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Abstract

Learning a robust 3D point signature from point clouds

is an interesting but challenging task in the computer vision

field due to the irregular and unordered structure character-

istics of the point cloud data. In this paper, we propose to

learn a 3D point signature by exploring the implicit relation

between keypoints and their neighbors (grouped as patches)

among the given scene point clouds. We design a uniform

reference grid to represent the raw relation between each

keypoint and its neighbors from the raw point clouds. In

order to learn a 3D point signature gradually from expand-

ing perceptive region, we create a novel siamese framework

with a multi-layer perceptron (MLP)-based unit feature net-

work and a 3D convolutional neural network (CNN)-based

grid feature network. Specifically, the unit feature network

aims to dig the connections among points fallen into the

same unit of the reference grid, while the grid feature net-

work is used to discover the grid-wise relations across the

whole reference grid with concatenation of the learned unit-

wise features. Moreover, we introduce an attention network

upon the unit feature network to enhance the discriminative

ability of our learned 3D point signature. Our proposed 3D

point signature achieves superior performance over other

state-of-the-art methods on keypoint matching and geo-

metric registration on the real-world scenes datasets, e.g.

SUN3D, 7-scenes and the synthetic scan augmented scenes

in ICL-NUIM dataset. More importantly, our learned 3D

point signature successfully handles the point cloud frag-

ment alignment challenges by producing correct transfor-

mations with RANSAC algorithm.

1. Introduction

A robust 3D point signature has great effects on a vari-

ety of applications in the 3D computer vision field, espe-

∗indicates corresponding author.
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Figure 1: In our work, we learn a robust 3D point signature

from raw scene point clouds, which can be used to recog-

nize the match keypoints from same part of a scene but in

different fragments. Then, the point cloud fragments can be

further aligned by the estimated transformation computed

from the match keypoint pairs.

cially for typical local matching problems, such as keypoint

matching, scene geometry registration and mesh registra-

tion. In the early attempts, researchers focus on designing

hand-crafted features solely based on the geometry structure

of the 3D mesh. In recent years, learning a 3D point sig-

nature using deep learning techniques attracts great atten-

tion from the computer vision community, especially with

the advances of convolutional neural network (CNN) tech-

niques. Given the nature that CNN is designed for 2D, most

researchers convert the 3D data (e.g. mesh, point clouds)

into 2D format representations for better signature learn-

ing, such as multi-view rendered images or hand-crafted

geometry-based features. The development of 3D CNN en-

ables researchers to learn a 3D point signature directly from

a 3D format (voxelized) data. 3DMatch [33] is the first work

to learn a 3D local signature from voxelized data using 3D
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CNN, where they sampled keypoints and extracted voxl-

ized local patches from depth images. Though their work

is impressive, it requires large amount of computation time

when preparing and processing the voxelized data. The high

memory consumption also limits the resolution of the vox-

elized patch, which disadvantages the 3D local signature

learning.

Recently, the success of PointNet [22] provides us a

hint to learn a robust 3D point signature from more natural

3D point cloud data using a MultiLayer Perceptron(MLP)-

based network. PPFNet [8] is the first work to utilize the

PointNet technique on 3D local signature learning for the

real-world scene geometry registration task. In addition

to the 3D point (XYZ) coordinate values, they also feed

the computed normals and hand-crafted point pair features

(PPF) together into their model to learn a point signature.

Their latter work PPF-FoldNet [7] obtains a even better per-

formance only using PPF as their network inputs, implying

that the hand-crafted PPF features actually contribute much

more than the 3D point (XYZ) coordinates in their point

signature learning. Therefore, it still remains a very chal-

lenging problem how to learn a robust 3D point signature

from the raw point (XYZ) coordinates without any auxil-

iary hand-crafted features.

