin by analyzing the running time of our network

on typical KITTI images (with size 1240x375) in Table 1,

measuring the time taken in different steps of our pipeline.

We find that the biggest contributor to running time is in

fact in converting the traditional cost volume to a low-

dimensional per-location cost-signature—even though we

only use 1x1 convolutions here, this part of our pipeline

still has the largest number of floating point operations since

it takes the entire cost volume as input. Traditional cost

computation comes next in the amount of computation, but

this is still much faster than with learned matching costs
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Figure 3. Example Results on KITTI 2015 [15] test images. We show disparity maps, estimated by our model as well other methods, and

corresponding errors on example stereo pairs from the KITTI 2015 test set. Disparity and error maps are shown using the standard color

scheme of the benchmark.

in other methods. The last part of our pipeline—spatial

processing—is the least expensive computationally.

Then, we compare our full approach on the validation

set to different ablated versions in Table 2. Specifically,

we consider a version of our model that only uses the cen-

sus cost volume and leaves out the chromaticity difference-

based costs, and a versions with a smaller networks for spa-

tial processing with only three (instead of five) scales in the

encoder-decoder. We report running times (for 1240x375

images) for these versions and accuracy in terms of the av-

erage error (absolute difference between true and estimated

disparity) as well as percentage of pixels where this error is

greater than 3 pixels.

We see that both variations from our full model lead

to higher errors and lower running times, but by different

amounts. In particular, removing the color matching costs

leads to a significant improvement in speed (from 48 to 62

frames per second) but only a modest drop in performance.

In contrast, using a smaller spatial processing network leads

to a barely measurable improvement in speed but a signifi-

cant drop in performance. This demonstrates that incorpo-

rating more match information (with more costs) provides
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All Pixels Non-Occluded Pixels Run

