
Self-Orthogonality Module:

A Network Architecture Plug-in for Learning Orthogonal Filters

Ziming Zhang∗†

Worcester Polytechnic Institute, MA
zzhang15@wpi.edu

Wenchi Ma∗ Yuanwei Wu Guanghui Wang ‡

University of Kansas, KS
{wenchima, y262w558, ghwang}@ku.edu

Abstract

In this paper, we investigate the empirical impact of or-

thogonality regularization (OR) in deep learning, either solo

or collaboratively. Recent works on OR showed some promis-

ing results on the accuracy. In our ablation study, however,

we do not observe such significant improvement from exist-

ing OR techniques compared with the conventional training

based on weight decay, dropout, and batch normalization.

To identify the real gain from OR, inspired by the locality

sensitive hashing (LSH) in angle estimation, we propose to

introduce an implicit self-regularization into OR to push the

mean and variance of filter angles in a network towards

90◦ and 0◦ simultaneously to achieve (near) orthogonality

among the filters, without using any other explicit regular-

ization. Our regularization can be implemented as an archi-

tectural plug-in and integrated with an arbitrary network.

We reveal that OR helps stabilize the training process and

leads to faster convergence and better generalization.

1. Introduction

Nowadays deep learning has achieved the state-of-the-art
performance in computer vision and natural language pro-
cessing [9; 17; 42; 41; 36]. Regularization in deep learning
plays an important role in helping avoid bad solutions. Re-
searchers have made great effort on this topic from different
perspectives, such as data processing [8; 20; 5; 12], net-
work architectures [46; 16; 26; 27; 36], losses [30], regular-
izers [32; 48; 6; 28; 43], and optimization [7; 18; 33; 19; 49].
Please refer to [23] for a review.

To better understand the effects of regularization in deep
learning, our work in this paper is mainly motivated by the
following two basic yet important questions:

Q1. With the help of regularization, what structural prop-

∗Joint first authors for the paper.
†This work was done when the author was a researcher at Mitsubishi

Electric Research Laboratories (MERL).
‡The work was supported in part by USDA NIFA (2019- 67021-28996).

erties among the learned filters in hidden layers1 are

good deep models supposed to have?

To answer this question (partially), we try to explore the
angular properties among learned filters. We compute the
angles of all filter pairs at each hidden layer in different deep
models and plot these angular distributions in Fig. 1. To
generate each distribution, we first uniformly and randomly
draw a sample from the angle pool per hidden layer, and
average all the samples to generate a model-level angular
sample. We then repeat this procedure for 106 times, leading
to 106 samples based on which we compute a (normalized)
histogram as the angular distribution by quantization from 0◦

to 180◦, step by 0.1◦. All the 23 deep models [1] are properly
pretrained on different data sets with weight decay [13],
dropout [18], and batch normalization (BN) [20].

As shown in Fig. 1, all the angular distributions overlap
with each other heavily and behave similarly in Gaussian-like
shapes with centers near 90◦ with small variances. Intuitively
orthogonal filters are expected to best span the parameter
space, especially in the high dimensional spaces where the
filter dimensions are larger than the number of filters. Em-
pirically, however, with many noisy factors such as data
samples and stochastic training it may not be a good idea
to strictly preserve the filter orthogonality in deep learning.
In fact, the recent work in [24] has demonstrated that on
benchmark data sets, classification accuracy using orthogo-
nal filters (learned by PCA) is inferior to that using learned
filters by backpropagation (BP). Similarly another recent
work in [35] finds that hard constraints on orthogonality can
negatively affect the convergence speed and model perfor-
mance in training of recurrent neural networks (RNNs), but
soft orthogonality can improve the training.

In summary, the comparison on the angular distributions
of pretrained deep models in Fig. 1 reveal that deep learning
itself may have some internal mechanism to learn nearly or-
thogonal filters due to its high dimensional parameter spaces,
even without any external orthogonal regularization (OR).

1For simplicity, in the rest of the paper we refer to a convolutional or
FC layer as a hidden layer.

1050



85
o

90
o

95
o

Angle

0

10
P

e
rc

e
n

ta
g

e
 (

%
)

alexnet

densenet121

densenet161

densenet169

densenet201

inception-v3

resnet18

resnet34

resnet50

resnet101

resnet152

squeezenet1-0

squeezenet1-1

vgg11

vgg13

vgg16

vgg19

fast-rcnn-caffenet-pascal07-dagnn

fast-rcnn-vgg16-pascal07-dagnn

fast-rcnn-vggm1k-pascal07-dagnn

pascal-fcn16s-dag

pascal-fcn32s-dag

vgg-face

Figure 1: Illustration of the angular distributions of pretrained models with no OR.

Q2. What are the intrinsic benefits from learning orthogonal

filters in deep learning based on OR?

We notice that recently OR has been attracting more and
more attention [32; 47; 35; 19; 6; 24], some of which [32;
35; 19] have released their code. Interestingly, from their
code we find that the proposed OR is evaluated together with
other regularizers such as weight decay, dropout, and BN. We
argue that such experimental settings cannot help identify
how much OR contributes to the performance, compared
with other regularizers, especially as we observe that the
performances with or without OR are very close. Similar
argument has been addressed in [34] recently where the
author showed that ℓ2 regularization has no regularizing
effect when combined with batch or weight normalization,
but has an influence on the scale of weights, and thereby on
the effective learning rate.

In summary, it is unclear to us from existing works what
is the real gain from OR in deep learning.

