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Abstract

Registration is a fundamental task in medical image

analysis which can be applied to several tasks including

image segmentation, intra-operative tracking, multi-modal

image alignment, and motion analysis. Popular registra-

tion tools such as ANTs and NiftyReg optimize an objec-

tive function for each pair of images from scratch which is

time-consuming for large images with complicated defor-

mation. Facilitated by the rapid progress of deep learn-

ing, learning-based approaches such as VoxelMorph have

been emerging for image registration. These approaches

can achieve competitive performance in a fraction of a sec-

ond on advanced GPUs. In this work, we construct a neural

registration framework, called NeurReg, with a hybrid loss

of displacement fields and data similarity, which substan-

tially improves the current state-of-the-art of registrations.

Within the framework, we simulate various transformations

by a registration simulator which generates fixed image and

displacement field ground truth for training. Furthermore,

we design three segmentation frameworks based on the pro-

posed registration framework: 1) atlas-based segmenta-

tion, 2) joint learning of both segmentation and registra-

tion tasks, and 3) multi-task learning with atlas-based seg-

mentation as an intermediate feature. Extensive experimen-

tal results validate the effectiveness of the proposed Neur-

Reg framework based on various metrics: the endpoint er-

ror (EPE) of the predicted displacement field, mean square

error (MSE), normalized local cross-correlation (NLCC),

mutual information (MI), Dice coefficient, uncertainty es-

timation, and the interpretability of the segmentation. The

proposed NeurReg improves registration accuracy with fast

inference speed, which can greatly accelerate related medi-

cal image analysis tasks.

1. Introduction

Image registration tries to establish the correspondence

between objects, edges, surfaces or landmarks in different

images and it is critical to many clinical tasks such as im-

age fusion, organ atlas creation, and tumor growth monitor-

ing [17]. Manual image registration is laborious and lacks

reproducibility which causes potentially clinical disadvan-

tage. Therefore, automated registration is desired in many

clinical settings. Generally, registration can be necessary to

analysis sequential data [46] or a pair of images from dif-

ferent modalities, acquired at different times, from different

viewpoints or even from different patients. Thus designing

a robust image registration can be challenging due to the

high variability.

Traditional registration methods are based on estimation

of the displacement field by optimizing certain objective

functions. Such displacement field can be modeled in sev-

eral ways, e.g. elastic-type models [5, 36], free-form defor-

mation (FFD) [34], Demons [40], and statistical paramet-

ric mapping [2]. Beyond the deformation model, diffeo-

morphic transformations [22] preserve topology with exact

inverse transforms and many methods adopt them such as

LDDMM [8], SyN [3] and DARTEL [1]. One limitation of

these methods is that the optimization can be computation-

ally expensive.

Deep learning-based registration methods have recently

been emerging as a viable alternative to the above con-

ventional methods [31, 39, 43]. These methods em-

ploy sparse/weak label of registration field, or conduct su-

pervised learning purely based on registration field, in-

ducing high sensitivity on registration field during train-

ing. Recent unsupervised deep learning-based registrations,

such as VoxelMorph [6], are facilitated by a spatial trans-

former network [19, 14, 13]. VoxelMorph is also further

extended to diffeomorphic transformation and Bayesian

framework [13]. NMSR employs self-supervised optimiza-

tion and multi-scale registration to handle domain shift and

large deformation [44]. However from the performance per-

spective, most of these registration methods have compara-

ble accuracy as traditional iterative optimization methods,

although with potential speed advantages.

In this work, we design a deep learning-based registra-
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tion framework with a hybrid loss based on data similar-

ity and registration field supervision. The framework, as

illustrated in Fig. 1, is motivated by the fact that supervised

learning can predict accurate displacement field, while un-

supervised learning can extract visual representations that

generalize well to unseen images. More specifically, we

build a registration simulator which models random trans-

lation, rotation, scale, and elastic deformation. For training,

we employ the registration simulator to generate a fixed im-

age with its corresponding displacement field ground truth

from a given moving image. Then, we use a U-Net to pa-

rameterize the displacement field and a spatial transform

network to warp the moving image towards the generated

fixed image [32, 19]. In addition to the hybrid loss and reg-

istration simulator for registration itself, we further investi-

gated its potential in segmentation, a common application of

deformable registration. We design two different multi-task

learning networks between segmentation and registration.