In this paper, we present a model that learns a discrim-

inative 3D point signature from point (XYZ) coordinates,

without any precomputing point features or normals. Tak-

ing advantages of the relation of keypoints and their neigh-

bor points, we first group the keypoints and their neighbors

within certain radius as patches to have a larger view area,

then we applied a reference grid on the patches. For each

unit in the reference grid, we compute the coordinate differ-

ences between the center of the unit and its N-nearest neigh-

bor points from the patches as unit values. Later, the refer-

ence grid with coordinate differences is fed into a MLP-

based network to learn unit-wise features. We concatenate

the unit-wise features with the original reference grid, and

introduce a 3D CNN-base network to learn a grid-wise fea-

ture as the final 3D point signature. Therefore, our 3D point

signature can be gradually learned from a smaller unit re-

gion to a larger grid view. In addition, an attention net-

work is added on the MLP-based unit feature network to

strengthen the discriminative ability of the point feature. In

order to better learn a 3D point signature for matching prob-

lems, we develop each network component in a siamese

manner, and train all the networks simultaneously with a

contrastive loss.

To validate our proposed method, we conduct experi-

ments on the 3DMatch dataset [33] for two 3D matching

tasks, i.e., keypoint matching and geometric registration.

We provide the quantitative results of keypoint matching

task on 3DMatch testing dataset. For the geometric scene

fragment registration task, we report the quantitative com-

parisons on both real-world scan scenes and synthetic aug-

mented scenes. Moreover, we visualize some fragment

alignment results for qualitative comparison. The experi-

mental results demonstrate that our proposed method suc-

cessfully learns a discriminative 3D local signatures from

point clouds (XYZ coordinates) with superior performance

over other state-of-the-art methods. We also discuss the ef-

fectiveness of the introduced attention network by providing

the quantitative results when training our feature learning

network without the attention part.

In summary, the main contributions of our work are con-

cluded as:

• To address the challenging 3D matching problems,

we propose to build a novel end-to-end siamese-

framework to learn a robust 3D point signature from

point clouds (XYZ coordiantes) without any precom-

puted hand-crafted point features as auxiliary.

• Specifically, we design a reference grid to encode

the relation between the keypoints and their neigh-

bor points by computing the coordinate differences be-

tween the unit centers and its n-nearest points.

• We develop a MLP-based unit feature network fol-

lowed by a 3D CNN-based grid feature network to

learn a robust 3D point signature from multiple per-

ceptive regions. An attention network is introduced to

enhance the discriminative ability of our 3D point sig-

nature.

• The experimental results demonstrate that our pro-

posed framework can generate robust discriminative

3D point signature and achieves superior performance

over the state-of-the-art methods on both keypoint

matching and geometry registration.

2. Related Work

To find a local signature that can well describe a given

keypoint, researchers started their works on designing a

hand-crafted signature based on the geometric structure of a

3D mesh. In the well-known spin image [17] method, John-

son et al. proposed a signature that consisted of a set of 3D

points, surface normals and spin images generated from the

oriented points of 3D meshes. Statistic analysis [2, 34, 10]

was another popular direction to define local signatures for

points of the given 3D objects for shape registration. For

example, Zhang et al. [34] got their signatures by comput-

ing the distributions of the average geodesic distances be-

tween points over the meshes due to their observation that

geodesic distance worked well on the problems dealing with

graph-like structures. Besides the geodesic distances dis-

tribution, there were many other hand-crafted histogram-

based signatures computing on the curvatures, diameters,

and other geometrical properties [10, 28, 26, 25, 24].
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Though the above hand-crafted signatures were inspired,

they were all designed on the 3D mesh data with clear struc-

ture that is composed of 3D points and triangles connected

by the points. However, there is no connection between

points in the raw point clouds, which limits the direct uti-

lization of the hand-crafted signatures on point cloud data.

In our work, we aim to find a robust 3D point signature from

the point cloud data with irregular structure.

In addition to the traditional hand-crafted signatures,

how to obtain a robust learning-based signature has at-

tracted a lot of attention from the computer vision commu-

nity, due to the great success of applying deep learning tech-

niques on various applications, such as retrieval, classifica-

tion and transfer learning [19, 18, 27, 36, 11, 9, 14, 6, 5].

Since the classic convolutional neural network was devel-

oped for addressing 2D image-based tasks, it is difficult to

directly apply a CNN network on 3D data. In some attempts

[12, 32, 15, 3, 4, 20, 21], researchers preprocessed the 3D

objects by converting those objects into some hand-crafted

features, or rendered images (from different view angles),

so that they can build a CNN network upon the extracted

features or images.