Contributions: This paper aims to identify the real gain
from OR in training different deep models on different tasks.
To do so, we conduct comprehensive experiments on point
cloud classification. In contrast to previous works, we sepa-
rate OR from other regularization techniques to train the
same networks respectively. We observe that, however,
no significant improvement in accuracy occurs from exist-
ing OR techniques, statistically speaking, compared with
the conventional training algorithm based on weight decay,
dropout, and batch normalization. In fact, we find that,
even without any regularization, a workable deep model can
achieve the near orthogonality among learned filters, indicat-

ing that OR may not be necessarily useful in deep learning
to improve accuracy.

What we do observe is that sometimes the training sta-
bility using OR is improved, leading to faster convergence
in training and better accuracy at test time. We manage to
identify this by intentionally designing experiments in ex-
treme learning scenarios such as large learning rate, limited
training samples, and small batch sizes. Such observation,
however, is not strong overall. We conjecture that this is
mainly because existing OR techniques influence the deep
learning externally and cannot be integrated as a part of
network architectures internally.

To verify our conjecture, we propose a self-regularization

technique as a plug-in to the network architectures so that
they are able to learn (nearly) orthogonal filters even without
any other regularization. We borrow the idea from locality
sensitive hashing (LSH) [11] to approximately measure the
filter angles at each hidden layer using filter responses from
the network. We then push the statistics of such angles (i.e.

mean and variance) towards 90◦ and 0◦, respectively, as an
orthogonality regularizer. We demonstrate that our internal
self-regularization significantly improves the training stabil-
ity, leading to faster convergence and better generalization.

1.1. Related Work

As summarized in [23], there are many regularization
techniques in deep learning. For instance, weight decay is
essentially an ℓ2 regularizer over filters, dropout takes ran-
dom neurons for update, and BN utilizes the statistics from
mini-batches to normalize the features. Our work is more

1051



related to representation decorrelation and orthogonality reg-
ularizers in the literature.

Representation Decorrelation: Cogswell et al. [12]
proposed a regularizer, namely DeCov, to learn non-
redundant representations by minimizing the cross-
covariance of hidden activations. Similarly, Gu et al.

[14] proposed another regularizer, namely Ensemble-based
Decorrelation Method (EDM), by minimizing the covariance
between all base learners (i.e. hidden activations) during
training. Yadav and Agarwal [44] proposed to regularize the
training of RNNs by minimizing non-diagonal elements of
the correlation matrix computed over the hidden representa-
tion, leading to DeCov RNN loss and DeCov Ensemble loss.
Zhu et al. [50] proposed another decorrelation regularizer
based on Pearson correlation coefficient matrix working to-
gether with group LASSO to learn sparse neural networks.
However, none of the previous work can guarantee that the
learned filters are (nearly) orthogonal. Different from these
approaches working on hidden activation (representations)
by encouraging diverse or non-redundant representations, or
like dropout which directly works on neurons by random
screening, the proposed method essentially works on reg-
ularizing the filter parameters, specifically the weights, to
update filters towards orthogonality. It is data adaptive by
extracting weights’ activation for the regularizer so that the
update during training is data dependent.

Orthogonality Regularizers: Harandi and Fernando
[15] proposed a generalized BP algorithm to update filters
on the Riemannian manifolds as well as introducing a Stiefel
layer to learn orthogonal filters. Vorontsov et al. [35] ver-
ified the effect of learning orthogonal filters on RNN train-
ing that is conducted on the Stiefel manifolds. Huang et

al. [19] proposed an orthogonal weight normalization
algorithm based on optimization over multiple dependent
Stiefel manifolds (OMDSM). Xie et al. [39] proposed a
family of orthogonality-promoting regularizer by encour-
aging the Gram matrix of the functions in the reproducing
kernel Hilbert spaces (RKHS) to be close to an identity ma-
trix where the closeness is measured by Bregman matrix
divergences. Rodríguez et al. [32] proposed a regular-
izer called OrthoReg to enforce feature orthogonality locally
based on cosine similarities of filters. Bansal et al. [6]
proposed another two orthogonality regularizers based on
mutual coherence and restricted isometry property over fil-
ters, respectively, and evaluated their gain in training deep
models. Xie et al. [38] demonstrated that orthonormality
among filters helps alleviate the vanishing or exploring gra-
dient issue in training extremely deep networks. Jia et al.

[21] proposed the algorithms of Orthogonal Deep Neural
Networks (OrthDNNs) to connect with recent interest of
spectrally regularized deep learning methods.

Self-Regularization: Xu et al. [40] proposed a self-
regularized neural networks (SRNN) by arguing that the

sample-wise soft targets of a neural network may have poten-
tials to drag its own neural network out of its local optimum.
Martin & Mahoney [28] proposed interpreting deep neural
networks (DNN) from the perspective of random matrix the-
ory (RMT) by analyzing the weight matrices in DNN. They
claimed that empirical and theoretical results clearly indicate
that the DNN training process itself implicitly implements
a form of self-regularization, implicitly sculpting a more
regularized energy or penalty landscape.

Differently, we propose introducing self-regularization
into the design of OR for better understanding the truly
impact of OR in deep learning. In contrast to [28] we
discover the self-regularization in convolutional neural net-
works (CNNs) by considering their angular distributions
among learned filters in the context of OR. We propose a
novel efficient activation function to compute these angles.

