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Abstract

Rotating and zooming cameras, also called PTZ (Pan-

Tilt-Zoom) cameras, are widely used in modern surveil-

lance systems. While their zooming ability allows acquir-

ing detailed images of the scene, it also makes their cali-

bration more challenging since any zooming action results

in a modification of their intrinsic parameters. Therefore,

such camera calibration has to be computed online; this

process is called self-calibration. In this paper, given an

image pair captured by a PTZ camera, we propose a deep

learning based approach to automatically estimate the focal

length and distortion parameters of both images as well as

the rotation angles between them. The proposed approach

relies on a dual-Siamese structure, imposing bidirectional

constraints. The proposed network is trained on a large-

scale dataset automatically generated from a set of panora-

mas. Empirically, we demonstrate that our proposed ap-

proach achieves competitive performance with respect to

both deep learning based and traditional state-of-the art

methods. Our code and model will be publicly available

at https://github.com/ChaoningZhang/DeepPTZ.

1. Introduction

PTZ cameras are free to rotate and zoom to obtain high-

quality images of a particular region of interest [1, 22]. This

type of camera is used in surveillance systems, as well as for

other purposes such as panorama creation or robotics appli-

cations [18, 22, 30]. To facilitate their use in these appli-

cations, accurately estimating their orientation and intrinsic

parameters is highly desirable [18, 22]. If the camera has

fixed intrinsic parameters (Pan-Tilt camera), off-line cali-

bration methods with calibration objects [32] are adopted

to provide an accurate estimation of the sensor’s geometry.

However, off-line calibration methods are hardly applicable

for a PTZ camera since its intrinsic parameters (i.e. focal

length and distortion) can constantly change through zoom-

ing [1]. Therefore, automatically estimating these parame-

ters online is critical [12]. This process is known as camera

self-calibration [1, 22].

Inspired by the success of deep learning in related ge-

ometric tasks, such as optical flow [16] and homography

estimation [10], we propose to adopt convolutional neu-

ral networks (CNNs) for predicting both the intrinsic and

extrinsic parameters of a PTZ camera from a pair of im-

ages. An extensive body of traditional methods exist for

PTZ camera self-calibration [14, 7, 1]. Traditional tech-

niques rely on robust feature matching between successive

images [14, 7]. While these traditional approaches are ef-

fective, they rely on strong assumptions such as distortion

free images [7, 1], similar intrinsic parameters for the two

images [5], or the intrinsic parameters of one image being

known from the previous calibration [26]. Our proposed

deep learning based approach can achieve competitive per-

formance without these assumptions. In contrast to existing

techniques, we propose to estimate the focal length and dis-

tortion parameters of both images in the input pair as well

as the rotation angle between them. To our best knowl-

edge, no existing work solves this particular problem (i.e.,

varying focal lengths plus varying distortion parameters be-

tween both views in the context of a PTZ camera).

Recently CNN based camera calibration has been ex-

plored in previous works [3, 15], which estimate camera

parameters from a single image. While CNN-based sin-

gle image calibration is practically interesting, its accu-

racy is lower compared with traditional calibration meth-

ods [3]. In contrast, our approach reaches a better level of

accuracy by using geometrical constraints (explicit feature

matching) existing between two successive views acquired

by a PTZ camera. Our method relies on an architecture

called Dual-Siamese Network (DSNet), imposing bidirec-

tional geometric constraint. To train our network, similar

to previous deep learning based (single image) camera cali-
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bration works [3, 15], we leverage panoramic images avail-

able online to generate a large number of synthetic pairs of

views with various inter-camera rotation angles and intrin-

sic parameters.

The contributions of our work include: (1) To our best

knowledge, this work is the first attempt to apply deep learn-

ing to the problem of PTZ camera calibration. (2) From

an image pair, we jointly estimate the focal length and the

distortion parameters of both images, which has not yet

been introduced for the case of PTZ camera self-calibration.

(3) We propose DSNet, imposing bidirectional geometric

constraint, which achieves competitive performance with

state-of-the-art methods. Moreover, our code and generated

dataset will be publicly available to facilitate future research

for applying deep learning to PTZ camera calibration.

2. Related works

Our proposed approach is inspired by both traditional

and CNN based techniques. In this section, we summarize

related works with respect to these two methods.