The popularization of 3D CNN techniques enables the

researchers to construct a deep convolutional network on

more natural 3D voxel data for 3D point signature learn-

ing. 3DMatch [33] was the first work that learned a point

signature from depth scans using a 3D CNN on volumetric

point patches. Each voxel of the point patch contained the

truncated distance between the voxel center and the nearest

neighbor point. However, their matching performance was

far from satisfactory. The causes could be that they 1) com-

puted the patch values from the nearest neighbor leading to

a very limited perspective area for each unit in the patch,

and 2) ran a 3D CNN network on the extracted patches

with 3D kernels to learn a patch-wise feature but ignored

the influences of points fallen within each unit of the patch.

Therefore, we are seeking a way to better learn a 3D point

signature by taking both the influences of points within each

unit and the connections of units among the whole patches

into consideration. The effectiveness of learning features

progressively from different receptive field has also been

validated in VoxelNet[35] on 3D object detection task.

Beside the models working on 3D voxelized data, in-

spired by the successes of PointNet [22] and PointNet++

[23], researchers also turned their eyes on learning 3D point

signatures from point cloud data. Most of them focused

on digging the implicit relation between points and their

neighbor points (e.g. normals, point pair features, coordi-

nate differences, normal angle differences) or computing

some extra point features along with the point (XYZ) co-

ordinates to boost the performance mostly on segmentation

tasks [30, 29, 16].

Specifically, Deng et al. paid their attention on the

matching problems, and proposed PPFNet [8] to learn a

3D point signature from 3D point clouds. Apart from the

point (XYZ) coordinates for keypoints and neighbor points,

they also computed the normals and hand-crafted point-

pair-features (PPF) as auxiliary. The PPF feature was crit-

ical to their matching performance, since it provided much

more information (e.g. normal angle differences) than sim-

ple point (XYZ) coordinates differences. In their latter work

PPF-FoldNet [7], they obtained a better performance even

only using the PPF, which also proved the larger contribu-

tion of the hand-crafted PPF on their matching performance.

Another recent work 3DFeat-Net[31] learned the point sig-

natures solely in point-wise manner using MLP but ignored

the structure information, and their two-stage model needed

to take the point cloud of entire scenes as input, which is

costly in both memory and time. In our work, we aim to

build a one-stage model that works directly on the (XYZ)

coordinates of the keypoint and neighbor points without any

extra support, e.g. normal, color, hand-crafted features.

3. Approach

Considering that neighbor points can provide more infor-

mation for given single keypoint, instead of learning a point

signature from single point (XYZ) coordinates, we group all

the neighbor points around the keypoint within a radius as

patches (3D local neighberhood) to learn a point signature,

analogous to 2D image patches around detected keypoints

in 2D feature matching frameworks. Then, for each input

patch, we extract a reference grid and build our networks

upon the extracted reference grids to learn a robust 3D point

signature from progressively expanding perceptive region.

As shown in Fig. 2, there are mainly four components

in the framework, 1) reference grid extraction that generate

the reference grids for any input patches, 2) a siamese unit

feature network to explore the the implicit relation among

neighbor points within each unit, 3) an attention network

added upon the siamese unit feature network to improve the

learning ability of the unit feature network, 4) a siamese

grid feature network that finally learns a robust 3D signa-

ture over the whole grid after concatenating the generated

unit-wise features with the original extracted grid. All the

network components are connected by a contrastive loss de-

fined on the final output of the grid feature network. The

technical details for each component are provided sepa-

rately below.

Reference Grid Extraction In order to better dig the

influence of points within the patches, we decide to learn

features gradually from smaller perceptive regions to larger

ones using reference grids for convenience. More impor-

tantly, coordinate differences between the unit centers and

points can provide us some hints on the patch density. The

pipeline of the reference grid extraction part is depicted in

213



Input patch  x1

Input patch  x2

R
e

fe
re

n
c
e

 G
ri

d

E
x
tr

a
c
ti

o
n

R
e

fe
re

n
c
e

 G
ri

d

E
x
tr

a
c
ti

o
n

F
C

M
L
P

M
a

x
 P

o
o

l

…

M
L
P

M
L
P

M
L
P

…

M
L
P

M
L
P

Attention 

Network

M
L
P

…

M
L
P

M
L
P

M
a

x
 P

o
o

l

M
L
P

…

M
L
P

M
L
P

×

×

3
D

 C
N

N

…

3
D

 C
N

N

F
C

F
C

3
D

 C
N

N

…

3
D

 C
N

N

F
C

Attention 

Network

Fe
at

u
re

Lo
ss
L
F

Siamese Unit Feature Network
Siamese Grid 

Feature Network

C

C

Figure 2: The framework of our proposed method. It consists of four parts: a reference grid extraction part, a siamese unit