2. Self-Regularization as Internal Orthogonal-

ity Regularizer

To better present our experimental results, let us first in-
troduce our self-regularization method. Recall that inspired
by the angular distributions of pretrained deep models, we
aim to learn deep models with mean and variance of their
angular distributions close to 90◦ and 0◦ as well. Intuitively

we could use θ = arccos
w

T

n
wn

‖wm‖‖wn‖
∈ [0, π] to directly

compute the angle between two filters wm and wn, where
(·)T denotes the matrix transpose operator, and ‖ · ‖ denotes
the ℓ2 norm of a vector. Empirically we observe similar be-
havior of this arccos based regularization to that of SRIP-v1
and SRIP-v2 (see Sec. 3 for more details). We argue that
all the existing orthogonality regularizers are designed data

independently, and thus lack of the ability of data adaptation
in regularization.

In contrast to the literature, we propose introducing im-
plicit self-regularization into OR to embed the regularizer
into the network architectures directly so that it can be up-
dated data dependently during training. To this end, we
actively seek for a means that can be used to estimate filter
angles based on input data. Only in this way we can naturally
incorporate self-regularization with network architectures.
Such requirement reminds us of the connection between
LSH and angle estimation, leading to the following claim:

Lemma 1 (ϑ-Space). Without loss of generality, let θ ∈
[0, π] be the angle between two vectors wm,wn ∈ R

d, and

X be the unit ball in the d-dimensional space. We then have

ϑ
def
= Ex∼X

[

sgn(xT
wm) sgn(xT

wn)
]

= 1−
2θ

π
, (1)

where E is the expectation operator, sample x is uniformly

sampled from X , sgn : R → {±1} is the sign function

returning 1 for positives, otherwise -1.

1052



Proof. In fact sgn(xT
w) defines a random hyperplane based

hash function for LSH [11]. Therefore,

Px∼X

[

sgn(xT
wm) = sgn(xT

wn)
]

= 1−
θ

π
=

1 + ϑ

2
,

(2)

which is equivalent to Eq. 1. We then complete our proof.

2.1. Formulation

Lemma 1 opens a door for us to estimate filter angles
(i.e. θ) using filter responses (i.e. x

T
w). Due to linear

transformation, both mean and variance in the θ-space, i.e.

90◦ and 0◦, are converted to 0 in the ϑ-space. Now based on
the statistical relation between mean and variance, we can
define our self-regularizer, Rϑ, as follows:

Rϑ
def
=

∑

i

λ1Eϑ∼Θi
(ϑ)2 + λ2Eϑ∼Θi

(ϑ2), (3)

where Θi, ∀i denotes the filter angle pool in the ϑ-space at
the i-th hidden layer, and λ1, λ2 ≥ 0 are two predefined con-
stants. Here we choose the least square loss for its simplicity,
and other proper loss functions can be employed as well.
In our experiments we choose λ1 = 100, λ2 = 1 by cross-
validation using grid search. We observe λ2 has much larger
impact than λ1 on performance, achieving similar accuracy
with λ1 ∈ [0, 1000] and λ2 ∈ [1, 10]. This makes sense as
the mean of an angular distribution in deep learning is close
to 90◦ anyway, but the variance should be small.

2.2. Implementation

Computing ϑ in Eq. 1 is challenging because of the
expectation over all possible samples in X . To approximate
ϑ, we introduce the notion of normalized approximate binary
activation as follows:

Definition 1 (Normalized Approximate Binary Activation2

(NABA)). Letting w ∈ R
d be a vector and X ∈ R

d×D be a

projection matrix, then we define an NABA vector, z ∈ R
D,

for w as

z =
tanh

(

γXT
w
)

‖ tanh(γXTw)‖
⇒ ϑ(wm,wn) ≈ z

T
mzn, ∀m 6= n

(4)

where tanh is an entry-wise function, and γ ≥ 0 is a scalar

so that limγ→+∞ tanh (γx) = sgn (x) , ∀x ∈ R as used

in [10].

Based on the consideration of accuracy and running speed,
in our experiments we set γ = 10, D = 16 for Eq. 4. Larger

2We tested different sign approximation functions such as softsign, and
observed that their performances are very close. Therefore, by referring to
[10] in this paper we utilize tanh only.

Conv
 (FC)

S-Net
Conv
 (FC)

S-Net
Conv
 (FC)

S-Net S-Net

tanh

L
2
 normalization

tanh

L
2
 normalization

tanh

L
2
 normalization

Self-Regularization

Θ
1

Θ
3

Θ
2

R
ϑ

Figure 2: An example of integration of our self-
regularization as a plug-in on a three hidden-layer DNN as
backbone for training. Here “S-Net” denotes a sub-network
consisting of non-hidden layers.

γ brings more difficulty in optimization, as demonstrated in
[10]. Larger D does approximate the expectation in Eq. 1
better, but has marginal effect on training loss and test accu-
racy, as well as leading to higher computational burden.

Implementing Eq. 4 using networks is simple, as illus-
trated in Fig. 2 where X denotes the input features to each
convolutional (conv) or fully-connected (FC) hidden layer
and w denotes the weights of a filter at the hidden layer.
We work on the activation of hidden layers and transform
feature outputs into a two-dimensional matrix of channel
numbers by the neuron dimension, the product of batch size,
and feature map’s weight and height in the convolution case.
Then we take samples along the neuron dimension. Accord-
ingly, z is a vector with the size of sampling number so
that the filter angle approximation is workable. Thus, both
FC and conv can follow the way of zTmzn. In this way, our
regularization can be easily integrated into an arbitrary net-
work seamlessly as a plug-in so that the network itself can
automatically regularize its weights internally and explicitly,
leading to self-regularization.

Compared with existing OR algorithms, our self-
regularization takes the advantage of the dependency be-
tween input features and filters so that the weights are learned
more specifically to better fit the data. From this perspective,
our self-regularization is similar to a family of batch normal-
ization algorithms. As a consequence, we may not need any
external regularization to help training.

