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Abstract

This paper deals with a text-to-video sign language syn-

thesis. Instead of direct video production, we focused on

skeletal models production. Our main goal in this paper

was to design a fully end-to-end automatic sign language

synthesis system trained only on available free data (daily

TV broadcasting). Thus, we excluded any manual video an-

notation. Furthermore, our designed approach even do not

rely on any video segmentation. A proposed feed-forward

transformer and recurrent transformer were investigated.

To improve the performance of our sequence-to-sequence

transformer, soft non-monotonic attention was employed in

our training process. A benefit of character-level features

was compared with word-level features. We focused our

experiments on a weather forecasting dataset in the Czech

Sign Language.

1. Introduction

This work builds on our previous research and applica-

tions [1, 2, 3, 4, 5] focused on Czech Sign Language (CSE).

Our goal leads us to create a CSE corpora and design a sign

language (SL) synthesis system to further advance the SL

processing research area, especially for CSE.

Our main goal is to exclude any manual video annotation

because any manual annotation is slow and costly and it is

inconsistent more likely by its very nature. Moreover, SL

speakers are far less accessible than the spoken language

speakers. These problems make any method which relies on

text or video annotations unsuitable or even impossible for

TV broadcasting or some big-data-style source processing.

We utilized an internet archive of The Czech Daily News

in CSE. Our experiments were focused on weather forecast-

ing. This data source contains high definition videos with

spoken commentary. However, there are no closed captions

in this archive. Thus, we use texts obtained from the spo-

ken commentaries by means of automatic speech recogni-

tion software which is able to convert this audio to text with

high accuracy [6]. Instead of synthesizing of videos, we fo-

cused on skeletal models production that is in our opinion

more versatile.

In this paper, we described two main tasks: to extract

high-quality skeletal models from videos and to make fully

trainable end-to-end SL synthesis system without any ex-

plicit translation. In our task, we don’t have an alignment

between spoken commentaries and relevant videos. App-

lied Dynamic Time Warping (DTW) or used non-monotonic

attention replaces an alignment between input texts and se-

quences of skeletal models. But, especially in the case

of bidirectional-RNN layers and the encoder-decoder ap-

proach, the alignment couldn’t be derived because each

word (or character) might affect each generated frame. For-

tunately, we showed that the alignment is not necessary.

To extract quality skeletal models, we applied the Open-

Pose [7] – a third-party neural-network-based skeleton ex-

traction method. Our skeletal models include head, arm

joints, and all finger joints that are crucial for the SL un-

derstanding. However, finger joints are often misplaced and

sometimes are even missing. These errors prevent using un-

corrected skeletal models as ground truth. To correct used

skeletal models extractor and to reconstruct some missing

joints, we design a gradient-descend-based method for the

skeletal models correction that creates 3D skeletal models

from the extracted 2D models to arrange a geometrical con-

sistency.

Our main contributions in this paper are the proposition

of a simple but robust feed-forward translator, presentation

of new criteria for the end-to-end system training and ex-

periments with character-level features. The feed-forward

translators replace RNN-based translators that are demand-

ing whilst decrease the chosen error. The first investigated

criterion is standard MSE with incorporated DTW. The sec-

ond one is a designed criterion that uses soft non-monotonic

attention instead of DTW. We found some benefits of a com-

bination of the designed criteria.
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2. Related Works

The classical approach to the solving of the problem of

SL synthesis from spoken language is to divide it into the

two main sub-tasks. There is a translation module which

translates the spoken language (usually in a text form) to

some text SL representation (rather machine readable), e.g.

to glosses (lexical entities that represent individual signs).

The second task is to render the SL animation video from

the chosen SL representation. This animation is usually per-

formed by an artificial computer avatar. The works [8] and

[9] follow this classical approach. The recent notable works

[10, 11, 5] push the state-of-the-art (sota) for SL process-

ing forward by bringing the latest advanced techniques of

Neural Machine Translation (NMT) and image generation

to this research area.