Also, to fully exploit the capacity with one moving/atlas im-

age, we further design a dual registration to enforce registra-

tion loss and segmentation loss from both a random training

image and a random image from registration simulator.

Our main contributions are as follows: 1) we design a

registration simulator to model various transformations, and

employ a hybrid loss with registration field supervision loss

and data similarity loss to benefit from both accurate su-

pervision and powerful generalization of deep appearance

representation. 2) We design a dual registration scheme in

the multi-task learning between registration and segmenta-

tion to fully exploit the capacity of one moving/atlas image.

We expect the network to align the moving image with a

pair of random images from the registration field and train-

ing set. A residual segmentation block is further developed

to boost the performance as illustrated in Fig. 2. 3) We val-

idate our framework on two widely used public datasets:

the Hippocampus and Prostate datasets from the Medical

Segmentation Decathlon [38]. Our framework outperforms

three popular public toolboxes, ANTs [4], NiftyReg [29]

and VoxelMorph [6], on both registration and segmentation

tasks based on several evaluation metrics.

2. Related Work

Deep learning-based medical image registration can be

primarily categorized into three classes, deep iterative reg-

istration, supervised, and unsupervised transformation es-

timation [17]. Early deep learning-based registrations di-

rectly embed deep learning as a visual feature extrac-

tor into traditional iterative registration based on hand-

crafted metrics such as sum of squared differences (SSD),

cross-correlation (CC), mutual information (MI), normal-

ized cross correlation (NCC) and normalized mutual infor-

mation (NMI). Wu et al. [42] employed a stacked convolu-

tional auto-encoder to extract features for mono-modal de-

formable registration based on NCC. Blendowski et al. [9]

combine CNN feature with MRF-based feature in mono-

modal registration. Reinforcement learning is further used

to mimic the iterative transformation estimation. Liao et

al. [24] use reinforcement learning and a greedy supervi-

sion to conduct rigid registration. Kai et al. [26] further use

Q-learning and contextual feature to perform rigid registra-

tion. Miao et al. [28] then employ multi-agent-based rein-

forcement learning in the rigid registration. Krebs et al. [23]

conduct deformable registration by reinforcement learning

on low resolution deformation with fuzzy action control.

The iterative approaches can be relatively slow compared

with the direct transformation estimation.

Supervised transformation uses a neural network to es-

timate transformation parameters directly which can sig-

nificantly speed up the registration. AIRNet uses a CNN

to directly estimate rigid transformation [11]. Rothe et

al. [31] use a U-Net to estimate the deformation field. Cao

et al. [10] perform displacement field estimation based on

image patches and an equalized activate-points guided sam-

pling is proposed to facilitate the training. Sokooti et al. [39]

employ random deformation field to augment the dataset

and design a multi-scale CNN to predict a deformation field.

Uzunova et al. [41] use a CNN to fit registration field from

statistical appearance models. The supervised transforma-

tion estimation heavily relies on the quality/diversity of reg-

istration field ground truth generated synthetically or man-

ually from expert. Unsupervised registration is desirable to

learn representation from data to increase generalization.

Unsupervised transformation estimation mainly uses

spatial transformer networks (STN) to warp moving im-

age with estimated registration field, and training of the

estimators relies on the design of data similarity function

and smoothness of estimated registration field [19]. Neylon

et al. [30] model the relationship between similarity func-

tion and TRE. VoxelMorph is designed as a general method

for unsupervised registration and further extended to varia-

tional inference for deformation field [13, 6, 7]. Adversarial

similarity network further employs a discriminator to auto-

matically learn the similarity function [15]. Jiang et al. [20]

instead learn parameterization of multi-grid B-Spline by

a CNN. NMSR employs self-supervised optimization and

multi-scale registration to handle domain shift and large

deformation [44]. These unsupervised transformation esti-

mations produce comparable accuracy and are significantly

faster than the traditional registration tools [6, 13].