2.1. Traditional approaches for PTZ camera cali­
bration

The self-calibration of zooming and rotating cameras has

attracted lots of attention in the past decades. The pioneer-

ing work [14] focused on the automatic calibration of Pan-

Tilt (no zooming) cameras. The homography between two

successive images is computed in order to linearly estimate

the Dual Image of the Absolute Conic (DIAC) from which

the intrinsic parameters can be extracted via a Cholesky de-

composition [14]. This method presents the advantage that

multiple DIACs can be utilized together for the estimation

of the camera’s parameters, assuming they remain constant

over the sequence. However, this approach is inapplicable

for PTZ cameras where the intrinsic parameters can change

for every new image. To cope with this limitation, Agapito

et al. [1] propose a reformulation of the problem using the

Image of the Absolute Conic (IAC). This novel formulation

allows to introduce new linear constraints on the elements

of the IAC (i.e. unit pixel aspect ratio, zero skew) and, in

turn, permits to estimate the varying intrinsic parameters of

the sensor. As an extension, later works [22, 19] propose

a more robust optimization scheme based on linear matrix

inequalities. Nevertheless, these techniques still rely on the

strong assumption that the images are not affected by any

geometrical distortion, which is rarely true in practice for

PTZ cameras. To deal with the particular case of distortion,

Byrod et al. [5] take advantage of the division distortion

model [11] to map the radial distortion of the lens. Us-

ing this model, they propose a Gröbner basis based mini-

mal solver requiring 3 correspondence points between two

images to estimate the focal length and the distortion pa-

rameter. While taking the radial distortion into consider-

ation undeniably improves the range of application of the

approach, it assumes the intrinsic parameters to be the same

for the image pair. To deal with varying distortion and focal

length, Galego et al. [12] propose to track these parameters

across zoom levels assuming one of the image in the pair

has been already calibrated. While this approach is prac-

tical, it requires prior information about one image in the

pair, which implies that more than two images are needed

in the first place. In contrast, we propose a novel approach

to estimate the distortion parameters and focal lengths from

a single pair of images without any prior computation. Our

technique is able to perform this estimation even when the

intrinsic parameters (i.e. distortion parameters and the focal

lengths) are different for the two views.

2.2. CNN approaches for camera calibration

The recent development of deep learning for computer

vision tasks represents a good alternative to solve the prob-

lem of self-calibration. Existing approaches mostly fo-

cus on the particular case of single image self-calibration.

DeepFocal [29] is the first work attempting to tackle this

problem by training a CNN on a Structure-From-Motion

dataset. While this seminal work demonstrates the feasibil-

ity of the technique, its generalization and accuracy remain

problematic due to the limited number of training samples.

As an extension, Hold-Geoffroy et al. [15] propose to esti-

mate together the focal length and the horizon line from a

single view. This joint estimation results in a significant im-

provement of the prediction accuracy, which is also partially

due to the large quantity of synthetic training images, gen-

erated from panoramic images [31]. More recently, Deep-

Calib [3] includes the distortion parameter in the single im-

age self-calibration problem by generating distorted images

using the unified projection model [2]. The above methods

only consider a single input image, which makes them ver-

satile but also less robust than multi-view based techniques.

In this paper, we explore the first deep learning based multi-

view PTZ camera calibration approach.

While this particular configuration has never been ad-

dressed using CNN, deep learning has already been ap-

plied to related geometric regression tasks, such as optical

flow [9, 27], stereo matching [20], fundamental matrix esti-

mation [23], and homography estimation [8]. For the tasks

involving dense correspondence regression, the encoder-

decoder style network is often adopted [9, 27, 6]. While

for parametric model estimation, such as homography, the

VGG style network or other similar backbone structures are

often employed [8]. Pioneering works, attempting to solve

geometric regression problems through deep learning archi-

tectures, stack the two images as the input [9, 8]; whereas

more recent works demonstrate that the performance can be

improved by processing the two images separately first via a

Siamese network and then combining the two correspond-
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ing embeddings through correlation [27, 6]. Thus, in our

work we adopt the later treatment as our baseline approach.

3. PTZ camera model with radial distortion

Our work relies on a widely adopted assumption that the

PTZ camera performs a purely rotational motion between

two successive images I1 and I2, this rotation is represented

as a 3 × 3 orthogonal rotation matrix R12. While this con-

straint is practically impossible to enforce in a real vision

system, this is a common and realistic assumption for PTZ

cameras [22]. Under this assumption, the projection of a

3D point P = (X Y Z)T into both image planes at the

pixel location pj = (xj , yj , 1)
T can be written p1 ∼ K1P

for the first image (referential) and p2 ∼ K2R12P for the

second one, where Kj is the 3 × 3 intrinsic matrix (of the

jth image) mapping the perspective projection of a 3D point

onto the image plane. The matrix Kj encapsulates the focal

length fj , the principal point location cj = (uj , vj)
T , the

pixel aspect ratio λj , and the skew parameter sj .