3. Experiments

We study the impact of OR on deep learning using the
task of point cloud classification.

Learning Scenarios: In order to identify the gain of OR,
we intentionally design some extreme learning scenarios
where we only change one hyper-parameter from the default
setting while keeping the rest unchanged, listed as follows:
• Default Setting: Under this setting, we train each model

using the full training data set and then test it on the

1053



0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Epoch

V
al

u
e

Training Accuracy

 

 

Naive Training
Conventional Training
SRIP-v1+Naive Training
SRIP-v2+Naive Training
SRIP-v1+Conventional Training

SRIP-v2+Conventional Training
Ours+Naive Training
Ours+Conventional Training

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Epoch

V
al

u
e

Training Accuracy

 

 

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Epoch

V
al

u
e

Training Accuracy

 

 

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Epoch

V
al

u
e

Training Accuracy

 

 

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Epoch

V
al

u
e

Test Accuracy

 

 

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Epoch

V
al

u
e

Test Accuracy

 

 

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

Epoch

V
al

u
e

Test Accuracy

 

 

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Epoch

V
al

u
e

Test Accuracy

 

 

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Epoch

V
al

u
e

Test Accuracy Avg. Class

 

 

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

Epoch

V
al

u
e

Test Accuracy Avg. Class

 

 

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

Epoch
V

al
u
e

Test Accuracy Avg. Class

 

 

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

Epoch

V
al

u
e

Test Accuracy Avg. Class

 

 

Figure 3: Result comparison on ModelNet40: (left->right) default setting, lr = 0.01, ts = 440, and bs = 2.

0 25 5050
0.2

0.4

0.6

0.8

1

Epoch

V
a
lu

e

Training Accuracy

 

 

Naive Training
Conventional Training
SRIP−v1+Naive Training
SRIP−v1+Conventional Training
SRIP−v2+Naive Training
SRIP−v2+Conventional Training
Ours+Naive Training
Ours+Conventional Training

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Epoch

V
a
lu

e

Training Accuracy

 

 

0 25 5050
0

0.2

0.4

0.6

0.8

1

Epoch

V
a
lu

e

Training Accuracy

 

 

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Epoch
V

a
lu

e

Training Accuracy

 

 

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

Epoch

V
a
lu

e

Test Accuracy

 

 

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Epoch

V
a
lu

e

Test Accuracy

 

 

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

Epoch

V
a
lu

e

Test Accuracy

 

 

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Epoch

V
a

lu
e

Test Accuracy

 

 

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

Epoch

V
a

lu
e

Test Accuracy Avg. Class

 

 

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Epoch

V
a
lu

e

Test Accuracy Avg. Class

 

 

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

Epoch

V
a
lu

e

Test Accuracy Avg. Class

 

 

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Epoch

V
a

lu
e

Test Accuracy Avg. Class

 

 

Figure 4: Result comparison on MNIST: (left->right) default setting, lr = 0.01, ts = 200, and bs = 2.

full testing data set. We keep all the hyper-parameters
unchanged in the public code.

• Large Initial Learning Rate (lr): Here we only change
the initial learning rate to 0.01.

• Limited Training Samples (ts): Here we only use small
number of training samples uniformly selected from the
entire training set at random.

• Small Batch Size (bs): Here we only change the batch
size to 2.
Baselines: In order to do comparison fairly, we consider

the OR algorithms whose code is publicly available and can
run in our task. In this sense, we finally have the following
baseline algorithms3:

3We fail to integrate OrthoReg [32] with our point cloud classification

1054



default setting lr = 0.01 ts = 440 bs = 2 ave. of 4 settings
avg. cls overall avg. cls overall avg. cls overall avg. cls overall avg. cls overall

NT 0.800 0.840 0.025 0.041 0.336 0.416 0.025 0.041 0.297 0.335
SRIP-v1+NT 0.815 0.849 0.025 0.041 0.428 0.495 0.025 0.041 0.340 0.357
SRIP-v2+NT 0.822 0.858 0.025 0.041 0.290 0.371 0.025 0.041 0.309 0.328

Ours+NT 0.814 0.850 0.712 0.770 0.520 0.571 0.793 0.829 0.732 0.755

CT 0.819 0.860 0.767 0.818 0.591 0.666 0.242 0.369 0.642 0.678

SRIP-v1+CT 0.812 0.856 0.719 0.780 0.598 0.673 0.088 0.143 0.554 0.613
SRIP-v2+CT 0.824 0.863 0.787 0.839 0.612 0.682 0.138 0.223 0.590 0.652

Ours+CT 0.821 0.862 0.775 0.832 0.638 0.685 0.132 0.214 0.620 0.648

Table 1: Best test accuracy comparison on ModelNet40.

default setting lr = 0.01 ts = 200 bs = 2 ave. of 4 settings
avg. cls overall avg. cls overall avg. cls overall avg. cls overall avg. cls overall

NT 0.977 0.977 0.967 0.967 0.398 0.389 0.114 0.100 0.614 0.608
SRIP-v1+NT 0.934 0.934 0.934 0.933 0.204 0.204 0.114 0.100 0.547 0.543
SRIP-v2+NT 0.928 0.927 0.928 0.927 0.119 0.116 0.928 0.927 0.726 0.724

Ours+NT 0.978 0.978 0.978 0.978 0.223 0.217 0.963 0.963 0.786 0.784

CT 0.967 0.967 0.976 0.976 0.741 0.734 0.481 0.470 0.791 0.787

SRIP-v1+CT 0.975 0.975 0.975 0.975 0.713 0.705 0.222 0.206 0.721 0.715
SRIP-v2+CT 0.974 0.973 0.974 0.973 0.751 0.748 0.181 0.166 0.720 0.715

Ours+CT 0.976 0.976 0.977 0.977 0.752 0.746 0.433 0.421 0.785 0.780

Table 2: Best test accuracy comparison on 2D point clouds of MNIST.