Different from the aforementioned methods, we design

a neural registration, NeurReg, by taking advantage of both

accurate supervision on registration field and good gener-

alization of unsupervised similarity objective function. For

registration-based segmentation, a dual registration frame-

work is proposed by enforcing the moving/atlas image to

align with random images from both training set and regis-
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Figure 1. Framework of the proposed NeurReg. In the registration module, we generate a random simulated displacement field and fixed

image given a moving image. During training, a hybrid loss consisting of displacement field loss and data similarity loss is employed to take

advantage of accurate field supervision and powerful generalization of appearance similarity. For the registration-based segmentation, a

dual registration scheme is designed with multi-task loss for registration and segmentation. The dual registration enforces the moving/atlas

image to be aligned with random images from both the registration simulator and the training set.

tration simulator which is capable to model various trans-

formations. The NeurReg obtains better performance than

ANTs [4], NiftyReg [29] and VoxelMorph [6] and can be a

new baseline for medical image registration.

3. Neural Registration Framework

In this section, we introduce three main components in

the neural registration framework, registration simulator,

neural registration and registration-based segmentation, as

illustrated in Fig. 1.

3.1. Registration Simulator

Given a moving/atlas image M , we generate a random

deformation F 0
g and a fixed image I0 from a registration

simulator S . The generated random deformation field F 0
g

can be used as an accurate supervised loss LF for predicted

registration field F 0 parameterized by a neural network N .

To fully learn representation from data, a similarity loss

Lsim is employed to measure the discrepancy between the

fixed image I0 and warped image T (M ,F 0) through spa-

tial transformer T [19].

To fully model various transformations, we simulate

random rotation, scale, translation and elastic deforma-

tion in the registration simulator S [37]. We uniformly

generate rotation angles a ∼ U(0,A) for all the dimen-

sions. After that, we uniformly sample scale factors c ∼
U(Cmin,Cmax). If the element in c is smaller than one, it

shrinks the moving image. Otherwise, it enlarges the mov-

ing image. We then uniformly sample a translation factor

l ∼ U(−L,L). To model the elastic distortion, we firstly

randomly generate coordinate offset from Gaussian distri-

bution with standard deviation γ ∼ U(0,Γ). We further

apply a multidimensional Gaussian filter with standard de-

viation σ ∼ U(Σmin,Σmax) to make the generated coor-

dinate offset smooth and realistic.

During training, we generate the registration field ground

truth F 0
g and fixed image I0 on the fly for each batch

F 0
g = S(a, c, l, γ, σ|M),

I0 = T (M ,F 0
g ).

(1)

For the registration-based segmentation, the segmentation

ground truth S0
g of fixed image I0 can be generated by

S0
g = T (SM ,F 0

g ), (2)
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where SM is the segmentation ground truth of the mov-

ing/atlas image M in the training set.

3.2. Neural Registration

After we obtain the fixed image I0 with moving image

M , we design the neural registration to estimate the regis-

tration field F 0. We employ a neural network N to param-

eterize the registration field

F 0 = N (M , I0;θ), (3)

where θ is the parameters in the neural network.

Different from unsupervised transformation estimation,

we design a registration field supervised loss LF based on

generated registration field ground truth F 0
g from registra-

tion simulator

LF (F
0,F 0

g ;θ) =
1

|Ω|

∑

p∈Ω

||F 0(p)− F 0
g (p)||L2

, (4)

where p is the pixel position in the image coordinate space

Ω. The field supervised loss in Eq. 4 is the endpoint error

(EPE) which is an accurate loss for image matching mea-

suring the alignment of two displacement fields [47]. The

registration field ground truth is smooth and the model can

learn the smoothness of estimated registration field from

registration simulator S . Unlike the bending energy loss

used in other unsupervised transformation estimation [6],

the registration field supervised loss is accurate and the loss

can steadily decrease with the decrease of data similarity

loss experimentally in Fig. 5.