feature network, an attention network and a siamese grid feature network. Given a pair of keypoint patches from point could

fragments, our proposed model first extracts a reference grid for each patch, and then learns a unit-wise feature from the

reference grid using the MLP-based unit feature network. The MLP-based attention network is added upon the unit feature

network to enhance the discriminability of our learned features. Taking the concatenation of the original reference grid and

the unit-wise features as input, the siamese grid feature network learns a grid-wise feature as our final 3D point signature for

each given patch.
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Figure 3: The pipeline of our reference grid extraction.

Given a patch with points, we partition the patch into a

K × K × K grid. For each unit i in the grid, we extract

all the Mi points fallen into the unit, and subtract the unit

center ci from all the Mi points per coordinate. Later, we

take the n-nearest points Ni with (XYZ) coordinate differ-

ences as the values for the i-th unit. Finally, we have a

K ×K ×K ×N × 3 reference grid for each input patch.

Fig. 3. Given a patch with points (XYZ) coordinates, we

first partition the patch into a K × K × K grid. Then, for

each unit i in the grid, we extract all the Mi points fallen

into the unit, and subtract the unit center ci from all the

Mi points per (XYZ) coordinate. Later, we sort all the Mi

points by the distances to the center ci, from where we take

the n-nearest points Ni with their (XYZ) coordinate differ-

ences as the values for the i-th unit. Finally, we have a

K3 ×N × 3 reference grid Gi for each input patch xi.

Siamese Unit Feature Learning Network The pur-

pose of the unit feature learning network is to discover the

implicit relation within each unit of the reference grids for

each input patch, so that our 3D point signature can be

learned from the small unit region as a start. Inspired by

the success of PointNet [22] on point cloud processing,

we build the unit feature network with a pair of siamese

networks, where each has seven MLP layers with chan-

nel sizes {8, 16, 32, 64, 64, 64, 128}, followed by a channel-

wise max pooling layer. The output of the fourth MLP lay-

ers is multiplied by the attention features generated from

the attention network before passing through the rest MLP

layers. A LeakyReLU layer is added between each two

MLP layers. The network parameters are shared between

the siamese networks. After feeding a pair of reference

grids G1 and G2 into the siamese unit feature network, we

can get a pair of unit features U1 and U2 with a size of

K3 × 128.

Attention Network In order to enhance the learning

ability of the unit features, we introduce an attention net-

work upon the unit feature learning network. Intuitively,

the points closer to the unit center should have greater im-

pact on the unit feature learning. Therefore, we compute

the exponential of XYZ coordinate differences for points in

each of the unit, then take the exponential reference grid

as input for the attention network. Similar to the unit fea-

ture learning network, the attention network contains a pair
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of siamese MLP-based networks with a channel size of

{8, 16, 32, 64}. The attention network learns channel-wise

attention features for each unit of the input reference grid.

The outputs of the attention network are attention features

with a size of K3 × N × 64, implying the impact factors

of each point within the unit on different channels. The at-

tention features are multiplied by the outputs of the fourth

MLP layer in the unit feature network as an enhancement.

Siamese Grid Feature Learning Network Before

learning the grid-wise features, we concatenate the unit-

wise feature U1 and U2 (generated from the unit feature

network) with the original reference grid input pairs G1 and

G2 as the input (size K3×158) for our grid feature learning

network. In order to learn a 3D point signature from a larger

perspective grid region, we develop our siamese grid fea-

ture learning network with three 3D convolutional layers.

The channel sizes are {128, 256, 512} with the kernel size

of 3×3×3 and the stride is 1. After a global average pooling

layer, the pooled features are fed into three fully-connected

layers with a neuron size of {512, 256, 256}. Every two net-

work layers are connected by a LeakyReLU layer. Network

parameters are shared between the siamese networks. Fi-

nally, the output of the last fully-connected layer is the 256-

dimension 3D point signature for given keypoint (patch) in-

put.

