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Abstract

This paper presents an anchor-pair network for crowded

human detection, which can overcome and solve the diffi-

culties caused by occlusion in crowded scenes. Specifically,

we use a function-aware network structure to extract more

distinctive and discriminative features for head and full-

body respectively, and then a CNN module is also exploited

to fuse the features by learning the correlations between

head and full-body to reduce crowd errors. Meanwhile,

a novel paired form for anchors, denoted as anchor-pair,

is proposed to estimate the head regions and full-body re-

gions simultaneously. Furthermore, a new ingenious Joint-

NMS is introduced to perform on the detected head and full-

body box pairs, which produces significant performance im-

provement in heavily occluded scenarios at tiny computa-

tional cost. Our anchor-pair network achieves a state-of-

the-art result on the CrowdHuman dataset which reduces

the MR
−2 to 55.43%, achieving 11.59% relative improve-

ment over our dataset baseline.

1. Introduction

As a key component of wide real-world applications

such as automatic driving, robotics, and video surveillance,

human detection has attracted increasing attention in recent

years [15, 25, 2]. Although great progress has been made

in recent years, crowd occlusion remains one of the most

difficult challenges in human detection [2, 22, 26, 5, 23].

In real life crowded scenes, human, especially pedestri-

ans and party crowd, often gather together and occlude each

other [31, 22]. The main impact of crowd occlusion is that

it severely harms the performance of human detector and

significantly increases the difficulty in locating each indi-

vidual accurately [8, 26, 20]. Just as shown in Figure 1, the

predicted boxes in crowded scenes with occlusion by using

generic detectors often shift dramatically to a neighboring

individual, or cover several mutually occluded individuals.

A large amount of occlusion condition in the lower parts of

DR (True positives) DR (False positives) MD (False negatives)

Figure 1. Some typical detection results with crowd errors in

crowded scenes detected by Retinanet [11]. Detection results (DR)

predicted by the detector and missing detections (MD) that are

missed in the results are visualized on the input images.

body regions undoubtedly increases the difficulty of sepa-

rating individuals in crowd, due to their similar but not dis-

criminating appearance shared by these people [9, 4]. To

make matters worse, the occluded regions of ground truths

will have a large number of invalid pixels that actually do

not belong to the target individual, but the background or

other individuals, which will confuse the detector [31].

The choice of a suitable threshold of NMS is still a big

deal: the results output by the anchor-based CNN detec-

tor have many false positives [17, 18], and it is difficult for

the vanilla greedy-NMS method based IOU of full bodies

to select a suitable threshold [22]. Just as shown in Figure

1, when two persons are close enough, one of detections is

thought to be a repeated detection and would be filtered out.

This reveals a limitation of the current CNN-based detec-

tor using NMS to get the final detections: a higher thresh-

old brings in more false positives while a lower threshold

leads to more missed highly overlapped human [1, 12]. So

how to reduce the sensitivity of the NMS threshold to adapt

different population densities is also critical to improve the

performance of human detector [22].

We do some statistics analysis on the CrowdHuman [19]

dataset and the results are shown in Figure 2. The consis-
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tency of the luminance region in the Figure 2(a) and Figure

2(b) proves that the head region is visible easily and thus

its location regression task faces few difficulties caused by

crowd occlusion. Moreover, the head regions seem to be a

powerful guidance information to direct the detector to es-

timate the full-body regions. The discriminating features

extracted from head region even will assist the features of

full-body that are not characteristic enough to estimate the

full-body region of each individual in a crowd, thereby re-

ducing crowd errors.

We propose an anchor-pair network to alleviate the im-

pact of crowd occlusion. Specifically, we use function-

aware network branches to extract discriminating features

from head and full-body region of human and then fuse

these features in an appropriate way. Besides, the anchor-

pair, shown in Figure 2(c), is designed to simultaneously

predict the head regions and body regions. The network

can implicitly learn the correlation between the head and

body part by sharing features with this dedicated pairing de-

sign. Through these designs, we want our detector to judge

whether there is a human at this location based on the head

region, and then will speculate on the region of the human

full-body.

We also propose Joint-NMS to solve inherent defects of

Greedy-NMS in crowded scenes. To be specific, we use

not the full-body part alone, but both the head and full-

body predicted box pairs, to do the NMS procedure. Be-

cause head regions face less serious occlusion and can be

detected successfully without too many difficulties, there is

a lower overlap between the head boxes of different individ-

uals compared with the full-body regions, while the overlap

between all repeated head boxes detected from one individ-

ual can maintain a high overlap. So the Joint-NMS will

make it easier to distinguish between repeated predictions

and crowded true positives caused by crowding.