However, the model might heavily rely on the quality and

diversity of the simulated registration field. To improve the

model’s generalization ability, we further employ data sim-

ilarity loss as an auxiliary loss inspired by the unsupervised

transformation estimation. To train the network in an end-

to-end manner, a spatial transformer network T is used to

obtain the reconstructed image I0
R by warping the moving

image M with the estimated registration field F 0 [19]

I0
R = T (M ,F 0). (5)

We use the negative normalized local cross-correlation

which is robust to evaluate similarity between MRI images

Lsim(I0, I0
R;θ) =

−
1

|Ω|

∑

p∈Ω

(
∑

pi
(I0(pi)− I0(p))(I0

R(pi)− I0
R(p))

)2

∑

pi
(I0(pi)− I0(p))2

∑

pi
(I0

R(pi)− I0
R(p))

2
,

(6)

where pi is the pixel position within a window around p,

and I0(p) and I0
R(p) are local means within the window

around pixel position pi in I0 and I0
R respectively.

For NeurReg, we employ the hybrid loss between data

similarity loss and registration field supervised loss to train

the neural network N

Lreg(F
0,F 0

g , I
0, I0

R;θ) =LF (F
0,F 0

g ;θ)

+ λLsim(I0, I0
R;θ),

(7)

where λ is the hyper-parameter to balance the two losses.

In the inference, given a moving/atlas image M and a fixed

image I , the registration field F can be estimated instantly

by Eq. 3 and reconstructed image IR can be further calcu-

lated from Eq. 5.

3.3. Registration-Based Segmentation

The estimated registration field can be applied to trans-

forming segmentation mask for image segmentation pur-

pose. From section 3.2, we obtain the estimated registra-

tion field F from Eq. 3 given a moving/atlas image M and

a test image as the fixed image I . With the segmentation

ground truth SM of moving image, we can further obtain

the predicted segmentation mask S through warping SM

with nearest neighbor re-sampling.

More importantly, if ground truths of the segmentation

are available during training, we can utilize them to further

tune the registration network. This joint learning of seg-

mentation and registration tasks can be beneficial for both

because the tasks are highly correlated [33].

In registration-based segmentation by multi-task learn-

ing (MTL), we introduce a dual registration scheme to fully

exploit the power of registration simulator in the proposed

NeurReg as illustrated in Fig. 1. We expect the moving/atlas

image M to be aligned with images I1 and I0 from both

the dataset and registration simulator S . In the segmenta-

tion scenario, the registration simulator S acts as a data aug-

mentation which is crucial to medical image segmentation

because medical image dataset is typically small and dense

annotation of segmentation is expensive.

The other registration in dual registration for mov-

ing/atlas image M and a random image I1 from dataset

can be obtained

F 1 = N (M , I1;θ),

I1
R = T (M ,F 1).

(8)

Given the segmentation ground truth SM of a moving/atlas

image M , we can obtain the segmentation ground truth S0
g

from Eq. 2. If the segmentation ground truth S1
g is available,

we can further design a segmentation loss based on dual

registration into the framework with Tversky loss [35, 45]

Lseg(S
0,S0

g ,S
1,S1

g) = D(S0,S0
g) +D(S1,S1

g),

D(S0,S0
g) = −

1

C

C−1
∑

c=0

∑

p 2S
0(p)S0

g(p)
∑

p S
0(p) + S0

g(p)
,

(9)

where S0
g and S1

g are one hot form of segmentation ground

truth and S0 and S1 are continuous values with interpola-

tion order one in the spatial transformer T , C is the number
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Figure 2. A residual block designed to boost the segmentation.

of classes. The loss function LMTL
reg in the MTL turns to

LMTL
reg (F 0,F 0

g , I
0, I0

R, I
1, I1

R;θ) = LF (F
0,F 0

g ;θ)

+ λ
(

Lsim(I0, I0
R;θ) + Lsim(I1, I1

R;θ)
)

+ βLseg(S
0,S0

g ,S
1,S1

g),
(10)

where β controls the weight of segmentation loss. At infer-

ence time, we obtain the final segmentation prediction by

taking argmax along the class dimension.