Method D1-bg D1-fg D1-all D1-bg D1-fg D1-all Time

MC-CNN-acrt [22] 2.89 8.88 3.89 2.48 7.64 3.33 67s

GANet-Deep [26] 1.48 3.46 1.81 1.34 3.11 1.63 1.8s

GC-Net [8] 2.21 6.16 2.87 2.02 5.58 2.61 0.9s

Content-CNN [12] 3.73 8.58 4.54 3.32 7.44 4.00 0.7s

SegStereo [24] 1.88 4.07 2.25 1.76 3.70 2.08 0.6s

PDSNet [20] 2.29 4.05 2.58 2.09 3.68 2.36 0.5s

PSMNet [3] 1.86 4.62 2.32 1.71 4.31 2.14 0.41s

GANet-15 [26] 1.55 3.82 1.93 1.40 3.37 1.73 0.36s

EdgeStereo [18] 2.27 4.18 2.59 2.12 3.85 2.40 0.27s

DeepPruner (best) [4] 1.87 3.56 2.15 1.71 3.18 1.95 0.18

iResNet-i2 [11] 2.25 3.40 2.44 2.07 2.76 2.19 0.12s

DispNetC [14] 4.32 4.41 4.34 4.11 3.72 4.05 0.06s

DeepPruner (fast) [4] 2.32 3.91 2.59 2.13 3.43 2.35 0.06

DES-net [11] 3.13 3.87 3.25 2.94 3.21 2.98 0.05s

DeepCostAggr [10] 5.34 11.35 6.34 4.82 10.11 5.69 0.034s

MADnet [19] 3.75 9.20 4.66 3.45 8.41 4.27 0.02

SPS-St [23] 3.84 12.67 5.31 3.50 11.61 4.84 (CPU) 2s

Proposed 2.83 4.31 3.08 2.53 3.74 2.73 0.021s

Table 3. Results on the KITTI 2015 [15] Benchmark

> 2px > 3px > 4px > 5px Run

Method Out-Noc Out-All Out-Noc Out-All Out-Noc Out-All Out-Noc Out-All Time

MC-CNN-acrt [22] 3.90 5.45 2.43 3.63 1.90 2.85 1.64 2.39 67s

GANet-Deep [26] 1.89 2.50 1.19 1.60 0.91 1.23 0.76 1.02 1.8s

GC-Net [8] 2.71 3.46 1.77 2.30 1.36 1.77 1.12 1.46 0.9s

Content-CNN [12] 4.98 6.51 3.07 4.29 2.39 3.36 2.03 2.82 0.7s

SegStereo [24] 2.66 3.19 1.68 2.03 1.25 1.52 1.00 1.21 0.6s

PDSNet [20] 3.82 4.65 1.92 2.53 1.38 1.85 1.12 1.51 0.5s

PSMNet [3] 2.44 3.01 1.49 1.89 1.12 1.42 0.90 1.15 0.41s

GANet-15 [26] 2.18 2.79 1.36 1.80 1.03 1.37 0.83 1.10 0.36s

EdgeStereo [18] - - 1.73 2.18 1.30 1.64 1.04 1.32 0.27s

iResNet-i2 [11] 2.69 3.34 1.71 2.16 1.30 1.63 1.06 1.32 0.12s

DispNetC [14] 7.38 8.11 4.11 4.65 2.77 3.20 2.05 2.39 0.06s

DES-net [11] 4.88 5.54 2.66 3.12 1.78 2.11 1.33 1.59 0.05s

SPS-St [23] 4.98 6.28 3.39 4.41 2.72 3.52 2.33 3.00 (CPU) 2s

Proposed 4.54 5.34 2.61 3.20 1.86 2.33 1.46 1.85 0.021s

Table 4. Results on the KITTI 2012 [5] Benchmark

comparatively less value to more complex spatial process-

ing (with a larger network and receptive field). At the same

time, this spatial processing is relatively cheap since it in-

volves only 2D convolutional operations, while acquiring
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more match information incurs a higher computational cost

because it adds to the number of operations that must be

repeated across the disparity dimension.

4.3. Results on KITTI Benchmark

Next, we report the official results as returned by the test

server on the KITTI 2015 and 2012 benchmarks along with

running time in Tables 3 and 4 respectively, and compare

these to a number of methods: including state-of-the-art

methods with high accuracy [3, 24, 26], as well as those

with relatively low running times (such as [10, 14, 19]). For

KITTI 2015, all errors correspond to percentage of pixels

with errors greater than 3 pixels for non-occluded and all

pixels, reported separately for all pixels (D1-all) and those

corresponding to background (D1-bg) and foreground (D1-

fg) objects. For the KITTI 2012 benchmark, errors are mea-

sured as percentage of pixels with disparity error above dif-

ferent thresholds, computed over non-occluded (Out-Noc)

and all (Out-all) pixels. We also include example estimated

disparities and corresponding errors from the KITTI 2015

test set in Fig. 3.

We find that our method is both faster and has a clear

advantage in accuracy over the only other method with

real-time performance [10]. On KITTI 2015, it also per-

forms better than the other methods that take less than

0.05 seconds per stereo pair: [19] and the DES-net ver-

sion of [11], although it does have slightly lower accuracy

than DES-net on KITTI 2012. At the same time, the pro-

posed method’s performance is competitive to state-of-the-

art methods [3, 24]: e.g., on the D1-all metric on non-

occluded pixels in KITTI 2015, it is worse by only 1% and

0.59% compared to GANet-15 and PSMNet, while being

between 17 and 20 times faster. Therefore, our method pro-

vides a new trade-off in accuracy vs speed in stereo esti-

mation. It allows practical real-time usage while yielding

estimates with competitive depth accuracy.

4.4. Results on SceneFlow

For completeness, we also report results on the Scene-

Flow [14] test set. For this, we use a model without fine-

tuning on KITTI. Instead, we continue training the model

for another 100k iterations on a subset of our training set

without any images from the “driving” images from [14],

the last 50k of which are at a lower learning of 10−5. The

accuracy in terms of End-Point-Error (EPE) is reported in

Table 5. Note that while still competitive, we find that the

method performs slightly worse relatively on this synthetic

dataset. We believe this to be likely due to the poorer per-

formance of the Census transform as a cost measure on the

relatively smoother textures.

Method Avg. EPE

DeepPruner (best) [4] 0.86

DeepPruner (fast) [4] 0.97

PSMNet [3] 1.09

PDSNet [20] 1.12

SegStereo [24] 1.45

DispNetC [14] 1.68

GC-Net [8] 2.51

Proposed 2.01

Table 5. Evaluation on SceneFlow Test Set [14].

5. Conclusion

We introduced a new stereo estimation method that is

able to generate accurate dense depth estimates from stereo

image pairs at faster than real time speeds—48 frames per

second—on a modern GPU. Our method achieves this by

using traditional matching costs instead of their more ex-

pensive learned counterparts, and focusing its computations

on spatial processing with 2D convolutions, in contrast to

recent neural network-based methods that seek to explicitly

mimic the cost-volume computations of traditional stereo

pipelines. Given its accuracy and speed, our method is fea-

sible to deploy on actual robots and autonomous vehicles,

possibly as an alternative for depth perception to more ex-

pensive LIDARs. While our work focused on the binocu-

lar stereo case in this paper, in future work we propose ex-

tending our approach to multi-view stereo—we believe the

higher computational efficiency will make it possible to rea-

son about correspondences across multiple cameras in real

time, while bringing gains in depth estimation accuracy.
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