Our main contributions are as follows:

• An anchor-pair network is proposed to detect human

in crowded scenes. The network extract more distinc-

tive features through a function-aware network struc-

ture and then fuses features via feature fusion module

in which the correlation between different regions are

learned to improve the performance for detecting hu-

man. Moreover, anchor-pair is also proposed to predict

the head and full-body regions simultaneously.

• A novel Joint-NMS procedure is proposed which sup-

presses the candidate boxes based on the IOU of paired

head and body predicted boxes, which is still robust to

NMS thresholds even with heavy occlusion.

• Several experiments are carried out on CrowdHuman

dataset to demonstrate the effectiveness of our pro-

posed methods.

(a) (b)

H

W

𝑯𝟓
Τ𝑾 𝟑

(c)

Figure 2. The distribution of head region and full body region,

and the design of our Anchor-pair. (a) Probability maps of the

possibility that the head regions appear (the brighter the color, the

more likely the area is the head region); (b) Probability maps of

the possibility that the regions is visible (the brighter the color, the

more likely the location is to be visible); (c) The proposed anchor-

pair design (the red box and the green box), which is designed

based on the prior statistics in (a) and (b).

2. Related work

2.1. Part­Based Human Detectors

It’s proved to be effective to handle occlusion by learn-

ing a set of part detectors which can be integrated properly

to detect partially occluded human [23, 5]. The detectors

of the parts which are still visible may give a high detec-

tion confidence when a human is partially occluded [29].

However, part detectors are usually learned independently

so that the correlations between parts are ignored, which can

reduce the reliability of the learned part detector [21, 16].

Additionally, the computational cost of applying a set of

part detectors increases linearly with the number of parts.

Our method firstly extracts the features of different regions

through the function-aware structure, followed by he fea-

ture fusion module which fuses the features together, thus

achieving the purpose of explicitly learning the correlations

between different parts with minimum computational cost.

In addition, this special anchor-pair can also implicitly learn

this correlations to some extent.

2.2. CNN­Based Human Detectors

Recently, the CNN-based detectors [24, 9, 27, 28] show

great potential in dominating the field of human detection.

Zhou and Yuan [30] proposes a multi-label learning ap-

proach to jointly learn part detectors to capture partial oc-

clusion patterns. Wang et al. [22] and Zhang et al. [26] pro-

pose a learning method to improve the robustness of NMS.

Among these approaches, most of the effort mainly focuses

on end-to-end mapping with deep but plain network archi-

tectures [3, 14, 7]. However, learning with pipeline CNN

structures is inefficient to train, blindness to tune [4], espe-
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Figure 3. An overview of our proposed approach for human detection. The one-stage detector will first localize the head region and

full-body simultaneously. And then the redundant detections will be filtered out by our Joint-NMS based on the IOU of head boxes.

Auxiliary branches with dotted line only work during training.

cially for detecting human in crowded scenes .

Instead of designing a pipeline network to extract task-

unclear features, we propose a function-aware network

structure to extract features from input images. By adding

auxiliary branches to the function-aware features extractors,

the supervision information can be introduced during the

network training and the function-aware network will be ca-

pable of extracting features purposefully.

3. Approach

In this section, we first introduce our architecture of

anchor-pair network (APN). Then we introduce our anchor

pairs and how to regress the ground truth based on them.

Next, loss function and train strategy of our network are

also discussed. Finally, a new joint-NMS approach is pro-

posed for improving the robustness of the NMS threshold

to adapt to different crowd densities.

3.1. Network architecture

The network architecture of our proposed CNN-based

human detector is shown in Figure 3. The APN is based

on the Feature Pyramid Network with ResNet-50 backbone

network [11]. Unlike other general detectors, our approach

predicts two bounding boxes for each human in the input

image which specify his or her full-body and head region

respectively.

Specifically, the ResNet-50 network will extract the ini-

tial features Fi from the input image as a shared feature

extractor. The initial feature Fi will then be fed into two

parallel function-aware network branches to extract features

Fh and Fb, which are specifically extracted to characterize

the head-region and full-body of a human. These two tar-

geted features will be fused later in the feature fusion mod-

ule. Finally, based on the fused features Ffusion, the APN

will regress the anchor-pair into two bounding boxes which

specify the regions of head and full-body respectively.