Inspired by residual network and boosting concept [18,

16], we further extend the framework by introducing an ex-

tra convolutional layer with predicted segmentation S0 and

the last layer feature FN from neural network N as input

and softmax activation function to further improve the seg-

mentation as illustrated in Fig. 2

S0
Feat = Softmax(Conv([FN ,S0])), (11)

where S0
Feat is the segmentation prediction using aligned

segmentation prediction S0 as feature and [·, ·] is the con-

catenation along channel dimension. The segmentation loss

based on Tversky loss in Eq. 9 can be easily adapted in the

feature based segmentation.

4. Experiments

We conduct experiments on the Hippocampus and

Prostate MRI datasets from medical segmentation de-

cathlon to fully validate the proposed NeurReg [38].

4.1. Datasets and Experimental Settings

On the Hippocampus dataset, we randomly split the

dataset into 208 training images and 52 test images. There

are two foreground categories in the segmentation, hip-

pocampus head and hippocampus body. Because the image

size is within 48×64×48 voxels, we use a 5×5×5-voxel

window in the similarity loss Lsim in Eq. 6.

On the Prostate dataset, we randomly split the dataset

into 25 training images and seven test images. The Prostate

dataset consists of T2 weighted and apparent diffusion co-

efficient (ADC) MRI scans. Because of the low signal to

noise ratio in ADC scans, we only use the T2 weighted

channel. There are two foreground categories, prostate pe-

ripheral zone and prostate central gland. Because the image

size is around 96× 240× 240 which is larger than the Hip-

pocampus dataset, we use a 9×9×9-voxel window in Eq. 6.

We re-sample the MR images to 1×1×1 mm3 spacing.

To reduce the discrepancy of the intensity distributions of

the MR images, we calculate the mean and standard devia-

tion of each volume and clip each volume up to six standard

deviations. Finally, we linearly transform each 3D image

into range [0, 1].

The hyper-parameters in the registration simulator S
are empirically set as A = ( 1

6
π, 1

6
π, 1

6
π), Cmin =

(0.75, 0.75, 0.75), Cmax = (1.25, 1.25, 1.25), L =
(0.02, 0.02, 0.02), Γ = 1000, Σmin = 10, Σmin = 13
based on data distribution. We use 3D U-Net type net-

work as N [32, 12]. There are four layers in the encoder

with numbers of channels (16, 32, 32, 32) with stride as two

in each layer. After that we use two convolutional layers

with number of channels 32 and 32. For the decoder, we

use four blocks of up-sampling, concatenation and convo-

lution with numbers of channels (32, 32, 32, 16). Finally,

we use a convolutional layer with number of channels of

16. LeakyReLU is used with slop of 0.2 in each convo-

lutional layer in the encoder and decoder [27]. We use

Adam optimizer with learning rate 10−4 [21], and num-

bers of epochs of 1,500 and 2,000 for the Hippocampus and

Prostate datasets respectively. Because of small prostate

dataset, large image size and slow training, we initialize the

model by pretrained model on Hippocampus dataset. Be-

cause the registration field supervised loss in Eq. 4 is rela-

tive large, we set λ and β as 10 to balance the three losses.

Most of the hyper-parameter settings are the same as Voxel-

Morph for fair comparisons [6]. And we further use the rec-

ommended hyper-parameters for ANTs and NiftyReg in [6],

because the field of view in the hippopotamus and prostate

images is already roughly aligned during image acquisition.

We use three scales with 200 iterations each, B-Spline SyN

step size of 0.25, updated field mesh size of five for ANTs.

