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Abstract

3D shape segmentation is a fundamental computer vi-

sion task that partitions the object into labeled semantic

parts. Recent approaches to 3D shape segmentation learn-

ing heavily rely on high-quality labeled training datasets.

This limits their use in applications to handle the large scale

unannotated datasets. In this paper, we proposed a novel

semi-supervised approach, named Robust Learning of One-

Shot 3D Shape Segmentation (ROSS), which only requires

one single exemplar labeled shape for training. The pro-

posed ROSS can generalize its ability from a one-shot train-

ing process to predict the segmentation for previously un-

seen 3D shape models. The proposed ROSS is composed of

three major modules for 3D shape segmentation as follows.

The global shape descriptor generator is the first module

that utilizes the proposed reference weighted convolution

to learn a 3D shape descriptor. The second module is a

part-aware shape descriptor constructor that can generate

weighted descriptors from a learned 3D shape descriptor

according to semantic parts without supervision. The shape

morphing with label transferring works as the last module.

It morphs the exemplar shape and then transfers labels from

the transformed exemplar shape to the target shape. The

extensive experimental results on 3D mesh datasets demon-

strate the ROSS is robust to noise and incomplete shapes

and it can be applied to unannotated datasets. The exper-

iment shows the proposed ROSS can achieve comparable

performance with the supervised method.

1. Introduction

Segmentation is the process of partitioning a shape into

multiple meaningful parts, making it easier to extend to

other applications, such as 3D medical imaging [13], 3D

scene understanding [27], 3D object detection [26, 18] and

human pose estimation [24]. The desired algorithm should

accurately distinguish different parts of the object, even
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with structural variations [4, 28] and noise [6]. To ad-

dress the challenge issued above, traditional methods use

a non-learning based feature to represent the shape of ob-

jects [23, 2, 8, 7]. However, non-learning based features are

often not robust enough to deal with noises and structural

variations present in various kinds of 3D models, which lim-

its the generalization capability of a hand-crafted 3D shape

segmentation model.

To address the aforementioned limitation, deep learn-

ing approaches have been popularly employed to extract

learning-based features [31, 10, 32, 21, 29, 17] and the seg-

mentation result outperforms those of traditional methods

greatly. The majority of learning-based methods achieve

promising performance based on supervised learning from

a large volume of a well-annotated dataset. However, it is

often costly (sometimes not practical) to have a large vol-

ume of well-annotated shape segmentation datasets for the

training of deep neural networks. To alleviate the depen-

dency of a well-labeled dataset, we propose a novel semi-

supervised learning approach, named Robust Learning of

One-shot 3D shape segmentation (ROSS), which requires

only one single labeled exemplar shape for training and can

generalize its ability to predict 3D segmentation for unseen

shape models. To realize the proposed ROSS, three main

components, as shown in Figure 1, are included in the de-

velopment. The first component is a global shape descriptor

generator which incorporates neighboring information by

our reference weighted convolution and encodes into one

informative contextual representation. The second compo-

nent is a part-aware shape descriptor constructor where at-

tention mechanism is applied to generate the part sensitive

signature, namely, part-aware shape descriptor. The third

component is shape morphing with label transferring, in

which we transform the labeled exemplar shape into one

segmented transformed shape with the same shape as input.

Then with label transferring from transformed shape to in-

put shape, our model can predict segmentation for unseen

shapes. The main contributions of this paper are summa-

rized as follows:

• We propose the reference weighted convolution in the
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Figure 1: The pipeline of proposed one-shot paradigm which segments 3D mesh by morphing and transferring label from

transformed exemplar shape to target shape. The paradigm contains three key components: global shape descriptor generator,

part-aware shape descriptor constructor and shape morphing with label transferring.

global shape descriptor generator, which incorporates

the surrounding information into the descriptor.

• We introduce the concept of part-aware shape descrip-

tor, which utilizes the attention mechanism to highlight

part information.

• We derive the ROSS to deal with the 3D shape seg-

mentation problem by morphing the labeled mesh and

segmenting the input mesh by label transferring.

• The proposed ROSS can even outperform some super-

vised learning methods on multiple 3D datasets.

In the rest of the paper, we first introduce the related

work in section 2. Then, we describe the details of the pro-

posed ROSS in section 3. In section 4, we present our ex-

perimental results on several datasets. At last, we discuss

the limitation of our paradigm and make a brief conclusion

in Section 5.