• Naive Training (NT): In this baseline, we train a network
without any regularization.

• Conventional Training (CT): In this baseline, we train a
network with weight decay (5e-4), dropout (keep-ratio
0.7), and batch normalization (BN).

• Spectral Restricted Isometry Property [6] (SRIP-v1 &

SRIP-v2)4: This regularizer is defined as R = λ ·
σ
(

W
T
W − I

)

, where W is the network weight matrix,
I is an identity matrix, σ(·) is the spectral norm, and λ is
a constant. Currently this is the state-of-the-art OR in the
literature.
In the sequel we will present our results for different types

of networks on different data sets.

3.1. Multilayer Perceptron (MLP): PointNet

Data Sets: We conduct comparison on two bench-
mark data sets, ModelNet40 [37] and 2D point clouds of
MNIST [25]. ModelNet40 has 12,311 CAD models for 40
object categories, split into 9,840 for training, 2,468 for test-
ing. We uniformly sample 1024 points from meshes to obtain
3D point clouds, and normalize them into a unit ball. MNIST
is a handwritten digit data set, consisting of 60,000 training
images and 10,000 testing images with 28× 28 = 784 gray
pixels. We convert each image to 2D point clouds by taking
image coordinates of all non-zero pixels.

task, neither using their code nor reimplementing it, because we realize that
it is so difficult to modify SGD to achieve reasonable performance or even
make it work.

4From [2], we find there are two implementations of the approach, under
the folders “Wide-Resnet” and “SVHN”, respectively. We therefore name
them as “v1” and “v2”.

Networks: We choose PointNet-vanilla [31] (i.e. an
MLP(64, 64, 64, 128, 1024, 512, 256, 40) without T-nets) as
the backbone network and integrate different regularization
techniques into it to verify the effects of OR. During training
we conduct data augmentation on-the-fly by randomly rotat-
ing the points along the up-axis and jittering the coordinates
of each point by a Gaussian noise with zero mean and 0.01
std. We use the PyTorch code [3] as our testbed and the same
training and evaluation protocols as the original PointNet
code. The optimizer is Adam, initial learning rate is 0.001,
and momentum is 0.9. The decay rate for batch normal-
ization starts with 0.5, and is gradually increased to 0.99,
dropout is set at a ratio of 0.7 until the last fully connected
layer. The batch size on ModelNet40 is 32, and on MNIST is
100. We tune each approach to report the best performance.

In order to demonstrate that our findings are common
across different MLP, on MNIST we slightly modify the
architecture of original PointNet to another MLP(64, 64, 64,
128, 512, 256, 128, 10).

Training Stability: We summarize the training and test-
ing behaviors of each approach on ModelNet40 in Fig. 3.
(a). Under the default setting, our regularizer helps the naive
training converge much faster than the others which are ap-
preciated, while with the conventional training it seems such
effect is neutralized by other regularizations. In testing, the
overall behavior of each approach is similar to each other
without significant performance gap. (b) Under the setting of
lr = 0.01, naive training and both SRIPs fail to work, while
our regularizer with conventional training works reasonably
well, it converges faster than others in training and achieves
the best performance. (c) Under the setting of ts = 440,

1055



60 70 80 90 100 110 120

Angle

0

0.5

1

P
e
rc

e
n
ta

g
e
 (

%
)

NT

SRIP-v1 + NT

SRIP-v2 + NT

Ours + NT

CT

SRIP-v1 + CT

SRIP-v2 + CT

Ours + CT

50 60 70 80 90 100 110 120 130

Angle

0

0.5

1

P
e
rc

e
n
ta

g
e
 (

%
)

NT

SRIP-v1 + NT

SRIP-v2 + NT

Ours + NT

CT

SRIP-v1 + CT

SRIP-v2 + CT

Ours + CT

60 70 80 90 100 110 120

Angle

0

0.2

0.4

0.6

0.8

P
e
rc

e
n
ta

g
e
 (

%
)

NT

SRIP-v1 + NT

SRIP-v2 + NT

Ours + NT

CT

SRIP-v1 + CT

SRIP-v2 + CT

Ours + CT

50 60 70 80 90 100 110 120 130

Angle

0

0.5

1

P
e
rc

e
n
ta

g
e
 (

%
)

NT

SRIP-v1 + NT

SRIP-v2 + NT

Ours + NT

CT

SRIP-v1 + CT

SRIP-v2 + CT

Ours + CT

Figure 5: The learned angular distributions on ModelNet40: (left->right) default setting, lr = 0.01, ts = 440, and bs = 2.

the performances of different algorithms differ significantly,
even though all the competitors work. Our regularizer with
conventional training achieves the best performance, con-
verging around 100 epochs which is much faster than the
others. Our regularizer outperforms SRIP significantly as
well. (d) Under the setting of bs = 2, only our regularization
with naive training works, and surprisingly achieves the very
good performance similar to that under the default setting.
For conventional training, the regularization dominates the
training behavior so strongly that even our regularizer can-
not make it work. This is expected as usually conventional
regularization techniques cannot work well using very small
batch size. In Fig. 4 we summarize the training and testing
behaviors of each approach on MNIST. Similar observations
can be made here in both training and testing.