For NiftyReg, we use three scales, the same local negative

cross correlation objective function with control point grid

spacing of five voxels and 500 iterations.

4.2. Registration Performance Comparisons

To construct a registration test dataset which can be used

to quantitatively compare different registrations, we ran-

domly generate two registration fields for each test image

in the test dataset. We use five evaluation metrics in the reg-

istration, average time in seconds for inference on one pair

of images, average registration field endpoint error (EPE)

which is the same as Eq. 4, average mean square error over
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reconstructed image and fixed image (MSE), average nor-

malized local cross-correlation with neighbor volume size

5× 5× 5 the same as negative value in Eq. 6 (NLCC), and

average mutual information with 100 bins (MI). The com-

prehensive comparisons over ANTs [4], NiftyReg [29] and

VoxelMorph [6] are listed in the table 1 and 2 for the Hip-

pocampus and Prostate datasets respectively.

From the table 1 and 2, our registration achieves substan-

tial improvement on EPE which is one of the most accurate

ways to evaluate the performance of registration in equa-

tion 4. Our registration obtains the best performance on

the MSE which is a robust metric for data with the same

distribution in the current scenario. The NeurReg yields

the best MI on the two dataset and the best NLCC on the

Hippocampus dataset. The hybrid loss obtains comparable

EPE metric and does much better on the other metrics com-

pared with model without similarity loss. The multi-task

learning-based registration obtains the comparable registra-

tion performance as the base methods. The improvement

over the three mostly used registration toolboxes on the two

datasets with the five metrics confirms the robustness and

good performance of the proposed NeurReg. The improve-

ment probably is because the registration field guided learn-

ing in NeurReg leads to an optimal convergent point in the

learning.

We further qualitatively compare the four registration

methods by visualizing the registration field, reconstructed

image and difference image between reconstructed image

and fixed image in Fig. 3 and 4. We randomly choose two

test cases from the two datasets respectively. For the differ-

ence image visualization, we multiply six on the pixel value

to increase the intensity for visual purpose.

From the Fig. 3 and 4, NeurReg performs much better

than ANTs, NiftyReg and VoxelMorph on the registration

field estimation. The difference images of neural registra-

tion are smooth without sharp large error points and the

overall error is smaller. The ANTs, NiftyReg and Voxel-

Morph directly optimize the similarity loss which can be

considered as the difference image. We introduce the reg-

istration field guided supervision and the model converges

a better solution for both registration field estimation and

appearance reconstruction.

We visualize the field training loss of VoxelMorph and

NeurReg to further analysis the learning/optimization on the

Hippocampus dataset in Fig. 5. We can find the registration

field supervision loss is easier to optimize than bending en-

ergy used in VoxelMorph and other registrations.

4.3. Segmentation Performance Comparisons

We use Dice coefficient (Dice = 2TP
2TP+FN+FP

) as the

evaluation metric, where TP, FN, and FP are true positives,

false negatives, false positives, respectively. For segmen-

tation based on VoxelMorph and NeurReg, we use 10%

Figure 3. Visualization of registration results from ANTs,

NiftyReg, VoxelMorph and ours on the Hippocampus test dataset.

The images in the first column are original fixed/moving images

with mesh denoting the registration field ground truth. The images

from the second column to the last column are reconstructed im-

ages with estimated registration field and difference images from

ANTs, NiftyReg, VoxelMorph and ours respectively. The first two

rows are from axial direction and the last two rows are from sagit-

tal direction. NeurReg obtains the best registration field estimation

and smooth difference images with the least error.

Figure 4. Visualization of registration results from ANTs,

NiftyReg, VoxelMorph and ours on the Prostate test datasets.

NeurReg obtains the best registration field and difference images.

training images based on NLCC of reconstructed image

as atlases and conduct majority voting in the multi-atlas

based segmentation. Because of heavy computational cost

of ANTs and NiftyReg, we only use the top one training im-

age based on NLCC in the atlas set from NeurReg as atlas.