The work [10] deals with the translation of the spoken

language to the glosses by employing sota sequence-to-

sequence (seq2seq) NMT approach based on the Recurrent

Neural Network (RNN) with the attention mechanism. And

subsequent direct generation of a sign video utterance from

the given glosses (constituted by skeleton poses extracted

from training data using OpenPose framework [7]) and ba-

sic speaker’s pose using a method of direct image genera-

tion based on a convolutional image encoder followed by a

Generative Adversarial Network (GAN). The second work

[11] then covers the opposite direction of the translation

from signs to words. The sign video is converted to spatial

embeddings and then translated by the sota seq2seq NMT

method to the words either using glosses as an intermediate

representation or without it. The first mentioned approach

achieves the best results.

Our solution to SL synthesis differs from [10] mainly

by no utilizing of any SL translation/transcription or video

annotation because we are using just raw SL video record-

ings. The output of our system is a sequence of skeleton

poses which are, from our point of view, advantageous to

a direct video generation because the final video animation

can be performed by ordinary avatar. Additionally, in the

case of skeletal models, we add the finger joints that are not

considered in the work [10]. We also did not split the SL

synthesis into the two sub-tasks solved separately, as it is in

the classical manner, but we solve these sub-tasks jointly.

From [11] we differ mainly in an investigation of the oppo-

site direction of the direct translation between SL and spo-

ken language and usage of skeleton poses instead of spatial

embeddings for SL representation.

Our paper follows the paper [5] that is limited to RNN-

based implicit translator, monotonic head and word-level

features. We added feed-forward translators, new criteria

and character-level features.

We proposed a backpropagation-based method to extract

3D skeletal models from 2D skeletal models obtained by

OpenPose to correct errors and interpolate missing parts.

We did not have any additional information about the

speaker’s bodies. Hence, we used a 3D model which was

as simple as possible in contrast to another approach de-

scribed in [12] than uses much more complex 3D deforma-

tion model. Other approaches for 3D body pose or hand

pose estimation are described in [13, 14, 15, 16, 17, 18].

Because 3D estimation task wasn’t our main goal, we chose

to use the OpenPose framework as one of the feasible sota

solutions.

In our solution, we use DTW to synchronize a resultant

and a target sequence. The gradient propagated through

DTW does not directly differentiate the optimal path. This

disadvantage could be removed using so-called soft-DTW

[19]. Due to the soft-DTW computational demands, we de-

cided to investigate a replacement of the soft-DTW with an

attention mechanism.

The proposed backpropagation-based correction method

might be beneficially applied whatever pose estimator is (in-

cluding 3D hand pose estimators) except for estimators such

as [20] which keep results geometrical consistent. The 3D

pose estimation itself wasn’t our goal. However, a high-

quality 3D pose and hand shape estimator such as estima-

tors described in [13, 14] would allow us to construct a high-

quality 3D sign language synthesizer.

3. Skeletal Model Extraction

In this section, we describe how we obtained our target

data. Firstly, we briefly describe the results of used 2D

skeletal models extraction and some problems with these

results. Then we present our method which utilizes 3D

skeletal models to provide some important corrections. Af-

ter that, our method normalizing skeletal model size is ex-

plained. Finally, form of targets for machine learning is

defined.

3.1. 2D Skeletal Extraction

We applied OpenPose [7] framework to extract poses

from videos. The OpenPose works real-time and processes

each picture in a video separately or with a short context.

But a resultant poses are sometimes highly inaccurate (see

Figure 1), some joints are even missing. Especially when a

hand is not visible or it is blurred due to a rapid movement.

Thus some corrections and interpolations are necessary to

obtain useful target training data. We propose correction

method that can process a whole video offline and utilize

available context information.

3.2. 3Dmodelbased Skeletal Model Correction

Our solution is an iterative backpropagation-based algo-

rithm. Some examples of the correction process are shown

in Figure 2.

In order to make the corrections in a sequence of skeletal

models, some invariants have to be found. Unfortunately, it
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Figure 1. Examples of 2D skeletons produced by OpenPose frame-

work. Despite the apparent high-quality skeleton extraction, some

errors occurred: missing finger bones (a), covered fingers (b) and

missing hand due to too rapid movement (c).