In summary, for MLP we do not observe any significant
gain on accuracy using SRIP, statistically speaking on av-
erage, but some improvement on convergence in training
under the default setting. Our self-regularization, however,
improves both naive training and conventional training signif-
icantly on both convergence and accuracy, indicating better
training stability from our method.

Accuracy: We summarize in Table 1 and Table 2 the
best accuracy of each approach per setting in Fig. 3 and
Fig. 4, respectively. Compared with other regularization
techniques, we conclude that our regularizer can work well
not only under well-defined setting but also under extreme
learning cases. For instance, the naive training with our
self-regularization works as well as, or even better than, the
conventional training. These observations imply our regu-
larizer has much better generalization ability for optimizing
deep networks, potentially leading to broader applications.

Angular Distributions: We illustrate the learned angular
distributions in Fig. 5. First of all, it seems that all the well-
trained models under the default setting form Gaussian-like
distributions with mean around 90◦. The variances of these
distributions, however, are larger than those in Fig. 1. We
conjecture that the main reason for this is that in PointNet the
input dimension is usually smaller than the number of filters
per hidden layer so that it is hard to achieve (near) orthog-
onality among all the filters. Next, our self-regularization

def. s. lr(0.01) ts(400) bs(2) ave.
NT 0.898 0.910 0.797 0.908 0.878

SRIP-v1+NT 0.898 0.910 0.781 0.911 0.875
SRIP-v2+NT 0.897 0.910 0.800 0.912 0.880

Ours+NT 0.899 0.907 0.810 0.906 0.881

CT 0.894 0.914 0.776 0.913 0.874
SRIP-v1+CT 0.894 0.909 0.779 0.915 0.874
SRIP-v2+CT 0.889 0.911 0.776 0.917 0.873

Ours+CT 0.896 0.914 0.796 0.918 0.881

Table 3: Best test accuracy comparison on ModelNet10.

lr acc.
NT 0.001 0.888

SRIP-v1+NT 0.001 0.893
OrthoReg+NT - -

Ours+NT 0.001 0.898

CT 0.1 0.963
SRIP-v1+CT 0.1 0.962
OrthoReg+CT 0.1 0.962
OMDSM+CT∗ 0.1 0.963

Ours+CT 0.1 0.965

Table 4: Test accuracy comparison on CIFAR-10. Where
“-” indicates the model does not converge, “*” indicates
OMDSM obtains best performance with dropout=0.3 while
keeping all other CT settings unchanged.

with naive training always learns Gaussian-like distributions,
while conventional training sometimes has negative effects
on our learned distributions such as shifting. This is probably
due to BN as it normalizes the statistics in gradients. Finally,
it seems that spike-shape distributions tend to produce bad
models. This observation has also been made in the angular
distributions with random weights.

3.2. Convolutional Neural Networks: VoxNet

Data Set: We use Modelnet10 [29] for our comparison.
In the data set there are 3D models as well as voxelized
versions, which have been augmented by rotating in 12 ro-
tations. We use the provided voxelizations and follow the
train/test splits for evaluation.

Networks: We use VoxNet [29] for comparison, which
is a network architecture to efficiently dealing with large
amount of point cloud data by integrating a volumetric occu-

1056



0 20 40 60 80
0.5

0.6

0.7

0.8

0.9

1

Epoch

V
a
lu

e

Training Accuracy

 

 

Naive Training
Conventional Training
SRIP−v1+Naive Training
SRIP−v1+Conventional Training
SRIP−v2+Naive Training
SRIP−v2+Conventional Training
Ours+Naive Training
Ours+Conventional Training

0 20 40 60 80
0.75

0.8

0.85

0.9

0.95

1

Epoch

V
a
lu

e

Training Accuracy

 

 

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Epoch

V
a
lu

e

Training Accuracy

 

 

0 20 40 60 80
0.8

0.85

0.9

0.95

1

Epoch

V
a
lu

e

Training Accuracy

 

 

0 20 40 60 80
0.7

0.75

0.8

0.85

0.9

0.95

Epoch

V
a
lu

e

Test Accuracy

 

 

0 20 40 60 80
0.82

0.84

0.86

0.88

0.9

0.92

Epoch

V
a
lu

e

Test Accuracy

 

 

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Epoch

V
a
lu

e

Test Accuracy

 

 

0 20 40 60 80
0.82

0.84

0.86

0.88

0.9

0.92

Epoch

V
a
lu

e

Test Accuracy

 

 

Figure 6: Result comparison on ModelNet10: (left->right) default setting, lr = 0.01, ts = 400, and bs = 2.

70 80 90 100 110

Angle (
o
)

0

5

10

15

20

P
e

rc
e

n
ta

g
e

 (
%

)

NT

CT

SRIP-v1 + NT

SRIP-v1 + CT

SRIP-v2 + NT

SRIP-v2 + CT

Ours + NT

Ours + CT

70 80 90 100 110

Angle (
o
)

0

5

10

15

20

P
e

rc
e

n
ta

g
e

 (
%

)

NT

CT

SRIP-v1 + NT

SRIP-v1 + CT

SRIP-v2 + NT

SRIP-v2 + CT

Ours + NT

Ours + CT

70 80 90 100 110

Angle (
o
)

0

5

10

15

20

25

P
e

rc
e

n
ta

g
e

 (
%

)

NT

CT

SRIP-v1 + NT

SRIP-v1 + CT

SRIP-v2 + NT

SRIP-v2 + CT

Ours + NT

Ours + CT

70 80 90 100 110

Angle (
o
)

0

5

10

15

20

25

P
e

rc
e

n
ta

g
e

 (
%

)

NT

CT

SRIP-v1 + NT

SRIP-v1 + CT

SRIP-v2 + NT

SRIP-v2 + CT

Ours + NT

Ours + CT

Figure 7: The learned angular distributions on ModelNet10: (left->right) default setting, lr = 0.01, ts = 400, and bs = 2.

pancy grid representation into a supervised 3D CNN. We use
the PyTorch code [4] as our testbed, and tune each approach
to report the best accuracy averaged per class. In the default
setting, we use SGD with momentum 0.9, training epoch
80, and batch size 128. The initial learning rate is 0.001 and
multiplied by 0.31 every 16 epochs.