Network Training and Testing Let |, | denotes the

concatenation of two vectors, and || · || be the Euclidean dis-

tance between two feature vectors. P is the total number of

training keypoint pairs. Given pairs of reference grids, we

train all the networks, including the unit feature network U,

attention network A and the grid feature network F simulta-

neously with contrastive loss

LF =
1

2P

∑
(1− y) ∗ ||F (|G1,U1|)− F (|G2,U2|)||

2+

y ∗max(margin− ||F (|G1,U1|)− F (|G2,U2|)||, 0)
2.

(1)

We use ADAM optimizer to obtain the optimal network

parameters with beta value β = 0.5. The learning rate is

initialized as 0.001 and exponentially decayed after 200K
training steps. The margin is set to 1.0. When testing,

given any keypoint in a scene point cloud, we extract its ref-

erence grid and pass in into our networks to obtain a 256-

dimension point signature. We can match any given two

keypoints by directly computing the Euclidean distances be-

tween their generated point signatures.

4. Experiments

In order to comprehensively evaluate the performance of

our proposed method, we conduct two different experiments

on large-scale RGB-D datasets, i.e., keypoint matching and

geometry registration. In this section, we report the exper-

iment settings and quantitative comparisons to state-of-the-

art methods for both keypoint matching and geometry regis-

tration. We visualize some fragment alignments as the qual-

itative results to demonstrate the registration performance

using our proposed signature with RANSAC algorithm.

4.1. Keypoint Matching

In order to provide a fair performance comparison,

we conduct our experiments on the same benchmark or-

ganized by 3DMatch [33], which is constructed from

SUN3D dataset, 7-Scenes dataset, RGB-D scenes V2

dataset and BundleFusion dataset with more than 100K
RGB-D frames. The whole dataset has been split into non-

overlap 46-scene training set and 8-scene testing set. We

randomly sample 30K keypoint pairs from the depth im-

ages on training dataset with a ratio of 1 : 1 for match

and non-match pairs, and extract the points within 15cm ra-

dius around the sampled keypoints as patches. For testing,

we use the same keypoint testing set provided by 3DMatch

[33] that contains 10K pairs of keypoints sampled from the

depth images of the 8-scene testing set, with 5K match pairs

and 5K non-match pairs. Similarly, we extract the patch for

each keypoint in the testing set from the point clouds fused

by the depth images.

Given that the point cloud data is converted from depth

images, the point cloud densities are various and as a con-

sequence, the keypoint patch sizes vary from hundreds to

thousands. Nevertheless, our introduced reference grid can

perfectly eliminate this dynamic-density problem by pro-

viding a fixed-size 10× 10× 10 grid for each patch. More

importantly, our reference grid does not discard the density

information, and actually includes it by computing the co-

ordinate differences for points within each unit. We extract

the 10-nearest neighbor points’ coordinate differences for

each unit. For those units with less than 10 points fallen

into, we randomly replicate the points within the unit until

the number of points reaches 10. The same reference grid

extraction strategy is applied to all the keypoints for both

training and testing.

We implemented our proposed framework using the pop-

ular deep learning platform Tensorflow [1], and trained it on

the 30K pairs of training keypoints with a batch size of 30
for 20 epochs. It took around 12 hours on a desktop with In-

tel Xeon E5-2603 CPU and 501 NVIDIA Tesla K80 GPU.

After training, we extract a 256-dimension point signature

as the representation for each testing keypoint and match

the point pairs based on the Euclidean distance calculated

between their extracted signatures.

We report the false-positive rate (matching error rate) to

measure the performance on keypoint matching, and our

model obtains 30.0% matching error when recall reaches

95%. Moreover, we collect the publicly available results of
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Table 1: Keypoint matching errors compared to state-of-

the-art methods on the 3DMatch[33] testing dataset con-

structed from the SUN3D and 7-scenes datasets.