Figure 2. Examples of the correction process: misplaced joints

correction (a, c) and missing bones correction (b).

is not easy to find helpful invariants in 2D skeletal models.

On the other hand, in 3D skeletal models, obvious invariants

such as bone lengths suggest itself.

3D model of a scene is usually acquired from two or

more different points of view of the same scene [21, 22].

But we have only one shot of a scene but many shots from

different times when bone lengths might remain constant.

We not only considered constant bone lengths in each se-

quence but we also tied some bone lengths to make skeletal

models strictly symmetrical (except angles).

Fortunately, obtained skeletal models have a tree struc-

ture with head as a root. This structure allows applying

standard machine learning techniques for neural network

training. The bone lengths, bone angles, and positions of

a head are trainable parameters in our training process. The

output of this “network” are joint positions. The loss func-

tion is Mean Squared Error (MSE) of joints 2D projections.

Because we disregarded an effect of a perspective, the 2D

projections simply cut out the third coordinate.

Our unsuccessful preliminary experiments with fully

random initialization show that a high-quality initialization

is crucial for usable 3D model estimation. Our initializa-

tion method works as follow: 1) We fixed initial 3D coordi-

nates of the head as the same as the coordinates of the tar-

get 2D skeletons with z = 0. 2) Natural estimation of bone

lengths as the maximum of lengths in 2D space is suitable

only when no errors occur. We rather use an average of 2D

bone lengths for our initialization. 3) We know the posi-

tion of the head now. Other joint positions are computed

recursively where each computation find the minimum of

the aforementioned loss analytically.

The analytical solution of the steps of the recursion: Let

suppose that we know a position p0 = (x0, y0, z0) of the

first joint of a bone with length L. The problem needs to

be solved now is finding the minimum p1 = (x1, y1, z1)
of the criterion e = (x1 − xtar)

2 + (y1 − ytar)
2, where

xtar and ytar are target coordinates, under the condition

‖p1−p0‖
2−L2 = 0. We used the method of Lagrange mul-

tipliers to solve the problem but the solution could be pre-

sented in very simple way using some visualization instead

of rigorous reasoning: One can see that this problem has one

or two solutions. The problem has one solution when the

length L is not long enough to reach the target coordinates

(or it is precisely long enough to reach the coordinates), i.e.

when L′ ≤ L where L′ :=
√

(xtar − x0)2 + (ytar − y0)2.

In this case,

x1 = x0 +
L

L′
(xtar − x0), (1)

y1 = y0 +
L

L′
(ytar − y0), (2)

z1 = 0. (3)

For L > L′ both solutions are x1 = xtar and y1 = ytar.

The third coordinate z1 is a solution of following equation

(xtar − x0)
2 + (ytar − y0)

2 + (z1 − z0)
2 = L2. It is very

easy to find solution now:

z1 = z0 ±

√

L2 − (x0 − xtar)
2
− (y0 − ytar)

2
. (4)

Because we don’t know which solution is more admissible,

we chose the smaller one.

One can see that zero value of the MSE loss function

could be found. However, such solution is highly undesir-

able because it leads to absurd bone lengths. To prevent this

scenario and because we also want to eliminate too rapid

movement and correct possible swapping between the two

aforementioned possible solutions of 2D to 3D mapping,

we used a typical L2 regularization. We regularize absolute

values of joints velocities in a video and bone lengths of the

skeleton.

3.3. Skeletal Models Scaling

Although video recording is done professionally, small

variations of figure sizes are always present because the

same speaker does not stay in the same spot during ev-

ery take and each person has naturally different propor-

tions. To reduce these differences, we apply a positive

scales si > 0 for every sequence of skeletal models xi =
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(xi
1, . . . , x

i
ni
) where i = 1, . . . , n resulted in scaled se-

quences yi = (six
i
1, . . . , six

i
ni
). The simplest way how

to set scales is to find the minimum of the following cri-

terion ε(s1, . . . , sn) = 1
n

∑n

i=1 ‖siµi − µ‖
2
, where µi =

∑ni
j=1

xi
j

ni
is a local average and µ =

∑n
i=1

∑ni
j=1

xi
j

∑

n
i=1

ni
is the

global average vector of joints in the skeletal model. In

other words: we want to scale each sequence to make the lo-

cal averages as close to the global average as possible. One

can see that this problem has a simple analytical solution

si = (µiµ
T)‖µi‖

−2 if si > 0. We trained the scales using

gradient descent. To keep si > 0, we trained ŝi instead and

si = exp(ŝi).