2. Related works

With the rapid development of computer vision, it re-

quires advanced techniques to deal with the increasingly

growing of 3D content. Segmentation is one of the long-

standing problems in visual recognition. In this part, we will

briefly go through some typical non-learning based methods

and learning-based methods on 3D mesh segmentation.

2.1. Nonlearning based methods on segmentation

As a basic problem in computer vision, a considerably

wide range of approaches have been conducted for 3D

shape segmentation. For example, K-Means [23] selects a

subset of k seed faces to represent sub-clusters by continu-

ally selecting the further face from which has been selected.

Fitting Primitives [2] merge the best fitting pairs by approx-

imating every face segment to its adjacent part. Random-

ized cuts [8] make binary splits by iteratively selecting the

most consistent cuts in the randomized set. HMS [7] uses

a physics-based approach to characterize vertices on a sur-

face in the heat kernel featured space. Meanwhile, some

researchers apply handmade geometric descriptors to mesh

segmentation [3, 19]. In the approach proposed by Belongie

et al. [3], they attach the descriptor of the whole shape to

each point and construct correspondences between two sim-

ilar shapes. Though it is a novel thought of combining each

point with the global shape descriptor, this paper does not

provide a reliable way to extract shape descriptor. Later on,

data-driven approaches are proposed, which generally ex-

tract common global features.

2.2. Learning based methods on segmentation

As Convolutional Neural Network (CNN) has achieved

outstanding performance on tasks for 2D images, many re-

cent works apply CNN to 3D model analysis. Since CNN

has a stable performance on extracting the geometric fea-

ture of 3D shapes, deep learning-based methods presented

in [11, 25] outperform many traditional methods. In 2017,

Kalogerakis proposed a deep architecture with Fully Convo-

lutional Networks [20] and surface-based Conditional Ran-

dom Fields (CRF) [16]. However, such a view-based rea-

soning approach is demanding for the view selections. DCN

[32] proposed by Haotian Xu et al., which achieves the
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Figure 2: Our one-shot paradigm for 3D mesh object part segmentation task. As the figure shows, the blue box on the top

of the figure represents the process of pose feature learning. we adopt several referenced weighted convolution layers, max-

pooling layers, and upsampling layers. A global max-pooling layer is added on top of the last linear layer to extract a global

shape descriptor where N denotes the total number of points in the mesh and Q represents the length of the global shape

descriptor. Then, the part-aware shape descriptor constructor is used to generate a special representation of pose feature for

each part by a channel-wise multiplication between global shape descriptor and learned part attention. K denotes different

K possible labels. With the informative part-aware shape descriptor, our shape morphing module can generate a precise

transformed exemplar shape which consists of M points, and it has nearly uniform pose as input mesh.

state-of-art performance, takes raw geometric features as in-

put then learns a global feature and a local feature with two

neural networks and optimizes the segmentation with CRF.

Though these learning-based methods generally overcome

the shortcomings of non-learning methods and demonstrate

persuasive performance on multiple large scale 3D shape

datasets, all of them require tons of annotated data in the

training stage. The high dependency and high cost of train-

ing data annotation drive us to develop the ROSS.

3. Method

In this section, we illustrate our one-shot part segmenta-

tion method in detail. The paradigm is presented in Figure

2. We first define our task and approach in section 3.1. Then

we propose a novel global shape descriptor learning method

in section 3.2. In section 3.3, we demonstrate how we gen-

erate a part-aware shape descriptor from the global shape

descriptor. Finally, section 3.4 shows the detail of shape

morphing and label transferring between the exemplar and

input mesh.

3.1. Problem statement

The segmentation task on 3D meshes is to 1) group faces

and vertices, which share the same part label k, into a clus-

ter and 2) distinguish which faces and vertices belong to

the same part label k. Thus, we propose that the segmen-

tation task can be done by using shape morphing. Since,

first, different parts within exemplar are already been dis-

tinctly segmented, which satisfy the requirement of seg-

mentation task. Second, the label of a point in a specific

part will not change after transformation, (e.g. a point in

the human head may not belong to another class, say chest,

after transformation). Third, the shape configuration rela-

tionship between different parts may keep the same, (e.g.

the head and the hand may not exchange their position).