Training Stability & Accuracy: We illustrate the train-
ing and testing behavior of each algorithm on ModelNet10 in
Fig. 6. As we can see, different to the case of PointNet, there
is no significant difference in both training and testing for
VoxNet. To further verify the performance, we summarize
the best test accuracy in Table 3, where our improvement is
marginal. Interestingly, we find similar observations in im-
age classification that all the OR algorithms perform equally
well, and no obvious advantage over conventional training
with careful tuning. For instance, we list our classification
results of baselines, OrthoReg [32], and OMSDM [19] on
CIFAR-10 [22] based on Wide ResNet [45] with width of
28, depth of 10 in Table 4.

In summary, we observe that OR is more useful for MLP
than for CNNs to improve the training stability. We believe
one of the key reasons is the filters in CNNs are much bet-
ter structured due to the input data such as images and 3D
volumes, so that learning orthogonal filters becomes unnec-
essary. In contrast, the input data for MLP is much less struc-
tured individually where orthogonal filters can better cover

feature space. In both cases, however, our self-regularization
outperforms the state-of-the-art OR algorithms.

Angular Distributions: We also illustrate the angular
distributions of learned models on MondelNet10 in Fig. 7.
Again all the distributions form Gaussian-like shapes with
mean close to 90◦ and relatively small variance. Together
with Fig. 5, we conclude that angular distributions may not
be a good indicator for selecting good deep models, but their
statistics are good for self-regularization.

4. Conclusion

In this paper, we manage to identify that the real gain
of orthogonality regularization (OR) in deep learning is to
better stabilize the training, leading to faster convergence
and better generalization. In terms of accuracy, existing OR
algorithms perform no better than the conventional training
algorithm with weight decay, dropout, and batch normal-
ization, statistically speaking. Instead, we propose a self-
regularization method as an architectural plug-in that can
be easily integrated with an arbitrary network to learn or-
thogonal filters. We utilize LSH to compute the filter angles
approximately based on the filter responses, and push the
mean and variance of such angles towards 90◦ and 0◦, re-
spectively. Empirical results on point cloud classification
demonstrate the superiority of self-regularization.

1057



References

[1] http://www.robots.ox.ac.uk/~albanie/

mcn-models.html. 1
[2] https://github.com/nbansal90/

Can-we-Gain-More-from-Orthogonality/.
6

[3] https://github.com/meder411/

PointNet-PyTorch. 6
[4] https://github.com/Durant35/VoxNet. 8
[5] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016. 1
[6] N. Bansal, X. Chen, and Z. Wang. Can we gain more from

orthogonality regularizations in training deep networks? In
NeurIPS, pages 4261–4271, 2018. 1, 2, 3, 6

[7] L. Bottou. Online learning and stochastic approximations.
On-line learning in neural networks, 17(9):142. 1

[8] F. Cen and G. Wang. Boosting occluded image classification
via subspace decomposition-based estimation of deep features.
IEEE transactions on cybernetics, 2019. 1

[9] F. Cen and G. Wang. Dictionary representation of deep fea-
tures for occlusion-robust face recognition. IEEE Access,
7:26595–26605, 2019. 1

[10] X. Chang, T. Xiang, and T. M. Hospedales. Deep multi-view
learning with stochastic decorrelation loss. arXiv preprint

arXiv:1707.09669, 2017. 4
[11] M. S. Charikar. Similarity estimation techniques from round-

ing algorithms. In ACM STOC, pages 380–388. ACM, 2002.
2, 4

[12] M. Cogswell, F. Ahmed, R. Girshick, L. Zitnick, and D. Ba-
tra. Reducing overfitting in deep networks by decorrelating
representations. arXiv preprint arXiv:1511.06068, 2015. 1, 3

[13] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning,
volume 1. 2016. 1

[14] S. Gu, Y. Hou, L. Zhang, and Y. Zhang. Regularizing
deep neural networks with an ensemble-based decorrelation
method. In IJCAI, pages 2177–2183, 7 2018. 3

[15] M. Harandi and B. Fernando. Generalized backprop-
agation,Étude de cas: Orthogonality. arXiv preprint

arXiv:1611.05927, 2016. 3
[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, pages 770–778, 2016. 1
[17] L. He, G. Wang, and Z. Hu. Learning depth from single

images with deep neural network embedding focal length.
IEEE Transactions on Image Processing, 27(9):4676–4689,
2018. 1

[18] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever,
and R. R. Salakhutdinov. Improving neural networks by
preventing co-adaptation of feature detectors. arXiv preprint

arXiv:1207.0580, 2012. 1
[19] L. Huang, X. Liu, B. Lang, A. W. Yu, Y. Wang, and B. Li. Or-

thogonal weight normalization: Solution to optimization over
multiple dependent stiefel manifolds in deep neural networks.
In AAAI, 2018. 1, 2, 3, 8

[20] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015. 1

[21] K. Jia, S. Li, Y. Wen, T. Liu, and D. Tao. Orthogonal deep
neural networks. arXiv preprint arXiv:1905.05929, 2019. 3