3.4. Ground Truth Choice

Skeletal models have so far a form of an ordered set

of joint coordinates. Estimating directly coordinates might

lead to more accurate estimation from MSE loss perspec-

tive. However, a natural mutual position of bones is much

more important than lesser MSE loss for plausible SL syn-

thesis.

Thus, our ground truths are vectors of the bones, i.e. dif-

ferences of the coordinates of joints on both ends of each

bone. We found that a center of the chest (or rather the

bottom end of the neck) nearly does not move. Further-

more, if it does move, it is not a part of any sign and we

want to compensate for this movement. For this reason, we

do not include any absolute coordinates. This choice not

only eliminates the entirely irrelevant absolute position of

the speakers in a picture but it also reduces the dimension

from 100 (coordinates of 50 joints) to 98. Figure 4 shows

that the results of this approach are naturally formed skeletal

models. Finally, we normalized the average standard devi-

ation of all points using one single coefficient. This final

normalization serves only for faster training and does not

change any proportions and relations in the target vectors.

4. Sign Language Synthesis

Our task is to convert an input Czech text into a sequence

of skeletal models representing corresponding SL utter-

ance. Several specifics of this task put standard sequence-

to-sequence transformers in an unfavorable situation: The

noise in available corpus caused by relatively random sign

lengths and speakers differences is not sufficiently compen-

sated by the size of the corpus that is rather sparse. More-

over, utterances in the corpus are not segmented, i.e. some

utterances include several sentences. Hence, we use man-

ageable sequence-to-sequence transformers.

Our SL synthesis has two parts. The first part is SL pro-

duction that produces a sequence of skeletal models from a

text and the second part is SL translation that translates text

into inner implicit SL representation. Both parts are sim-

plified: The SL production is a simplified repository with

Figure 3. Schematic diagram of (a) the feed-forward model for

a text-to-signs translation for word-level features, (b) the feed-

forward model for a text-to-signs translation for character-level

features, and (c) model for a sign-to-skeleton transformation.

constant length of sequences of skeletal models for each

sign. The translator is simplified to produce an output text

with the same length as an input text. These simplifications

make the whole end-to-end system trainable.

4.1. Sign Language Production

In this section, we describe our designed technique that

generates a sequence of skeletal models from word-level

features obtained from spoken commentary. In addition

to the spoken commentary, we also add information about

speaker because the scaling described in Section 3.3 nor-

malizes overall skeletal model sizes not differences in pro-

portions and the normalization is not exact and some differ-

ences still remain. Furthermore, each speaker has not only

different bone lengths but also each speaker uses distinctive

signs and idioms. Some speakers even make some signs

mirror-inverted. Additional information about speakers in

one-hot codding helps our neural networks to improve the

synthesis output quality.

We found another complication that speakers often add

some information which is not included in a spoken com-

mentary. Typically, a speaker uses the name of a day such

as “on Monday” instead of the word “tomorrow”. Hence,

in addition to the speaker’s identity, we add a vector that

represents a day of the week. We didn’t add any other ad-

ditional information about an actual date to avoid revealing

too much information relevant for a forecast.

Our simple sequence-to-sequence method replaces each

input word with a short sequence of skeletal models with
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constant length. We computed that each word in the spo-

ken commentary is performed on average in N = 7 video

frames in our training set, i.e. we divided all numbers of

frames in videos by a number of words (tokens) in the train-

ing set. We use this number as the mentioned constant

length of the short sequences. The method converts an in-

put text text = (word1, . . . , wordm) and the mentioned

additional information into a sequence x = [xi,j ]
i=1,...,m
j=1,...,N ·n

where n is given number of features in a resultant sequence.