Supposing the transformed mesh is in the same shape as

the input mesh, then, the input mesh can be labeled cor-

responding to the segmentation in transformed mesh natu-

rally. Although our paradigm does not know labels of in-

put 3D mesh, it can still produce accurate segmentation re-

sults by using only one labeled exemplar, namely, a one-

shot manner. Consequently, our goal is, given input 3D

meshes and one exemplar, to return one labeled mesh with

the same shape as input and the part labels from the ex-

emplar. Supposing there are n points in a 3D mesh, each

point p has the relationship p ∈ P where P is the point set

with P =
{

p1, p2, ..., pn
}

, pi ∈ R
D, and D stands for the

dimension number of points set P . Here, we set D = 3
to represent our 3D mesh data and pi = [xi, yi, zi] for the

point position in the 3D-coordinate. Compared to other 3D

data types, mesh data not only possess substantial point in-

formation, but also contain an unique propriety of geomet-

ric surface information, formed by connecting adjacent ver-

tices adj where adj =
{

adj1, ..., adji
}

, adji ∈ P . adji
denotes ith adjacent point of the center point and we have
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Figure 3: The schema of reference weighted convolution.

adji represents adjacent points of p0 and I denotes point

signatures. W are weight matrices standing for an adjacent

position of point p0 with C1×C2 parameters. αi is a learned

reference weight by Eq. 2

adj ⊂ ADJ where ADJ represent all adjacent points for

point set P .

3.2. Global shape descriptor generator

To capture the spatial information within the mesh data,

much previous work incorporates the calculation of face

normal and curvature. However, this approach requires

large additional computational cost. Also, since the geo-

metric information in 3D shape meshes and other graph-

structured data are not limited in regular grids, simple

stacking of CNNs will lose association information within

points. Here, we present a novel reference weighted convo-

lution layer that can consider neighboring information and

directly taking raw mesh points as input without any data

prepossessing nor face normal and curvature calculation.

Our mechanism is illustrated in Figure 3.

Reference weighted convolution. For a point p, we ap-

proximate the information viewed from the perspective of

adjacent points by adopting γ different learnable weights,

where γ represents the number of adjacent points. Thus,

the point signature I
′

p for point p viewed from γ adjacent

points is defined as

I
′

p =

γ
∑

j=1

Wjxp + b. (1)

where xp denotes point signature of p, Wjxp represents

information extracted from jth adjacent point and b repre-

sents the bias. However, the information generated from

different adjacent points should be considered differently.

We adopt a reference attention mechanism that enables our

module to pay various attention to the different extracted in-

formation. Our approach is presented in Figure 3. We use

γ different Multilayer Perceptrons (MLPs) to approximate

different weights which are defined in Eq. 2.

αj = MLPj(e
|(xadjj

−xp)|). (2)

Where MLPj and xadjj stands for the jth MLP and

point signatures for adjacent point j. αj is the reference

attention. After applying the reference weight αj to I
′

p in

Eq. 1, the final learned point signature of p is defined as

Ip =

γ
∑

j=1

αjWjxp + b. (3)

Descriptor learning. Inspired by [29], As shown in the

blue section of the Figure 2, we use an elaborated struc-

ture to compute global features, which contains reference

weighted convolution layers, max-pooling layers, upsam-

pling layers, and concatenation. Our network takes a point

set of mesh as and the adjacent points as input and then out-

puts a global shape descriptor Desglobal of size 1 ∗ Q. We

use the shape descriptor learning function E(·) to simulate

the network which is defined below,

Desglobal = E(P,ADJ). (4)

As we defined above, P denotes the input mesh point set,

and ADJ represents all adjacent points.

3.3. Partaware shape descriptor constructor

In this part, we present an approach to construct a part-

aware shape descriptor by multiplying the learned global

shape descriptor with different part attentions which are

learned by multiple MLPs.

To generate different part attentions, the learned global

shape descriptor is segmented into k parts with each part

having the channel size of L = Q/k. Segments are repre-

sented as Des1, Des2, ..., Desk. As presented in the green

box of Figure 2, we use k different MLPs to learn part at-

tentions with hidden layer of size L and Q. The learned kth

part attention Ak is defined as

Ak = MLPk(Desk). (5)

Then, k part weighted descriptors are generated by per-

forming a multiplication between the global shape descrip-

tor and different part attentions. The function is

DPAk
= Des⊙Ak. (6)

Where ⊙ is a channel-wise multiplication and DPAk
rep-

resents kth part weighted descriptors. Finally, the point set

Pt of a labeled exemplar is rearrange to k groups accord-

ing to part labels and each group is represented as P 1
t , P 2

t ,

..., P k
t . We use an concatenation function to fuse exemplar

with part weighted descriptor and to construct part-aware

shape descriptor DPA, which is

DPA = cat(DPA1
, DPA2

, DPA3
...DPAk

). (7)

where cat(·) is the abbreviation of concatenation.
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Table 1: The quantitative results for segmentation accuracy on PSB dataset. ”-” represents unreported results. ROSS denotes

our proposed method, and ROSS w/ PointNet is model by replacing our global shape descriptor (refer to section 3.2) with

PointNet for shape descriptor learning.