Type Method
lower is better

Error Rate(%)

Hand-crafted
Spin-Images [17] 83.7

FPFH [24] 61.3

Voxel-based
Learning

3DMatch (30×30×30) [33] 35.3

3DMatch (10×10×10) [33] 51.0

Point-based
Learning

PointNet [22] w contrastive loss 45.2

PointNet++ [23] w contrastive loss 40.5

Ours
w/o Attention Network 32.3

w Attention Network 30.0

state-of-the-art approaches (e.g. Spin-Images [17], FPFH

[24], 3DMatch (30×30×30) [33]) from the 3DMatch web-

site 1 for comparisons. Besides, we train a 3DMatch model

on a dataset that contains voxelized patches with same size

(10×10×10) as our proposed reference grid and calculate

the matching errors. As we can see from Table 1, our pro-

posed method outperforms the hand-crafted signatures and

the voxel-based learning 3DMatch. Furthermore, our pro-

posed method gets 20% higher accuracy than the 3DMatch

model trained on the patches with same size (10×10×10).

In addition to the hand-crafted and voxel-based learn-

ing signatures, we also provide the keypoint matching per-

formance using the popular point-based learning models

PointNet [22] and PointNet++ [23]. We change the net-

work structure of the PointNet a little bit to fit our match-

ing problem. We only keep the classification network and

discard the segmentation part. We randomly sample 1024
points within each patch and feed them into the modified

PointNet. We train a siamese modified PointNet with a

contrastive loss defined on the final fully-connected layer

of the network with 256 neurons. Same modification is

applied to the PointNet++ model. After training, we ex-

tract the 256-dimension features from the modified models

as the learning point signatures for given testing keypoint.

The keypoint matching errors are listed in Table 1. Point-

Net++ performs better than PointNet (40.5% V.S. 45.2% in

error), since PointNet++ model takes the influence of the

neighbor points into consideration. However, we can ob-

serve that the matching error of PointNet++ is still much

higher than 3DMatch and our proposed method. The cause

is that PointNet++ only learns the signature point-wisely,

but fails to explore the grid-wise (or voxel-wise) relation

over the patch.

To validate the effectiveness of the introduced atten-

tion network, we train our model without the attention net-

work using the same experimental setting, and extract the

point signature for each testing keypoint for matching. The

matching error of our model without attention network is

32.3%, which is 2.3% higher than ours with the attention

1http://3dmatch.cs.princeton.edu

network. The error gap demonstrates that the attention net-

work can indeed improve the discriminability of our learned

3D point signature for keypoint matching.

4.2. Geometry Registration

In addition to the keypoint matching task, we verify our

proposed method on geometry registration task, which is a

challenging task to find the correspondences between any

two fragments from the same scene. Following the same

setting with 3DMatch [33], we randomly sample 5K key-

points from each testing point cloud fragments and extract

the corresponding reference grids. After that, we utilize the

same model trained on the keypoint training set (details in

Section 4.1) to extract a 256-dimension point signature for

each sampled keypoint.

We conduct experiments on the fused fragments con-

structed from some real-world scenes, including depth im-

ages in SUN3D dataset, 7-Scenes dataset, RGB-D scenes

V2 dataset and BundleFusion dataset. We also report the

registration results on the synthetic scene point cloud frag-

ments, constructed from the depth images in the augmented

ICL-NUIM dataset [13].

Assessment criteria Following the instruction pro-

vided by the latest work PPF-FoldNet [7], we validate our

learned point signature by directly looking at the matching

recall of the keypoints sampled from testing scenes. We

compute the keypoint matching recall between match frag-

ment pairs (P, Q) that have more than 30% overlap after be-

ing transformed by using their ground-truth transformation

T ∗. Let (pi, qi) represents a match keypoint pair from match

fragment pair (P, Q) that are close to each other by apply-

ing Euclidean-distance-based nearest neighbor(NN) search

on their corresponding point signatures (f(pi), f(qi)). Our

matching recall for each scene is computed as

R =
1

M

M∑

m=1

✶([
1

K

K∑

i=1

✶(||pi − T ∗qi||2 < τ1)] > τ2),

(2)

where M is the total number of matched fragment pairs

across the same testing scene, and K is the number of match

keypoints after NN search on point signature space. We set

τ1 = 10cm and τ2 = 0.05 for all the testing scenes.