The above camera model does not take distortion into

account. To include this parameter, we follow the pa-

rameterization utilized in [3], namely the unified spheri-

cal model [21]. This parameterization maps the radial dis-

tortion of the image via a double projection on a Gaus-

sian sphere with a single distortion parameter noted ξj .

For further details concerning this parameterization, refer

to [3, 21].

4. Proposed approach

In this section, we first formulate the problem we tar-

get to tackle and then propose deep learning based network

for solving it. To enable the training of such a network, a

large number of image pairs and their corresponding ground

truth parameters are needed. The process of generating such

datasets from panoramas will also be illustrated.

4.1. Problem formulation

In this paper, we propose a deep learning based approach

to self-calibrate a PTZ camera including both the intrinsic

parameters and the rotation between the two images. The

techniques introduced in Sec. 2 rely on different constraints

on the parameters of a camera. Similarly, to simplify the

calibration problem, we enforce a certain number of com-

monly admitted assumptions [1]: the principal point is lo-

cated at the center of the image, the skew is equal to zero

and the aspect ratio λ = 1, leaving only four intrinsic pa-

rameters to be estimated (per image pair): the focal lengths

f1 and f2 and the distortions ξ1 and ξ2. Additionally, we

predict the Tait–Bryan angles y12, p12 and r12 (yaw, pitch,

roll) as the rotation parameters between the two images I1
and I2. To perform self-calibration of a PTZ camera, we

propose two different architectures: (single) Siamese net-

work and dual-Siamese network (DSNet).

4.2. Single Siamese network

In this work we adopt the widely used Siamese CNN

as the baseline for predicting the camera parameters. The

Siamese network was first proposed in [4] for signature ver-

ification. It has shown compelling performance in a wide

range of vision applications, such as optical flow [9, 27]

and stereo matching [6]. The philosophy of the Siamese

CNN is to use the same weight to process two images to

obtain the corresponding features. For our application, the

single Siamese network is rather straightforward (see Fig-

ure 1(a)), two weight-sharing CNNs are utilized to ex-

tract the features (equivalent to the role of feature descrip-

tor) from the two images separately. These features are

then combined (via correlation or concatenation, see anal-

ysis Sec. 5.1), in order to regress the camera’s parameters

θ̂f = {r12, p12, y12, f1, f2, ξ1, ξ2} through the regression

CNN. It is worth noting that the features extraction and

the regression networks are fundamentally different even if

both of them adopt CNN blocks. To construct the two CNN

blocks, we choose Inception-v3 [28], which delivers com-

pelling performance with fewer parameters than the VGG

style networks. More specifically, we divide the Inception-

v3 model into two parts. The convolutional layers before

(and including) the feature resolution of 35 × 35 are used

for feature extraction, while the remaining part is used for

the regression network. The last fully connected layer (with

1000 heads as the output for ImageNet classification) is re-

placed with seven separate heads for our task.

Interestingly, this architecture follows the traditional

self-calibration pipeline in three steps: (1) feature extraction

(Siamese network encoder), (2) feature matching (correla-

tion), and (3) parameter estimation (regression network).

4.3. Dual Siamese network

From the perspective of geometric understanding, the

network predicts a set of parameters that map the correspon-

dence between I1 and I2. It is interesting to note that this

geometric correspondence is bidirectional: forward match-

ing (from I1 to I2) and backward matching (from I2 to I1).

We conjecture that imposing this bidirectional constraint is

beneficial for improving the network performance.

To leverage the benefit of the bidirectional geometric

constraint, we flip the order of the two images and to per-

form a second forward pass within the same network. This

process is depicted in Figure 1(b). Note that there is redun-

dant computation performed for feature extraction, which

can be mitigated by switching the extracted features in-

stead of flipping the images. To distinguish from the single

Siamese network, we term this architecture dual-Siamese

network (DSNet).
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(a)

(b)

Figure 1. (a) Proposed (Single) Siamese Network, (b) Proposed

DSNet.