Segmentation Accuracy

Supervised Method One-Shot Method

Category Kalogerakis[15] Wang[30] Guo[12] ShapePFCN[14] DCN[32] ROSS w/ PointNet ROSS

Human 0.9320 0.5560 0.9122 0.9380 0.9408 0.9183 0.9274

Cup 0.9960 0.9960 0.9973 0.9370 0.9979 0.9700 0.9900

Glasses 0.9720 - 0.9760 0.9630 0.9869 0.8743 0.9071

Airplane 0.9610 - 0.9667 0.9250 0.9766 0.9472 0.9623

Ant 0.9880 - 0.9880 0.9890 0.9898 0.9477 0.9582

Chair 0.9840 0.9960 0.9867 0.9810 0.9935 0.9326 0.9574

Octopus 0.9840 - 0.9879 0.9810 0.9934 0.9067 0.9166

Table 0.9930 0.9960 0.9955 0.9930 0.9959 0.9389 0.9524

Teddy 0.9810 - 0.9824 0.9650 0.9908 0.9274 0.9372

Hand 0.8870 - 0.8871 0.8870 0.8861 0.7157 0.7589

Plier 0.9620 - 0.9622 0.9570 0.9714 0.9117 0.9417

Fish 0.9560 - 0.9564 0.9590 0.9705 0.8533 0.8933

Bird 0.8790 - 0.8835 0.8630 0.9039 0.8747 0.8943

Armadillo 0.9010 - 0.9227 0.9330 0.9382 0.8012 0.8570

Bust 0.6210 - 0.6984 0.6640 0.7898 0.7187 0.7656

Mech 0.9050 0.9130 0.9560 0.9790 0.9660 0.9287 0.9523

Bearing 0.8660 - 0.9246 0.9120 0.9470 0.8594 0.8835

Vase 0.8580 0.9050 0.8911 0.8570 0.8931 0.8111 0.8211

FourLeg 0.8620 0.5430 0.8702 0.8950 0.8742 0.7995 0.8455

Average 0.9204 0.8436 0.9362 0.9251 0.9476 0.8756 0.9011

3.4. Shape morphing and label transferring

Then we generate a function M(·) to perform the trans-

formation from exemplar to input source mesh shape. M(·)
is formulated by a multi-layer perceptron network with hid-

den layer sizes of 1024, 512, 256, 128 and 3. The function

M(·) is defined as

Pd = M(DPA). (8)

The function takes learned part-aware shape descriptor from

the input source mesh as input and output a transformed

exemplar. To make our model an end-to-end learnable

model with a one-shot manner, we proposed a one-shot la-

bel mining loss for our network. Inspired by [9], our losses

adopt three terms including the Chamfer loss Lc(Pd, Ps),

the Edge loss Le(Pd, Ps) and the Laplacian loss Ll(Pd, Ps).
The Chamfer loss makes sure tow shapes of the different

poses are as similar as possible while Edge loss and Lapla-

cian loss ensure all clusters are not isolated and reduce the

distortion. The final label mining loss is defined as

Loss = Lc(Pd, Ps) + Le(Pd, Ps) + Ll(Pd, Ps). (9)

Cluster label assigning. By minimizing three one-shot

loss term to optimize the transformation process thus mak-

ing sure the transformed exemplar Pd is as close to Ps as

possible. We use a straight forward method to assign part

labels from each point in transformed exemplar to target

mesh. To retrieve labels from Pd to Ps , we adopt a la-

bel mapping method. That is, for all pi ∈ Pd, we assign

1965



Figure 4: Visualization of part segmentation task results on PSB [5] benchmark dataset for airplane, ant and teddy bear.

the label of pi to the point which is the nearest one to pi in

target shape Ps.