The multi-task learning from Eq. 10 is denoted by Voxel-

Morph (MTL) and Ours (MTL). The residual segmentation

block in Fig. 2 is denoted by VoxelMorph (Feat.) and Ours

(Feat.). We also compare with an advanced segmentation
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Method Time (s) EPE (mm) MSE NLCC MI

ANTs 289.05±135.71 4.267±1.809 0.008±0.006 0.624±0.115 0.934± 0.276

NiftyReg 991.48±420.90 4.113±1.450 0.002±0.002 0.795±0.058 1.484± 0.195

VoxelMorph 0.03± 0.18 6.222± 1.573 0.004± 0.002 0.723± 0.047 1.006± 0.134

VoxelMorph (MTL) 0.03±0.14 6.236±1.579 0.007±0.004 0.598±0.050 0.775±0.120

VoxelMorph (Feat.) 0.04±0.16 6.242±1.573 0.005±0.003 0.687±0.050 0.911±0.133

Ours (NeurReg) 0.03±0.15 0.957± 0.312 0.001± 0.153 0.808± 0.069 1.520± 0.191
Ours w/o Lsim 0.03±0.18 0.950± 0.330 0.002± 0.002 0.762±0.087 1.386± 0.219
Ours (MTL) 0.06±0.19 1.277±0.382 0.002±0.001 0.749±0.070 1.337±0.164

Ours (Feat.) 0.05±0.20 1.146±0.339 0.002±0.001 0.782±0.068 1.410±0.176

Table 1. Registration comparisons on the Hippocampus dataset. NeurReg is the best based on all the metrics. Best scores are in bold face.

Method Time (s) EPE (mm) MSE NLCC MI

ANTs 5851.84±2450.31 24.371±8.535 0.021±0.005 0.304±0.074 0.334±0.173

NiftyReg 2307.32±662.08 25.556±7.595 0.008±0.003 0.407±0.096 0.821±0.242

VoxelMorph 0.92±1.71 26.483±7.450 0.010±0.001 0.504± 0.033 0.472±0.104

VoxelMorph (MTL) 1.07±1.60 26.480±7.432 0.012±0.002 0.423±0.029 0.376±0.089

VoxelMorph (Feat.) 1.20±1.72 26.489±7.441 0.013±0.002 0.433±0.027 0.356±0.084

Ours (NeurReg) 0.78±1.34 5.228± 1.169 0.006± 0.002 0.363±0.057 0.860± 0.231
Ours w/o Lsim 0.76±1.33 5.082± 1.173 0.008± 0.002 0.280±0.052 0.735±0.204
Ours (MTL) 1.90±3.12 6.991±1.452 0.008±0.002 0.292±0.039 0.700±0.198

Ours (Feat.) 1.70±2.15 6.532±1.687 0.008±0.003 0.321±0.045 0.741±0.215

Table 2. Registration comparisons on the Prostate dataset.

Figure 5. Visualization of bending energy used in VoxelMorph

(left) and registration field supervision loss (right) in our regis-

tration on the Hippocampus dataset.

model which uses 3D U-Net1 based on 18 residual blocks

in the encoder and ImageNet pretrained Res-18 weight [25].

The comparison results are listed in table 3 and 4.

Table 3 demonstrates better accuracy of our registration-

based segmentations compared to VoxelMorph on all the

three frameworks. The NeurReg with residual segmenta-

tion block obtains comparable performance as the advanced

3D U-Net with more parameters and pretrained model [25].

The atlas-based segmentation with fast inference speed is

comparable with NiftyReg and ANTs and it confirms the

robustness of proposed registration. From table 4, NeurReg

1https://developer.nvidia.com/clara

Method Dice (%)

ANTs 80.86±5.13/78.34±5.24

NiftyReg 80.53±4.86/77.92±5.47

VoxelMorph 78.92±6.79/75.85±8.13

VoxelMorph (MTL) 86.69±5.04/85.72±3.97

VoxelMorph (Feat.) 86.68±4.24/85.68±4.46

3D U-Net 88.66±3.09/86.76±3.26

Ours 78.99±6.24/78.72±7.47

Ours (MTL) 88.95±3.66/87.10±3.72

Ours (Feat.) 89.18± 3.50/87.39± 3.42

Table 3. Segmentation comparisons on the Hippocampus dataset.