This structure outputs two sets of parameters, re-

spectively θ̂f for the forward estimation and θ̂b =
{r21, p21, y21, f

′

2
, f ′

1
, ξ′

2
, ξ′

1
} for its backward counterpart.

With both forward and backward estimation outputs, the

bidirectional constrained can be enforced by minimizing the

error with their corresponding ground-truth values. In both

single Siamese network and DSNet, we employ correlation

to combine the extracted features. The correlation tech-

nique was first introduced in [9] and has then been widely

used in deep learning based geometric works [16, 6, 27]. In

those works, the correlation search region is limited to the

neighbourhood of the corresponding feature. This strategy

is effective for predicting optical flow since the pixel dis-

placement is usually assumed to be relatively small [9, 16]

and multi-scale correlation can also be used [6, 27]. For

PTZ camera calibration, the displacement can be quite

large, thus it is reasonable to search either with a large

neighborhood or globally. Since the correlation is single-

scale in our work and operated with the resolution of 35 ×
35, it is not computationally heavy to conduct global corre-

lation, we choose to adopt global search region. For more

details on the correlation techniques, refer to [16].

Compared with single Siamese network, the proposed

DSNet has the advantage to explicitly enforce the bidirec-

tional constraint. Note that DSNet has exactly the same

number of parameters as single Siamese regression struc-

ture. During the test stage, we can leverage another advan-

tage of the proposed DSNet, which is to do an average of

the forward and backward outputs (e.g., taking the average

of f1 and f ′

1
as the prediction of the I1 focal length). This

averaging operation is similar to the philosophy of model

ensembling. However, traditional model ensembling re-

quires extra independent model(s), implying extra param-

eters, whereas our proposed DSNet can achieve the ensem-

bling effect with only one independent model.

4.4. Dataset generation

There is no publicly available large-scale dataset for

training a DNN to perform PTZ camera calibration and

evaluating its performance. To overcome this obstacle,

panoramas have been used by [3, 15] for automatically gen-

erating large-scale datasets to train and evaluate their pro-

posed approaches. Following [3, 15], we choose publicly

available SUN360 database [31] to generate the dataset in

this work. Contrary to [15], which exclusively considers a

pure pinhole camera model, our work takes distortion into

account and follows the parameterization described in [3].

The generation of an image from an input panorama in-

volves two steps. First, the panorama is projected onto a

unit sphere; second, a distorted image is generated given

a focal length and a distortion parameter [2]. Contrary

to [3, 15] which estimate the parameters from a single im-

age, our method requires image pairs with sufficient over-

lapping. To guarantee sufficient overlapping between suc-

cessive images, we enforce the inter-camera rotation to be

comprised between ±15◦ for each rotation angle (i.e., roll,

pitch, and yaw). Similarly, the focal length is randomly gen-

erated in a range between 50 to 500 pixels with an extra

constraint that the difference between the two focal lengths

is within ±50 pixels. Accordingly, the distortion parame-

ter ξ is limited from 0 to 1 with an extra constraint that the

difference between the two distortion parameters is within

±0.1.

It is important to notice that while a PTZ camera me-

chanically admits two degrees of freedom, the relative rota-

tion between two successive images cannot always be mod-

elled by only two rotation parameters (if no other prior in-

formation is given). As a practical illustration, if a PTZ

camera installed to the ceiling of a room is oriented down-

ward, any pan rotation of the camera will lead to a pure

roll rotation (rotation around the optical axis of the camera)

between successive images. For this reason, a very large

number of works assume a rotation matrix with 3 degrees

of freedom for PTZ camera calibration [1, 22, 14].

One of the main obstacles in applying deep learning to

PTZ camera applications is the lack of publicly available

dataset. To our best knowledge, our generated dataset is the

first large-scale dataset that can be used for training a DNN

to perform PTZ camera calibration. To improve research

reproducibility and facilitate future research, we will make

our code used for generating dataset publicly available.
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Model y12 (degree) p12 (degree) r12 (degree) f1(pixel) ξ1

DSNet-corre 0.374 0.377 0.172 12.889 (11.432) 0.085(0.076)

Siamese-corre 0.510 0.520 0.241 17.110 0.112

DSNet-concat 0.568 0.558 0.354 20.449 (19.308) 0.114(0.107)

Siamese-concat 0.752 0.748 0.564 27.284 0.138

Table 1. Performance comparison for different models. The number inside ’()’ is the average value of forward and backward predictions.