Function-aware Branches: When one person judges

how many people there are and predicts their spatial loca-

tion in the crowd, he will naturally guess the number ac-

cording to the human heads which are the most distinguish-

ing part and can be easily captured. And then he can pro-

ceed from the head region to predict the full-body region

depending on his common sense. In order for our network

to have the same intuition as human beings, the network

cannot treat all parts of the body indiscriminately.

To make the features extracted by the Resnet-50 more fo-

cused on attention-grabbing regions, we build two function-

aware branches which are responsible for estimating head-

region and full-body region. In order to explicitly model

these two tasks of extracting different features from differ-

ent targeted parts, two auxiliary branches are used during

network training to guide the learning of these two feature-

extracting branches.

It is worth noting that these auxiliary branches will only

work during training procedure and will be pruned after

training to reduce the inference time.

Fusion of Features: Just as the result of the auxiliary

body branch in Figure 3 shows, the crowd errors usually

occur when a predicted box shifts dramatically to neighbor-

ing non-target ground-truth human, or bounds the union of
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several overlapping human. Clearly it is not enough to only

rely on the extracted features for full-body Fb to predict the

full-body regions in crowded scenes. We speculate that this

is because when extracting features for full-body, the net-

work may pay more attention to whether someone exists or

not, and does not care about the boundaries between indi-

viduals.

It indicates that to improve the detection performance,

more discriminative features are needed to represent the

density of the crowd. So we design a feature fusion mod-

ule to fuse the features of head-regions and full-body re-

gions. With the help of features of head-regions Fh, the

location performance of human based on the features of fu-

sion Ffusion is greatly refined. By this way, the prior, that

the head region can be captured easily at a glance and can

guide the detector to determine whether a person exists or

not and speculate the location of full bodies, is explicitly

integrated into the APN.

3.2. Anchor­pair

Unlike other anchor-based one-stage detectors, our de-

tector will regress two types of bounding boxes, one for

the head region and the other for the full-body region. It

seems straightforward that using one anchor to regress one

ground-truth with two bounding boxes which is similar in

SSD [13] and YOLO [17]. However, the large difference

between position and size between head ground truth and

the anchor which is suitable for the full-body ground truth

will make the regression result for locating head regions be

less satisfying.

Inspired by part detectors [23, 5], it is advisable to use

two anchors with different size and location to regress head

region and the full-body region. But how to associate the

detection results of these two types of anchors to form a

human individual is still a problem. Instead of learning the

association between the detections of head region and full-

body region, We simply embed this association directly into

the anchor-pair we will discuss later. By this way, the APN

can learn the correlations between parts implicitly and uses

the correlations to refine the detection results.

Anchor-pair Parameterization: Based on the prior

knowledge of the position and the size of the human head

relative to the body, we propose anchor-pair as shown in

Figure 2(c) to detect human. One of the paired anchors

is responsible for the regression of head region denoted

as PH (the green box in 2(c)), and the other is responsi-

ble for the body regression denoted as PB (the red box in

2(c)). So all anchor-pairs placed on the feature maps can

be denoted as N pairs
{

(P i
H , P i

B)
}

i=1,...,N
, where P i

H =
(

P i
Hx

, P i
Hy

, P i
Hw

, P i
Hh

)

specifies the pixel coordinates of

the center of i-th PH together with the i-th PH ’s width and

height, and P i
B =

(

P i
Bx

, P i
By

, P i
Bw

, P i
Bh

)

specifies the ith

PB in the same way.

To avoid the designing complexity, internal restriction

for the anchor-pair are set as shown below, which is based

on the position and size of the head region relative to the

full-body region:
(

PBx
, PBy

, PBw
, PBh

)

=
(

PHx
, PHy

+ 2PHh
, 3PHw

, 5PHh

)

.

This restriction has some limitations inevitably due to the

different poses and occlusion conditions. Based on the plain

yet ingenious design, however, the regression procedure of

network can learn the positional offset and size scaling of

every anchor in one pair relative to the ground truth to adapt

to different poses and occlusion conditions.