4. Experiment

4.1. Dataset and experimental setups

In this section, the following benchmark datasets are

used to evaluate our proposed model. Princeton Segmen-

tation Benchmark (PSB) [5] is mainly used to compare the

ROSS with other different approaches toward 3D mesh seg-

mentation tasks since it is an open dataset and many prior

works are evaluated based on this benchmark dataset. PSB

dataset carries 19 different object types (including Airplane,

Bust, Glasses, Teddy, etc.) and each type has 20 meshes

with different shape configurations. Moreover, we use the

SCAPE [1] benchmark dataset which contains 70 real hu-

man scan meshes with different poses and a skeleton with

12 different kinds of labels for different parts. The SCAPE

dataset also provides incomplete human scans that meshes

contain holes or missing faces. The usage of the SCAPE

dataset shows the proposed ROSS is robust enough to per-

form part segmentation tasks on incomplete meshes. Note

that the SCAPE dataset is originally used for the task of

3D shape completion, which contains 70 unlabeled meshes.

To use it as a shape segmentation dataset, we generate part

segmentation by transferring the labels from the skeleton to

each shape using the ground-truth shape correspondences

of the SCAPE dataset.

The setup of our experiment in the PSB dataset is similar

to in [5]. For each category in the PSB dataset, we first use

the dataset to train our ROSS before the evaluation test. We

sample 2500 points from each category according to their

area of adjacent faces to train the model. We select meshes

that have the same or similar configuration with our selected

exemplar as testing meshes to ensure the consistency be-

tween our selected exemplar and testing meshes. Moreover,

we evaluate the ROSS on 70 meshes of the SCAPE dataset.

We report average accuracy for different categories of the

SCAPE testing dataset and the PSB dataset. Following [9],

we also adopt a regression step on a part-aware shape de-

scriptor constructor and Shape morphing step to ensure a

well-transformed exemplar. The segmentation of our pro-

posed system is at point (vertex) level, and we can transfer

it to the facet level. For a given triangular facet, we set the

facet label to the majority label of three vertices. If three

vertices all have different labels, then we select the first ver-

tex label as the facet label.

The proposed ROSS is implemented using Pytorch 0.4.

We optimize our network by Adam optimizer for 4000 it-

erations which have an initial learning rate of 10−3. Our

network is running on a GeForce GTX 1080 Ti GPU.

4.2. Segmentation performance

We carried out a test to verify the performance of ROSS

on the shape segmentation task. The proposed ROSS is a

semi-supervised approach, which is only trained with one

single exemplar shape with ground-truth part segmentation

label, and then be used in test shape segmentation. As the

proposed ROSS is a one-shot method to address the 3D

shape segmentation, we do not have other similar semi-

supervised methods as comparison baseline models in this

test. Instead, we compared ROSS to supervised shape seg-
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Figure 5: The visualization result of our proposed method. The shape configuration between the selected exemplar and the

testing set can be significantly different.

mentation models, which were trained on a large number

of annotated shape models, to demonstrate the performance

in shape segmentation by ROSS. As what other segmenta-

tion tasks reported, the performance is evaluated using facet

label accuracy. The formula of accuracy is defined as

Acc =
P ∩G

F
. (10)

where P is the prediction made by our network, G is face

label ground truth and F is the total number of faces in the

mesh. The quantitative results are presented in Table 1 in-

cluding publicly reported result and our experiment result

based on the PSB dataset. As we can see, our proposed

method can also achieve outstanding performance. It even

outperforms one supervised method [15] by 5.75% and our

method is only 4.65% less than the state-of-art supervised

model. Moreover, we perform an experiment on the SCAPE

dataset for both complete mesh and incomplete mesh. Al-

though the SCAPE dataset contains many different human

poses and different human body shapes, the proposed ROSS

can still achieve a good quantitative result of 94.02% for

the segmentation accuracy on complete human meshes and

92.82% on incomplete human meshes. This experimental

test suggests that the ROSS is an effective semi-supervised

model in learning of one-shot shape segmentation.

4.3. Visualized examples

In this part of the experiment, we present visualized re-

sults of part segmentation task by using our proposed model

as well as other published supervised approaches based on

the PSB dataset. Figure 4 shows the visualized results of our

work. In addition to showing the generality of our model,

we also conduct an experiment on the SCAPE dataset be-

side the PSB dataset. Figure 6 shows our visualized result

on the SCAPE dataset. The Figures 4, 6 clearly show our

Figure 6: Visualization of part segmentation task result on

SCAPE [1] benchmark dataset for complete human meshes.

The first row is the prediction result of our model and the

second row represents the ground truth.

one-shot method can achieve a robust performance on vari-

ous types of models from different datasets.