Real-world scene fragments The real-world scene

dataset includes a total of 387 point cloud fragments cate-

gorized into 8 difference scenes, i.e. homes, hotels, study-

room and lab. We compute the recalls using Eq. 2 and

report the matching recalls on each testing real-world scene

separately in Table 2, followed by an average recall of all

testing scenes. As we can see from the table, the hand-

crafted signatures Spin-Image [17] and FPFH [24] perform

the worst among all the compared methods. It is reason-

able since Spin-Image and FPFH were initially designed on

the 3D mesh data with triangle connections among points.

However, we only have points (coordinates) in each testing
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Table 2: The recall comparisons of geometry registration before RANSAC on real-world scan SUN3D and 7-scenes datasets.

Type Method
Matching Recall (%)

Kitchen Home1 Home2 Hotel1 Hotel2 Hotel3 Studyroom Lab Average

Hand-crafted
Spin-Images [17] 19.4 39.7 36.5 18.1 20.2 31.5 5.5 10.4 22.7

FPFH [24] 30.6 58.3 46.6 26.1 32.7 50.0 15.4 27.3 35.9

Voxel-based Learning 3DMatch [33] 57.5 73.7 70.7 57.1 44.2 63.0 56.2 54.6 59.6
Point-based Learning

(w hand-crafted features)

PPFNet [8] 89.7 55.8 59.1 58.0 57.7 61.1 53.4 63.7 62.3

PPF-FoldNet [7] (unsupervised) 78.7 76.3 61.5 68.1 71.1 94.4 62.0 62.3 71.8

Ours
w/o Attention Network 68.8 77.6 78.3 73.4 63.4 66.7 59.2 58.9 68.3

w Attention Network 73.5 85.3 81.7 77.4 69.2 75.9 65.1 62.3 73.8

Table 3: The recall comparisons of geometry registration

before RANSAC on the synthetic ICL-NUIM dataset.

Method
Matching Recall (%)

Liv. 1 Liv. 2 Off. 1 Off. 2 Avg.

Spin-Images [17] 15.9 38.2 22.1 49.7 31.5

FPFH [24] 21.4 35.7 32.9 42.1 33.0

3DMatch [33] 26.0 39.7 44.2 53.3 40.8

w/o Attention Network 26.7 45.2 49.6 59.4 45.2

w Attention Network 32.1 53.3 56.3 67.8 52.4

scene fragment. The voxel-based learning 3DMatch obtains

higher recalls over all the categories when compared to the

hand-crafted ones. We also present the matching recalls of

two recent point-based learning methods, i.e. PPFNet [8]

and PPF-FoldNet [7]. They achieve much better matching

performance than the hand-crafted and voxel-based learn-

ing approaches due to the leverage of some auxiliary hand-

crafted feature when training their models.

For our proposed method, we provide the matching re-

calls of the models trained with the attention network and

without the attention network. The model trained with the

attention network attains the best average keypoint match-

ing recall 73.8% across the testing dataset. We also ob-

serve that our proposed method performs best on category

Home1, Home2, Hotel1 with large recall margins. The no-

ticeable 5.5% improvement on average recall implies the ef-

fectiveness of our introduced attention network on the point

signature learning.

Synthetic scene fragments Besides the evaluation on

point cloud fragments in real-world scenes, we also conduct

the geometry registration task on the synthetic scan scenes

in augmented ICL-NUIM dataset [13]. For fair compari-

son, we test our model on the well-constructed fragments

provided by the authors of 3DMatch [33], which contains

207 fragments categorized into four different scenes (e.g.

livingroom1, livingroom2, office1 and office2), and each of

the fragment has 5K sampled keypoints. In order to find

the domain adaption ability of our proposed model, we di-

rectly extract the 256-dimension point signature for each

synthetic scene sampled keypoint using the model trained

on the real-world scene training dataset (same model as the

one mentioned in Section 4.1) .

Matching recalls are computed directly on the extracted

point signatures for each of the four synthetic scenes using

Eq. 2. As reported in Table 3, our proposed point signature

can obtain 32.1%, 53.3%, 56.3%, 67.8% recalls on livin-

groom1, livingroom2, office1 and office2, respectively. The

average recall is 52.4%. For comparison, we also calculate

the matching recalls using hand-crafted signatures Spin-

Images [17] and FPFH [24], voxel-based learning signa-

tures 3DMatch [33]. Similarly, we use the 3DMatch model

trained on the real-world scan scene training dataset to ex-

tract point signatures for domain adaption comparison. The

performance improvement demonstrates a greater domain

adaption potential of our proposed model.