Output Definition: Consistent with the denotion of

anchor-pair, the ground truth of our task should also be a

set of M bounding-box pairs
{

(Gi
H , Gi

B)
}

i=1,...,M
. More

precisely, the two bounding boxes specify the location in-

formation of the head region and the full-body region re-

spectively. Our goal is to learn a transformation that maps a

human anchor-pair (PH , PB) to a ground-truth (GH , GB).
Inspired by the idea of parameterized transformation [6]

that to learn the scale-invariant translation of the center and

the log-space translation of size of the anchors, we param-

eterize the regression targets for the head region and full-

body as h =
(

hx, hy, hw, hh

)

and b =
(

bx, by, bw, bh
)

. In

detail, we define h as

hx =
GHx

− PHx

PHw

, hy =
GHy

− PHy

PHh

hw = log(
GHw

PHw

), hh = log(
GHh

PHh

)

(1)

Similarly, the targets for full-body b is also defined as:

bx =
GBx

− PBx

PBw

, by =
GBy

− PBy

PBh

bw = log(
GBw

PBw

), bh = log(
GBh

PBh

)

(2)

3.3. Training

Loss function. Based on the fusion features Ffusion, our

APN will regress the classification predictions ci, full-body

predicted boxes pb and head predicted boxes ph simultane-

ously. Let xij = {0, 1} be an indicator for matching the i-th

anchor-pair to the j-th ground truth of a human instance. So

we get a multi-task loss from this branch:

Lf =Lclass (xij , ci, cj)+

λbLloc1

(

xij , pb, b
)

+ λhLloc2

(

xij , ph, h
) (3)

where Lclass is the classification loss, and Lloc1 and Lloc2

are the bounding box regression loss for the full-body es-

timation and head region estimation respectively. Lclass is
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focal loss which can address foreground-background class

imbalance [11]. For Lloc1 and Lloc2, we use the smooth L1
loss proposed in Fast R-CNN [6]. These two hyper param-

eters used to balance the three loss are set as λb = λh = 1
empirically.

Note that two auxiliary branches also have losses Lb and

Lh for their own task during training, which are the same as

loss in [11]. Their losses are added to the total loss Ltotal

with discount weights α1 and α2 respectively (the losses

of the auxiliary branches are weights by coefficients). We

learn this model optimal parameters by minimizing the fol-

lowing total loss during the training procedure:

Ltotal = α0Lf + α1Lb + α2Lh

Multi-step training strategy. Training the network with

a fixed Ltotal from scratch may make the network not ad-

justed according to the original intention we envisioned. So

we develop a multi-step training strategy to optimize our

network. In the first step, We set α0 = α2 = 0 while

α1 = 1. So the network can be fine-tuned end-to-end for

the estimation of full-body regions. In the second step, the

network are guided to extract more features from head re-

gions by setting α0 = α1 = 0 while α2 = 1. Finally,

We train the network jointly by reducing these two weights

α1 and α2 gradually during the training process. Specif-

ically, α1 = α2 = 0.5 during the first 10 epochs. Then

α1 = α2 = 0.1 during the next 20 epochs. After 30 epochs,

α1 = α2 = 0.0 and these two auxiliary branches will no

longer work.

3.4. Joint­NMS

Traditional Greedy-NMS starts with a list of detection

boxes B for full-body with scores S . After selecting the de-

tection with the maximum scoreM, append it to the set of

final detections F . Additionally, it removesM and any box

which has IOU with M greater than a threshold Nt from

the set B. This process is repeated for the remaining detec-

tions until the B is empty. However, Greedy-NMS method

is sensitive to the threshold Nt: a higher threshold brings in

more false positives while a lower threshold leads to more

missing highly overlapped objects.

As shown in Figure 2, the occlusion of head regions is far

less serious than that of full bodies in the crowded scenes.

But if the performance of detection is good enough, the head

regions of the repeated detections of one human instance

will have a high overlap. That is to say, the overlap between

head boxes can be used as a cue to distinguish between oc-

clusions and repeated predictions. Using this intuition, we

propose Joint-NMS to reduce the sensitivity to the thresh-

old. This Joint-NMS algorithm is shown in Algorithm 1,

whose main improvement is how to suppress the remain-

ing detections. The Joint-NMS suppresses the candidate

detections whose head boxes have IOU with the currently

Algorithm 1: Joint-NMS

Input: B = {b1, ..., bN},H = {h1, ..., hN},
S = {s1, ..., sN}, Nt1, Nt2

B is the list of initial boxes for full-body regions

H is the list of initial boxes for head regions

S contains corresponds detection scores

Nt1, Nt2 are the IOU thresholds

begin
F ← {}
while B 6= empty do

m← argmax (S)
M← bm;D ← hm

F ← F ∪M; B ← B −M;H ← H−D
for hi inH do

if iou(D, hi) > Nt1 or

iou(M, bi) > Nt2 then
B ← B−bi;H ← H−hi;S ← S−si

end

end

end

return F ,S
end

most credible head region D greater than a threshold Nt1

or whose full-body boxes have IOU with the currently most

credible full-body regionM greater than another threshold

Nt2. The main difference between Joint-NMS and previous

greedy-NMS is that the former utilizes the complementary

information from the head boxes, while the greedy-NMS

does not use the head boxes at all.