The conversion is a simple trainable linear transform. To

generate the resultant sequence, we designed a special layer

that converts the sequence x = [xi,j ]
i=1,...,m
j=1,...,Nn

into the re-

sultant sequence in the following way:


































x1,1 x1,2 · · · x1,n

x1,n+1 x1,n+2 · · · x1,2n

...
...

. . .
...

x1,(N−1)n+1 x1,(N−1)n+2 · · · x1,Nn

...
...

. . .
...

xm,1 xm,2 · · · xm,n

xm,n+1 xm,n+2 · · · xm,2n

...
...

. . .
...

xm,(N−1)n+1 xm,(N−1)n+2 · · · xm,Nn



































. (5)

In other words, this transformation simply reshapes the in-

put matrix by splitting up each row into N new subsequent

rows. We call this operation as decomposition in Figure 3.

In the case of one-hot-codding (and no additional in-

formation), the short sequences are directly included in a

weight matrix of the linear transform. This fact could be

used for weight matrix initialization.

The special layer producing the resultant sequence is a

linear and differentiable operation. This sequence produc-

tion is a fully trainable repository. The main advantage of

this sequence production is low computational demanding

of gradient propagation. Especially in contrast to usual re-

current mechanism.

The evident disadvantage is that all signs have the same

length. This disadvantage could be eliminated by DTW

synchronization when some parts are repeatedly shortened

and/or some parts are repeatedly lengthened. On the other

hand, a well-trained preceding translator should split too

long parts into two or more parts and omits irrelevant parts.

A minor disadvantage is that this operation multiplies di-

mension N times. The main advantage is avoiding a recur-

rent layer.

Another characteristic of the proposed method is unde-

sirable cuts on boundaries between words. Fortunately, this

could be easily reduced employing a filter which smooths

the resultant sequence. As such filter, we use a 1D Convo-

lutional Neural Network (CNN) with a symmetric window.

In our experiments, we used window with relative indexes

−10,−9, . . . ,+9,+10.

An average of targets (skeleton0) is added to the output

to prevent a long initial phase of a model training. Figure 3

(c) shows the whole process of skeletal models production.

4.2. Sign Language Translation

Without appropriate data (parallel texts), we cannot ex-

plicitly train a complex translator but we train a system

with a simplified structure that provides an implicit transla-

tion. The simplification lies in omitting the usual encoder-

decoder passage and translating directly into a sentence

with the same length. An SL differs from a spoken lan-

guage not only on the lexical level but it has also different

grammatical structure. Hence, a word-by-word translation

is unusable. Our system translates words with their con-

texts using either 1D CNN or usual bidirectional GRU lay-

ers [23].

We use the additional information (speaker’s ID) in our

implicit translators because not only skeleton proportions

and signs but also speaking manners and even grammar

could be idiosyncratic.

The structure of our translator is shown in Figure 3 (a)

and (b). The structure is similar to a structure described

e.g. in [24]. In case of feed-forward translator, after a usual

embedding layer, several blocks are applied. Each block

consists of one 1D CNN with symmetrical window includ-

ing the previous, the actual, and the next word. This layer

uses ReLU activation function and a dropout (with dropout

probability 0.1). The additional information is concatenated

with an input of each block.

In the case of our RNN translator, the structure is the

same. Only the CNN layer is replaced with a bidirectional

GRU layer (see block noted as C in Figure 3 (a)).

5. Monotonic and Non-monotonic Attention

MSE can be computed when a resultant and a target

sequence have the same length. But the sequences have

different length and the sequences are probably not syn-

chronized even if they have by accident the same length.

Thus, we synchronize both sequences employing DTW or

some attention mechanism. This section includes details

of three proposed synchronization techniques: DTW, soft

non-monotonic attention and their combination. Note that

we strictly used MSE with DTW to evaluate our results in

all experiments.