[22] A. Krizhevsky, V. Nair, and G. Hinton. The cifar-10 dataset.

online: http://www. cs. toronto. edu/kriz/cifar. html, 2014. 8
[23] J. Kukačka, V. Golkov, and D. Cremers. Regularization for

deep learning: A taxonomy. arXiv preprint arXiv:1710.10686,
2017. 1, 2

[24] C.-C. J. Kuo, M. Zhang, S. Li, J. Duan, and Y. Chen. In-
terpretable Convolutional Neural Networks via Feedforward
Design. arXiv preprint arXiv:1810.02786, 2018. 1, 2

[25] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-
based learning applied to document recognition. Proceedings

of the IEEE, 86(11):2278–2324, 1998. 6
[26] W. Ma, Y. Wu, F. Cen, and G. Wang. Mdfn: Multi-scale

deep feature learning network for object detection. Pattern

Recognition, page 107149, 2019. 1
[27] W. Ma, Y. Wu, Z. Wang, and G. Wang. Mdcn: Multi-scale,

deep inception convolutional neural networks for efficient
object detection. In ICPR, pages 2510–2515. IEEE, 2018. 1

[28] C. H. Martin and M. W. Mahoney. Implicit self-regularization
in deep neural networks: Evidence from random ma-
trix theory and implications for learning. arXiv preprint

arXiv:1810.01075, 2018. 1, 3
[29] D. Maturana and S. Scherer. Voxnet: A 3d convolutional

neural network for real-time object recognition. In IROS,
pages 922–928. IEEE, 2015. 7

[30] F. Milletari, N. Navab, and S.-A. Ahmadi. V-net: Fully
convolutional neural networks for volumetric medical image
segmentation. In 3DV, pages 565–571, 2016. 1

[31] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
In CVPR, pages 652–660, 2017. 6

[32] P. Rodríguez, J. Gonzalez, G. Cucurull, J. M. Gonfaus, and
X. Roca. Regularizing cnns with locally constrained decor-
relations. arXiv preprint arXiv:1611.01967, 2016. 1, 2, 3, 5,
8

[33] T. Salimans and D. P. Kingma. Weight normalization: A sim-
ple reparameterization to accelerate training of deep neural
networks. In NeurIPS, pages 901–909. 2016. 1

[34] T. van Laarhoven. L2 regularization versus batch and weight
normalization. arXiv preprint arXiv:1706.05350, 2017. 2

[35] E. Vorontsov, C. Trabelsi, S. Kadoury, and C. Pal. On or-
thogonality and learning recurrent networks with long term
dependencies. In ICML, pages 3570–3578. JMLR. org, 2017.
1, 2, 3

[36] Y. Wu, Z. Zhang, and G. Wang. Unsupervised deep fea-
ture transfer for low resolution image classification. In Pro-

ceedings of the IEEE International Conference on Computer

Vision Workshops, pages 0–0, 2019. 1
[37] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3d shapenets: A deep representation for volumetric
shapes. In CVPR, pages 1912–1920, 2015. 6

[38] D. Xie, J. Xiong, and S. Pu. All you need is beyond a good
init: Exploring better solution for training extremely deep
convolutional neural networks with orthonormality and mod-
ulation. In CVPR, pages 6176–6185, 2017. 3

[39] P. Xie, B. Poczos, and E. P. Xing. Near-orthogonality regular-
ization in kernel methods. In UAI, volume 3, page 6, 2017.
3

[40] C. Xu, J. Yang, J. Gao, H. Lai, and S. Yan. Srnn: Self-
regularized neural network. Neurocomputing, 273:260–270,
2018. 3

[41] W. Xu, S. Keshmiri, and G. R. Wang. Adversarially approx-

1058



imated autoencoder for image generation and manipulation.
IEEE Transactions on Multimedia, 2019. 1

[42] W. Xu, K. Shawn, and G. Wang. Toward learning a unified
many-to-many mapping for diverse image translation. Pattern

Recognition, 93:570–580, 2019. 1
[43] W. Xu, G. Wang, A. Sullivan, and Z. Zhang. Towards learning

affine-invariant representations via data-efficient cnns. arXiv

preprint arXiv:1909.00114, 2019. 1
[44] M. Yadav and S. Agarwal. Regularization and learning an

ensemble of rnns by decorrelating representations. In The

AAAI-17 Workshop on Crowdsourcing, Deep Learning, and

Artificial Intelligence Agents WS-17-07, 2017. 3
[45] S. Zagoruyko and N. Komodakis. Wide residual networks.

arXiv preprint arXiv:1605.07146, 2016. 8
[46] M. D. Zeiler and R. Fergus. Stochastic pooling for regular-

ization of deep convolutional neural networks. arXiv preprint

arXiv:1301.3557, 2013. 1
[47] S. Zhang, H. Jiang, and L. Dai. Hybrid orthogonal projection

and estimation (hope): A new framework to learn neural
networks. JMLR, 17(1):1286–1318, 2016. 2

[48] Z. Zhang and M. Brand. Convergent block coordinate descent
for training tikhonov regularized deep neural networks. In
NeurIPS, pages 1721–1730. 2017. 1

[49] Z. Zhang, Y. Wu, and G. Wang. Bpgrad: Towards global
optimality in deep learning via branch and pruning. In CVPR,
pages 3301–3309, 2018. 1

[50] X. Zhu, W. Zhou, and H. Li. Improving deep neural network
sparsity through decorrelation regularization. In IJCAI, pages
3264–3270, 7 2018. 3

1059