4.3. Fragment Alignment

In Section 4.2, we evaluate our proposed mode in the ge-

ometry registration task with quantitative keypoint match-

ing recalls. In this section, we further validate the proposed

point signature with some qualitative fragment alignment

examples. Generally, the more robust a point signature is,

the more correct alignment it would produce with RANSAC

algorithm.

We leverage the 5K sampled keypoints (in Section 4.2)

from each point cloud fragment, and extract their point

signatures from our trained model. After that, we can

get match point pairs by applying NN search on the point

signature space, and then get the estimated transforma-

tion between any two point cloud fragments using classic

RANSAC algorithm. Finally, the estimated transformation

can be used to align the two fragments. We visualize some

examples of the aligned fragment pairs as the qualitative

evaluation of our learned point signature. Moreover, we

pick some alignment results based on 3DMatch signature

for comparison. All the fragment pairs are aligned by multi-

plying the points (coordinates) with the estimated transfor-

mation matrix generated by applying RANSAC on match

keypoint pairs collected with signatures.

In Fig. 4, we provide three pairs of point cloud frag-

ments from living room in synthetic ICL-NUIM dataset, ho-

tel and studyroom in real-world SUN 3D dataset. All of

them are the challenging cases we have found from the test-

ing datasets. 3DMatch fails to get a correct transformation

on the case that only a vey small common part exist be-

tween the two fragments, like the livingroom example. For

the hotel fragment pair, our proposed signature is able to

get a more correct transformation that perfectly aligns the
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Figure 4: Examples of some challenging fragment alignment cases in the real-world scenes and synthetic scenes. All the

alignment results are obtained after applying the RANSAC algorithm. We can observe that our point signature can success-

fully handle those challenges but 3DMatch fails.

Table 4: Keypoint matching errors using our proposed mod-

els trained with different components.

Components
lower is better

Error Rate(%)

grid feature network 47.0

unit feature network 40.7

unit feature network + attention network 38.0

unit feature network + grid feature network 32.3

All combined 30.0

two fragments. In the studyroom example, 3DMatch can-

not distinguish the two chairs in the fragment2, confusing

the RANSAC to compute an incorrect transformation. Our

proposed method successfully handles those challenges.

4.4. Ablation Study

Furthermore, we conduct the ablation study on our pro-

posed framework by training the model with different com-

ponents, e.g., the unit feature network, the attention network

and the grid feature network. When removing the compo-

nents, there could be some incompatibilities between con-

trastive training loss and the feature outputs. We adjust the

network structure slightly so that all the compared models in

the ablation study can be trained with the same contrastive

loss, and they all generate a 256-dimension point signature

for any given keypoint.

Following the same experiment setting in Section 4.1,

we compute the matching errors on the 3DMatch keypoint

matching testing dataset with the point signatures generated

by different models. All the keypoint matching errors are

listed in Table 4. If we train a grid feature network and unit

feature network independently, we can get 47% and 40.7%
matching errors, respectively. It implies that the unit feature

network actually contributes more than the grid feature net-

work for the point signature learning. With the involvement

of the unit feature network, the grid feature network can

learn a point signature to get a much lower error (32.3%).

Additionally, the introduced attention network can improve

≈ 2% matching accuracy compared to the models trained

without the attention network.

5. Conclusion

In this paper, we tackle the challenging 3D point signa-

ture problem by learning a robust point signature from raw

point clouds without any precomputed pairwise features or

normals among points. In order to better describe the patch

density and neighbor points relation to the keypoint, we

design a reference grid for each keypoint patch that con-

tains the neighbor point XYZ differences from the grid cen-

ters. Specifically, we develop a novel siamese MLP-base

unit feature network to learn the neighbor relation within

each unit of the reference grid, followed by a 3D CNN-

based grid feature network to capture the grid-wise char-

acteristics. Moreover, an attention network is introduced

on the unit feature network to enhance the discriminabil-

ity of the learned 3D point signature. The experimental re-

sults demonstrate that our proposed signature outperforms

the state-of-the-art signatures on keypoint matching and ge-

ometry registration. More importantly, our learned 3D point

signature can handle the alignment challenges with small

overlap between fragments.
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