Because the used DTW could be seen as hard monotonic

attention all three techniques use attention-based synchro-

nization. We want to emphasize now that this attention is

not an attention layer in our models, but we applied atten-

tion mechanisms in our loss. It means that our loss for a se-

quence a = (a1, . . . , ana
) and a sequence b = (b1, . . . , bnb

)
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Figure 4. Examples of generated skeletons (generated by the most successful synthesis), real pictures from the test set, a relevant part of

the commentary and manual description of the meanings of the signs.

is computed as follows:

ε =

∑na

i=1

∑nb

j=1 wi,j‖ai − bj‖
2
D

∑na

i=1

∑nb

j=1 wi,j

, (6)

where w(a, b) = [wi,j ]
i=1,...,na

j=1,...,nb
is an attention matrix and

‖ · ‖2D is a chosen metric.

For DTW, wi,j = 1 if a point (i, j) lies in the optimal

path found by DTW algorithm, wi,j = 0 otherwise and

‖ai − bj‖
2
D =

+5
∑

k=−5

αk‖ai+k − bj+k‖
2, (7)

where αk > 0 are chosen weights. The purpose of this mea-

sure is to respect not only actual pose but to respect also

whole local movement. We, therefore, use the symmetric

window (the first or the last vectors are repeated instead of

standard zero-padding that is unsuitable here). Because we

chose to respect only short local movement, we heuristically

chose αk = softmax(−0.1 · k2) for k = −5, . . . ,+5. An-

other possibility is to employ standard delta and delta-delta

acceleration coefficients.

A gradient propagated through any hard attention head is

null everywhere heads yell null values. This characteristic

might prevent a rectification of a poorly trained synthesizer.

For this reason, we designed a soft head. An advantage

of our soft non-monotonic head in comparison with mono-

tonic heads is that it uses only a simple non-recurrent dif-

ferentiable transformation of a distance matrix. A hard non-

monotonic head has the same problem in gradient propaga-

tion as hard monotonic heads. Furthermore, a well-trained

synthesizer leads to sharp head outputs. For these reasons,

we preferred a soft non-monotonic head.

The main disadvantage of a monotonic head usage is that

incorrect signs order might yell the same error as generat-

ing completely incorrect signs in this approach. To avoid

this disadvantage, we design a soft and non-monotonic at-

tention. Naturally, a target order of skeletal models should

not be ignored completely. For this reason, the designed

attention computes a matrix

w(a, b) = softmax(−D̂) + softmax(−D̂T)T, (8)

D̂ = M(na, nb)⊙D(a, b), (9)

D(a, b) =
[

‖ai − bj‖
2
D

]i=1,...,na

j=1,...,nb

, (10)

where ‖ai − bj‖
2
D is the chosen measure described in (7),

⊙ is element-wise product and matrix M(na, nb) is a mask

given by the equation M(na, nb) = q1 + q2 · d(na, nb),
where

d(na, nb) =

[

e
−4

(

i
na

−
j

nb

)

2
]i=1,...,na

j=1,...,nb

, (11)

q1 = 32, and q2 = −31. Values of q1 and q2 were chosen

to make values of M(na, nb) equal to one on diagonal and

converge to 32 outside of diagonal. A purpose of the first

softmax in (8) is to ensure that a model produces as many

targets as possible and a purpose of the second softmax is

to ensure that the model uses as many inputs as possible.

The correct signs order is preferred using the chosen

metric ‖ · ‖2D. The mask M is chosen to make attention

close to diagonal. This mask also helps to prefer correct

order.

In our experiments, the hard monotonic attention (i.e.

DTW) and soft non-monotonic attention were tested sepa-

rately. Furthermore, a combination of these attentions (sum)

was tested as well.

6. Word and Character Level Features

Using words as input has some disadvantages such as

Out-Of-Vocabulary (OOV) words. Especially in the case of
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Figure 5. An overview of a seq2seq RNN-based translator.

the Czech language which is an inflectional language. Al-

though we tried to eliminate this disadvantage using lemma-

tization, a similar problem with OOV words representing

numbers remains. Furthermore, the used lemmatization

naturally distinguishes between noun form, adjective form,

verb form, and adverb form of the “same” word whilst CSE

in some cases does not distinguish some of these forms.