4.4. Robust test

To demonstrate that our model can be applied to vari-

ous situations (i.e. incomplete shape segmentation task), we

provide an experiment that performs the part segmentation

task on incomplete meshes with holes randomly distributed

on each human scan in the SCAPE dataset. Since the dataset

contains no ground truth labels for incomplete human scans,

we manually generate ground truth labels for incomplete

meshes to calculate the segmentation accuracy. Following

the same ground truth generated manner we illustrate in the

first subsection, we first align all incomplete meshes and
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Figure 7: Visualization of part segmentation task results on

SCAPE [1] for real human scans with holes. Due to the

snapshot condition, dark parts on the human mesh are holes.

complete one to their bounding boxes. Then we generate

all labels for complete meshes, finally, we use the nearest

neighbor method to map part labels from complete meshes

to incomplete meshes. Figure 7 shows the visualized re-

sult for the part segmentation task on incomplete meshes

based on our generated ground truth. Our proposed ROSS

can reach an accuracy of 94.02% for the labeling task in the

complete mesh. Although there exist losses of some part in-

formation of an incomplete mesh, the proposed ROSS can

still capture local parts and global information to deliver a

high segmentation performance. It can have the segmenta-

tion accuracy of 92.82% for incomplete meshes, which only

1.2% lower than the accuracy on the complete meshes. Ap-

parently, both the quantitative result and visualized results

suggest our performance can reach a good level hence our

method is a robust approach in various 3D Mesh segmenta-

tion situations. Moreover, to test our proposed method that

can handle large shape configuration variations, we conduct

an experiment on the PSB dataset and figure ?? shows that

our proposed method can be applied on various shape con-

figurations of the same categories.

4.5. Ablation study

Table 2: Comparison results between reference weighted

convolution-based method and PointNet based method [22]

on SCAPE dataset.

Method Data Type Average Accuracy

ROSS w/ PointNet
Complete 0.9172

Incomplete 0.9017

ROSS
Complete 0.9402

Incomplete 0.9282

In this section, we perform the experiment to evaluate the

effectiveness of our global shape descriptor based on ref-

erence weighted convolution (as described in section 3.2)

for the shape descriptor learning. Here, we conduct exper-

iments on the SCAPE dataset on both incomplete meshes

and complete meshes. We replaced the shape descriptor

module in ROSS with a popular feature learning method,

PointNet [22], and keep the rest of the ROSS the same to

form a new model named ROSS w/ PointNet. We compare

the segmentation accuracy between the ROSS w/ PointNet

and ROSS in the experiment. Table 2 shows segmenta-

tion accuracy on SCAPE dataset with quantitative compar-

ison result. ROSS outperforms the ROSS w/ PointNet by

2.30% and 2.65% respectively on complete and incomplete

datasets, which verifies the effectiveness of our global shape

descriptor using reference weighted convolution.

4.6. Failing case analysis

According to a careful analysis of visualized results pre-

sented in Figure 4, 6 and 7, not only the ROSS but also

other prior works including state-of-art method suffer from

the low prediction accuracy of labels around edges. This is

mainly because we use Euclidean distance to determine the

correspondences between the points of an input mesh and

transformed exemplar, which is not so stable when points

of different parts intersect with each other. Another com-

mon falling case comes from the transformation on a pair

of shapes with great deformation (e.g. a significant pose

change). For instance, as the current setting of ROSS, it is

not challenging to align a 3D model with significant differ-

ent shape configuration as exemplar shape, which leads to

the sub-optimal shape segmentation performance as shown

in the figure. Our future work will address this through

the development of methods for learning shape descriptors,

which captures more shape deformation.

5. Discussion and conclusion

In this paper, we proposed a novel semi-supervised ap-

proach that requires only one single exemplar labeled shape

for training. The proposed approach can generalize its abil-

ity from a one-shot training process to predict the segmen-

tation for previously unseen 3D shape models. We intro-

duce a new reference weighted convolution layer which can

successfully learn surface information based on adjacent

points. The part-aware shape descriptor helps our propose

ROSS perform robust and accurate transformation between

the exemplar and input 3D mesh. The experiments con-

ducted on PSB [5] dataset indicate that our novel approach

can even outperform some supervised methods. Visual-

ized and quantitative results on both complete meshes and

incomplete meshes in the unannotated SCAPE [1] dataset

show our proposed approach is robust which also proves

that our approach can be applied to large scale unlabeled

3D mesh dataset.
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