Model y12 (degree) p12 (degree) r12 (degree) f1(pixel) ξ1

DSNet 0.374 0.377 0.172 12.889 (11.432) 0.085(0.076)

DeepCalib[3] N/A N/A N/A 41.734 0.179

DeepHomo[8] 2.516 3.762 2.224 53.797 0.196

DeepHomo-DS 1.386 1.457 1.146 39.216 0.174

Table 2. Comparison to different CNN based approaches. The number inside ’()’ is the average value of forward and backward predictions.

Figure 2. Comparison to 3-point [5] method when images have

distortion.

Figure 3. Comparison to Agapito [1] method when images have

no distortion.

5. Results and discussion

The experimental results are presented in this section.

Our network is trained such that it minimizes the L1-smooth

loss [13, 24] between the ground-truth value and the re-

gressed parameters. Since the outputs have different scales,

we empirically found that shifting the values to zero average

and then multiplying the cost for the focal length and dis-

tortion by a factor of 0.1 and 10 respectively achieves better

performance. The model is trained on a single GPU with the

batch size of 32. We adopt the Adam optimizer [17] with an

initial learning rate set to 0.001, which is divided by 2 every

5 epochs. We stop the training after 30 epochs when the

convergence is observed. We generate 10 image pairs from

each indoor panorama in SUN360 panorama database, re-

sulting in a total of 128,000 image pairs, 108,000 for train-

ing, 6000 for validation and 6000 for test. Following [3, 15],

each panorama is exclusively used for training, validation or

test. The image size is 299× 299 pixels [28].

5.1. Model ablation study and analysis

Our DSNet outputs two sets of parameters θ̂f and θ̂b as

illustrated in Figure 1(b). For clarity, we only report θ̂f .

The average error obtained on our test dataset (6000 im-

age pairs) generated from panoramas is shown in Table 1.

This comparative analysis shows that correlation is better

than concatenation for combining features extracted from

the two input images. Thus in the remaining of the pa-

per, the DSNet always adopts correlation for combining

features. Moreover, it can be concluded from Table 1 that

DSNet significantly outperforms the (single) Siamese net-

work. During the test, averaging the two outputs of the net-

work can further decrease the error of f1 and ξ1 by more

than 10%.

5.2. Comparison to CNN based approaches

To our best knowledge, our work is the first CNN based

approach dedicated to general PTZ camera calibration us-

ing image pairs as the input. Therefore, we first compare

our results with existing CNN based single image camera

calibration methods. Previous work [15] jointly performs

horizon estimation and camera calibration, excluding the

distortion. However, the focal length can be compared with

our approach. The average error for the vertical field of

view reported in [15] is about 4◦ while our method admits

an average error of around 1.4◦. We conclude that our pro-

posed network outperforms [15] by a large margin. Note

that the datasets are generated in a similar way, it is a fair

comparison even they are not evaluated on the exact same

test dataset. We further propose another comparison against

DeepCalib [3]. We utilize their pre-trained model available
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Test

Training Indoor

y12 / p12 / r12 / f1 / ξ1

Outdoor

y12 / p12 / r12 / f1 / ξ1

Indoor 0.374/ 0.377/ 0.172/ 11.431/ 0.076 0.417/ 0.450/ 0.200/ 12.974/ 0.086

Outdoor 0.417/ 0.428/ 0.192/ 12.974/ 0.086 0.407/ 0.443/ 0.183/ 13.049/ 0.085

Table 3. Indoor and outdoor cross test results.

Figure 4. Box-percentile results for yaw angle, roll angle, focal length and distortion.

online1 and evaluate it on the same test dataset. The results

are available in Table 2. Note that the DeepCalib model is

trained with millions of images generated in the same way

while our model is trained with only 108,000 image pairs.

Despite this large difference in terms of training samples,

our method outperforms DeepCalib significantly. This per-

formance gap can be explained by the fact that multi-views

provide more constraints for an accurate estimation of the

camera’s parameters. We further compare our proposed ap-

proaches with similar CNN architectures used for homog-

raphy estimation [8] (called DeepHomo). We adapt their

network into our task through changing the final fully con-

nected layer to have seven outputs (rotation angles, distor-

tions and focal lengths). We train it with our training dataset

and evaluate it on the same test dataset and the results are

also available in Table 2.

Additionally, we propose to apply our dual Siamese

structure on DeepHomo, which we call DeepHomo-DS.