Hence, it might be beneficial to use characters instead of

whole words. Because numbers of characters are close to

the numbers of frames in a video, special layers for words

decomposition seems to be irrelevant. Naturally, models

must be modified because using characters needs a much

broader context. Thus, instead three-frames long symmet-

ric window for word-level features, we used eleven-frames

long symmetric window in our implicit translator. Instead

of classical embedding layer, we also used 1D CNN with

the eleven-frames long window. The modified translator for

character-level features is shown in Figure 3 (b).

For character-level features, we slightly modified input

texts of spoken commentaries: Each numeral written in dig-

its was extended with zeros to have seven digits and special

seven-characters long word was added on the beginning and

on the end of each text. The special word consists of seven

asterisks. (Asterisk was never used in any text up to now.)

7. Experiments and Results

We utilized an internet archive of The Czech TV news

in CSE for our experiments. The Czech TV news in CSE

is daily broadcast and videos are available online in high

definition quality1. We focused only on weather forecasts

processing. Each forecast video takes approximately half a

minute. Our corpus contains 947 videos (from September

2015 to July 2018) of forecast in CSE performed by five

different CSE speakers. 36 videos (cca 20,000 frames, cca

1https://www.ceskatelevize.cz/ivysilani

1500 words) are reserved for development tests, 36 videos

are reserved for tests and the remaining 875 videos (cca

500,000 frames, cca 40,000 words) constitute our training

dataset. To make our results more reproducible, we have

performed each experiment three times with different train,

development and test sets and weight initialization.

Day of the week of the broadcasting and speaker’s IDs

were included in videos and we transcribed this information

manually from credits. We use the speaker’s IDs in testing

too. Alternatively, all possible speaker’s IDs could be ap-

plied and the minimum could be found instead of using one

known ID. All target 2D skeleton data were obtained from

the source videos applying OpenPose and corrected by the

designed method described in Section 3. Resulting targets

have a dimensionality of 98 (49 bones in 2D space).

All automatically recognized Czech texts were lemma-

tized by MorphoDiTa [25] to decrease perplexity and to deal

with OOV words. Our vocabulary contains 598 different

Czech lemmas including a special symbol for the beginning

and the end of the sentence. Both symbols are important

not only for a translator but also for SL production because

they correspond to resting skeleton pose on the beginning

and the end of the video. Texts contain 58 different charac-

ters including space.

In our experiments, we measure square root of MSE to

evaluate SL synthesis quality. Target vectors were normal-

ized for the acceleration of our training process as we men-

tioned in Section 3.4. But for our evaluation, we used un-

normalized targets. Values in the target vectors correspond

to pixels in video frames. An overall result is an average of

the results of the three sub-experiments. All results are in

Table 1.

We adopted a technique described in [11] as a sota

seq2seq translator that use an RNN-based encoder-decoder

technique (with LSTM) that utilizes also an attention mech-

anism. The basic structure of our net remained the same

as it is shown in Figure 5. We just reversed the translator

model to model synthesis, i.e. we replaced CNNs and tok-

enization layer with a layer that performs word embedding

and we replaced softmax activation function in the output

layer of the decoder with a linear function. In our task, the

sota translator faces these cardinal issues: the corpus con-

tains a relatively small amount of data, videos are not seg-

mented and most videos contain several sentences, and –

unlike words in a text – each sign in a video takes a random

amount of time. These issues probably make the errors of

the encoder-decoder approach much higher than the errors

of our more robust approach.

To make an ablative study, we firstly remove all dispens-

able parts. The first set of experiments was done without

any translation. Input text was ordinary word-level features

in one-hot coding. In the first experiment, we exclude CNN

smoothing (block B in Figure 3) and do not include any ad-
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ditional information, i.e. speaker’s ID and day ID (block A

in Figure 3). We investigated proposed non-monotonic soft

attention, DTW-based hard monotonic attention and their

combination. The benefit of CNN smoothing is investigated

in the second experiment. The benefit of the additional in-

formation is investigated in the third experiment. The re-

sults show that the non-monotonic soft attention is not ben-

eficial when it is used alone but it is significantly beneficial

when it is combined with the DTW. In the next set of ex-

periments, we, therefore, investigated only the DTW and

the combination. The CNN smoothing and using additional

information were significantly beneficial too and we used

both in all next experiments. The lowest obtained error for

the test set was 12.21.