Ours is the best and comparable with an advanced 3D UNet.

Method Dice (%)

ANTs 28.52±18.94/57.58±24.09

NiftyReg 27.88±17.25/56.67±23.71

VoxelMorph 22.03±12.33/53.40±21.50

VoxelMorph (MTL) 25.50±14.63/63.62±18.73

VoxelMorph (Feat.) 38.97±16.61/76.72±5.62

Ours 21.70±11.95/55.80±17.53

Ours (MTL) 31.57±22.49/73.84±12.68

Ours (Feat.) 44.30± 17.60/82.38± 3.46

Table 4. Segmentation comparisons on the Prostate dataset.

3623



Figure 6. Visualization of segmentation results from ANTs,

NiftyReg, VoxelMorph and Ours (Feat.) on the Hippocampus

dataset. The images in the first column are test image and mov-

ing images from VoxelMorph and NeurReg. The columns from

second row to the last row are segmentation results from ANTs,

NiftyReg, VoxelMorph and ours. The images in the last row are

uncertainty map and MTL prediction backpropagated map to the

moving image from VoxelMorph and Ours. The green and red

region represents ground truth or true positive. Blue is the false

positive region and yellow is the false negative region.

Figure 7. Visualization of segmentation results from ANTs,

NiftyReg, VoxelMorph and Ours (Feat.) on the Prostate dataset.

with residual segmentation block achieves the best perfor-

mance which might be because of the dual registration and

residual segmentation block.

We visualize the segmentation from the four registration

methods in Fig. 6 and 7. The figures demonstrate NeurReg

achieves the best segmentation on the randomly chosen two

test images from the two datasets.

4.3.1 Uncertainty Estimation and Interpretability for

Segmentation

Uncertainty estimation is one of the most important features

in medical image analysis to assist radiologists. For multi-

atlas based segmentation, each atlas can be considered as a

prior. We can simply derive the segmentation uncertainty

by

U = 1−

∑Natlas

i=1
I(Si = S)

Natlas

, (12)

based on empirical estimation, where S is the prediction

after majority voting and Si is the prediction from ith atlas,

I is an indicator image. If the pixel value in the uncertainty

map is large, it means the prediction in the current pixel has

a high uncertainty. From the uncertainty maps in last row

of Fig. 6 and 7, the high uncertainty regions are along the

edges of the predictions which are error prone areas.

The other advantage of registration-based segmentation

is the registration field provides the interpretability of seg-

mentation prediction. From the registration field, we can

build the connection between the MTL prediction and

ground truth of the moving image. We use ITK to approxi-

mately calculate the inverse registration field in the last row

of Fig. 6 and 7. Through the prediction backpropagated map

based on top one image of NLCC, we can find the reason of

the prediction even based on appearance in the image space.

5. Conclusion

In this work, we developed a registration simulator to

synthesize images under various plausible transformations.

Then we design a hybrid loss between registration field su-

pervision loss and data similarity loss in NeurReg. The reg-

istration field supervision provides an accurate field loss and

is easy to optimize. The data similarity loss improves the

model generalization ability. We further extend the regis-

tration framework to multi-task learning with segmentation

and propose a dual registration to fully exploit the general-

ization of representational similarity loss on random fixed

images. A residual segmentation block is designed to fur-

ther boost the segmentation performance. Extensive experi-

mental results demonstrate our NeurReg yields the best reg-

istration on several metrics and best segmentation with un-

certainty and interpretability on the two public datasets. In

future works, it is promising to generalize NeurReg and ex-

plore the applicability to multi-modal image registration.
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