The first four convolutional layers are used for feature ex-

traction and the remaining 4 convolutional layers are used

for parameter regression. We note that DeepHomo-DS out-

performs DeepHomo with a large margin, which is consis-

tent with the result in Table 1. However, DSNet still out-

performs DeepHomo-DS significantly, which empirically

shows that the choice of the backbone structure is one im-

portant factor that influences the performance.

Overall, our propose DSNet achieves competitive per-

formance and it is an appropriate CNN architecture for per-

forming PTZ camera calibration.

5.3. Comparison to traditional calibration methods

To the best of our knowledge, as discussed in section

2.1, no existing traditional PTZ self-calibration method can

estimate the focal lengths and the distortion parameters of

both images when the two images have different unknown

1http://vcail.kaist.ac.kr/projects/DeepCalib

intrinsic parameters (focal lengths and distortions). Thus, to

enable comparison, we intentionally decrease the complex-

ity of the task by either assuming the two images contain

distortion but have similar intrinsic parameters or assuming

different intrinsic parameters without distortion. We gener-

ate two new test sets based on the above assumptions. In this

way, we can compare our approach with the 3-point method

assuming the two images having the same intrinsic parame-

ters [5] and the Agapito method assuming different intrinsic

parameters but without distortion [1]. As a fair comparison

metric, we choose cumulative percentage of error instead

of the mean average error because the results of traditional

methods contain some extreme outliers.

First, we compare our proposed method with the 3-point

method [5], see results in Figure 2. For simplicity we

choose to compare the yaw angle (as the representative of

the three rotation angles) and the focal length. We do not re-

port distortion comparison because their method uses a divi-

sion distortion model different from our spherical distortion

model. The comparison shows that our method achieves

significantly better performance. We further compare our

method with Agapito method [1], see results in Figure 3. It

shows that our method achieves better performance for fo-

cal length but worse performance for the yaw angle. Note

that the Agapito method can only be applied to PTZ camera

without distortion. For the purpose of ablation study, we can

make the same assumption for DSNet. We report the per-

formance of another model trained specifically with image

pairs with no distortion, indicated as DSNet-NoDistortion

as shown in Figure 3. The DSNet-NoDistortion model

achieves similar performance as Agapito method for the

yaw angle and significantly better performance for the fo-

cal length. Overall, we note that the distortion estimation

is a challenging issue for both DSNet and traditional meth-

ods. Traditional methods can achieve comparable perfor-

mance as DSNet when the assumption is made that there is
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Figure 5. Comparison of (a) original image 1 and (b) undistorted image 1; (c) original image 2 and (d) undistorted image 2.

Figure 6. Three representative results of panoramic image stitching by our estimated camera parameters.

no distortion. However, for more challenging scenarios tak-

ing distortion into account, DSNet outperforms traditional

methods by a large margin.

5.4. Statistical analysis

Section 5.1 presents the average error of the predicted

values without any statistical insight of the results. Here

in Figure 4, we thus use box-percentile to provide statistical

prediction performance at different ranges. Since we find

that yaw and pitch follow the same tendency, only the re-

sults for yaw angle is provided as reference. We observe

a performance decrease with an increase of yaw angle or

the focal length. The reason lies in that our approach de-

pends on the correspondences between the two input im-

ages. The increase of the yaw angle or the focal length will

decrease the overlapping area, which negatively affect the

performance of the network. The roll angle has very lim-

ited influence on the overlapping area, thus the performance

tends to be similar in the whole range. Finally, the distor-

tion error difference along the whole chosen range is also

relatively low and stable.

5.5. Generalization capability

In order to evaluate the generalization capability of our

approach, we perform a cross test over indoor and out-

door datasets. To conduct this evaluation, we train our net-

work using exclusively indoor data or outdoor data and test

the resulting trained networks on both indoor and outdoor

datasets (see Table 3). We note that the indoor network

shows sensitively better results than its outdoor counterpart

when the networks are tested on the same type of data as

they have been trained with. In the outdoor dataset many

images contain large area of textureless sky, which can be

the cause for this performance degradation. We also notice

that the model trained on the indoor dataset performs sim-

ilarly as being trained on the outdoor dataset when tested

on the same outdoor dataset. Overall, the performance gap

among all the four scenarios is not significantly different,

indicating a satisfying generalization capability of our pro-

posed approach. The underlying reason might be that the

correlation module in the proposed model mainly depends

on correspondence matching not the content/feature itself.