To find out the limitations of the presented NN-based im-

plicit translators, we designed a network that computes ora-

cle annotations from target sequences. An oracle annotation

is a result of a combination of two bottleneck techniques.

The first one is a features bottleneck that reduces the di-

mension from 98 to 16. The second one is a time bottleneck

that selects each 14th member of a sequence. To make the

oracle annotations similar to the written text, we used the

standard K-means where K equals to the number of unique

words. An oracle synthesizer uses the oracle annotations.

Its structure is shown in Figure 3 (c) and the results are in

Table 1. The oracle sequences are representing sign lan-

guage without any visible distortion. Some errors seem to

be even corrections of pose estimation failure.

Table 1. MSE for proposed SL synthesis systems.

System Criterion Dev. Test Test

Encoder-decoder N/A 15.75 15.19

No imp. trans., Non-mono 14.91 14.34

no smoothing, DTW 14.52 13.99

no add. inf. Comb. 14.51 14.05

No imp. trans., Non-mono. 14.11 13.45

smoothing, DTW 13.74 13.06

no add. inf. Comb. 13.50 12.78

No imp. trans., Non-mono. 13.65 12.92

smoothing, DTW 13.09 12.34

add. inf. Comb. 12.96 12.21

Oracle DTW 10.74 10.34

FF tr., N=4 DTW 12.70 11.93

FF tr., N=1 Comb. 12.51 11.72

RNN tr., N=4 DTW 12.73 11.98

RNN tr., N=4 Comb. 12.56 11.79

CLF, FF tr., N=1 DTW 12.77 12.07

CLF, FF tr., N=1 Comb. 12.64 11.94

CLF, RNN tr., N=1 DTW 13.28 12.59

CLF, RNN tr., N=1 Comb. 13.04 12.31

In the second set of experiments, an advantage of the

proposed implicit translation is investigated. At first, feed-

forward translation (noted as FF tr.) was investigated. We

tried number of modules N = 1, . . . , 4. After that, the pro-

posed RNN-based translation (noted as RNN tr.) with bidi-

rectional GRU was investigated. One can see that results for

the feed-forward and the RNN translators are close. Nev-

ertheless, feed-forward translator lowers error more. Fur-

thermore, feed-forward translations trains and works much

faster. The lowest obtained error for the test set was 11.72
(previous lowest error is 12.21).

The feed-forward and RNN translator were used in the

last set of experiments. In these experiments, word-level

features were replaced by character-level features (noted as

CLF). The RNNs applied to character-level features have to

process a much wider context. The feed-forward transla-

tors operate on a fixed sufficiently long context. The lowest

obtained error for the test set was 11.94 that is increasing

in comparison with the previous lowest error 11.72. The

character-level features do not lead to faster computation in

this case due to used translator which have to process ap-

proximately seven times longer sequences now. But, this

approach could be more beneficial in the case of a corpus

with a larger vocabulary.

8. Conclusion and Future Work

We presented our newly developed Czech SL synthesis

that is a system that does not rely on any explicit SL trans-

lation neither in a training nor production process. We de-

scribed a method for correcting skeleton poses and for in-

terpolating missing skeletons parts. We present a special

layer that allows producing a sequence of skeletons with-

out any recurrent mechanism and could be used in machine

learning. We designed a special feed-forward translator that

could be trained simultaneously with our SL producer and

that is suitable for a small corpus. We combined DTW and

soft non-monotonic attention and investigated that this com-

bination is beneficial. We also compared the word-level and

the character-level features.

In our future work, we will utilize the whole Czech news

in CSE and create several times larger corpus. We also plan

to model facial expressions that convey crucial information

in SL.
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