5.6. Applications: Undistortion and image stitching

To provide a qualitative evaluation, we apply our method

to two tasks whose visual quality is directly influenced by

the accuracy of the camera’s parameters: image undistor-

tion and image stitching. A representative result of our

method for image undistortion is shown in Figure 5. The

corresponding error values of the predicted f1, ξ1, f2, ξ2 are

12.1, 0.10 , 9.7 and 0.08, respectively. We can notice that

our undistortion is visually pleasing and properly straight-
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ens the lines in the image.

A sequence of images with varying orientations but

taken from one fixed point in space can be mapped into a

common reference frame to create a perfectly aligned larger

photograph with a wider field of view. Such a task is nor-

mally called image stitching [25], which can be fulfilled

with the predicted camera parameters. We show three repre-

sentative examples of image stitching containing five con-

secutive images in Figure 6. The averages error of the 5

predicted focal lengths and distortion parameters for Fig-

ure 6 (a) are 10.906 and 0.093 respectively. For Figure 6

(b) they are 3.96 and 0.052 respectively. For Figure 6 (c)

they are 9.693 and 0.046 respectively. Some small stitching

inconsistency can still be observed in Figure 6 (a) and (c).

6. Conclusions

We have presented the first deep learning based approach

for PTZ camera calibration using image pairs as the input.

We have targeted to estimate the focal length and distor-

tion parameters of both images and the rotation between

them. For the network design, we have explored two vari-

ants of Siamese networks and our DSNet by imposing bidi-

rectional constraints improves the performance by a large

margin compared with single Siamese network. The com-

parison result shows that our proposed approach achieves

competitive performance with respect to traditional meth-

ods. Our proposed approach is also shown to have good

dataset generalization through indoor and outdoor datasets

cross test. Our method can be applied to image undistortion

and panoramic image stitching. An interesting direction for

future research would be the integration of a larger number

of images in the self-calibration process.
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for panoramic stitching with radial distortion. In BMVC,

2009.

[6] J.-R. Chang and Y.-S. Chen. Pyramid stereo matching net-

work. In CVPR, 2018.

[7] L. De Agapito, R. I. Hartley, and E. Hayman. Linear self-

calibration of a rotating and zooming camera. In CVPR,

1999.

[8] D. DeTone, T. Malisiewicz, and A. Rabinovich. Deep image

homography estimation. arXiv preprint arXiv:1606.03798,

2016.

[9] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas,

V. Golkov, P. Van Der Smagt, D. Cremers, and T. Brox.

FlowNet: Learning optical flow with convolutional net-

works. In ICCV, 2015.

[10] F. Erlik Nowruzi, R. Laganiere, and N. Japkowicz. Homog-

raphy estimation from image pairs with hierarchical convo-

lutional networks. In ICCV, 2017.

[11] A. W. Fitzgibbon. Simultaneous linear estimation of multiple

view geometry and lens distortion. In CVPR, 2001.

[12] R. Galego, A. Bernardino, and J. Gaspar. Auto-calibration

of pan-tilt cameras including radial distortion and zoom. In

ISVC, 2012.

[13] R. Girshick. Fast R-CNN. In ICCV, 2015.

[14] R. I. Hartley. Self-calibration from multiple views with a

rotating camera. In ECCV, 1994.

[15] Y. Hold-Geoffroy, K. Sunkavalli, J. Eisenmann, M. Fisher,

E. Gambaretto, S. Hadap, and J.-F. Lalonde. A perceptual

measure for deep single image camera calibration. In CVPR,

2018.

[16] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and

T. Brox. FlowNet 2.0: Evolution of optical flow estimation

with deep networks. In CVPR, 2017.

[17] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[18] M. Lalonde, S. Foucher, L. Gagnon, E. Pronovost,

M. Derenne, and A. Janelle. A system to automatically track

humans and vehicles with a PTZ camera. In Visual Informa-

tion Processing XVI, volume 6575, page 657502, 2007.

[19] H. Li and C. Shen. An LMI approach for reliable PTZ cam-

era self-calibration. In AVSS, 2006.

[20] W. Luo, A. G. Schwing, and R. Urtasun. Efficient deep learn-

ing for stereo matching. In CVPR, 2016.

[21] C. Mei and P. Rives. Single view point omnidirectional cam-

era calibration from planar grids. In ICRA, 2007.

[22] F. Rameau, A. Habed, C. Demonceaux, D. Sidibé, and
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