Note that Joint-NMS is also greedy-NMS essentially,

and their iterative process is similar, in which a little ad-

ditional computational cost is introduced. However, Joint-

NMS is a generalized version of NMS and can reduce the

sensitivity to the IOU threshold, thus maintaining the excel-

lent performance of the human detector.

4. Experiments

4.1. Dataset and Evaluation metric

Recently, CrowdHuman [19] has been released specif-

ically for human detection in a crowd. It collects 15000,

4370 and 5000 images from the Internet for training, vali-

dation and testing respectively. There are totally 470k indi-

vidual persons in the train and validation subsets, and this

dataset contains about 22.6 persons on average per image

as well as 2.4 pairwise crowd instances (density higher than

0.5). More importantly, CrowdHuman provides head region

bounding-box annotation along with full-body bounding-

box annotation for each person, which can be used to train

our model to detect the head region and full-body simulta-

neously.
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Table 1. Selection thresholds of Joint-NMS by adjusting Nt1

and Nt2. The results are obtained on CrowdHuman validation set.

Nt1 0.1 0.2 0.3 0.4 0.5

Nt2 1 1 1 1 1

MR−2 57.23 56.95 57.02 57.54 58.27

Nt1 1 1 1 1 1

Nt2 0.4 0.5 0.6 0.7 0.8

MR−2 62.35 61.37 63.52 64.15 65.72

Nt1 0.1 0.2 0.2 0.2 0.3

Nt2 0.7 0.6 0.7 0.8 0.7

MR−2 56.21 56.03 55.43 55.95 56.09

The log miss rate (MR) average over false positive per-

image (FPPI) range of
[

10−2, 100
]

, denoted as MR−2, is

used to evaluate the detection performance (lower is better).

Additionally, average precision (AP) and recall of the mod-

els we train are also shown in the results.

4.2. Implementation Details

We use the same setting of anchor scales as [11]. Con-

sidering the human body shape, the anchors’ ratios are mod-

ified as {1 : 1, 2 : 1, 3 : 1}. For the input images, we resize

them so that their short edge is at 800 pixels while the long

edge should be no more than 1400 pixels at the same time.

To make more use of the guidance information of the

head region, we choose a more strict matching strategy be-

tween anchor-pairs and ground truth. An anchor-pair P is

matched to human individual G if it aligns well with G both

in head region and body region. Specifically, their differ-

ence contributes to the loss if they satisfy

IOU (PH , GH) ≥ 0.2 and IOU (PB , GB) ≥ 0.5,

where IOU is the intersection over union of two regions.

We optimize our networks using Stochastic Gradient De-

scent (SGD) with 0.9 momentum and 0.0005 weight de-

cay. For fair comparison, we set the batch size to 8 on 4

RTX 2080Ti GPUs for all the experiments and train mod-

els for 60 epochs, with the base learning rate set to 0.02

and decreased by a factor of 10 after the first 15, 30 and

45 epochs. Multi-scale training/testing are not applied to

ensure fair comparisons.

4.3. Ablation experiments

In short, to solve the problem of detection difficulties

caused by occlusion in crowded scenarios, we propose three

methods: using two function-aware branches to extract fea-

tures; using anchor-pair to regress human directly from

the fusion features; and using Joint-NMS to suppress the

false positives. First, we construct our baseline detector

(model v0 in Table 2), which is based on the RetinaNet [11]

to predict full-bodies directly without the assistance of esti-

mation of head regions (This model can be considered to be

output from auxiliary body branch ). Then, we run several

ablation experiments to analyze these methods and discuss

their contributions in detail.

4.3.1 The effectiveness of function-aware branches

On the basis of the baseline model, we add an extra branch

for regressing the head regions in parallel with the existing

branch for regressing the full-body regions, while the fea-

ture fusion module and Joint-NMS are still not adopted. In

this model, the detection results can be thought as the out-

puts from two auxiliary branches. This model with multiple

regression tasks by using two parallel branches, denoted as

model v1 in Table 2, outperforms the baseline with an im-

provement of 2.94 MR−2. Although there is no feature fu-

sion module to help the head regions to refine the features of

full-body, the guidance information from the head regions

can still exploit the shared feature extractor ResNet-50 to

learn the correlation between different parts.

This demonstrates that head parts, as the most recogniz-

able regions of human, can be well recognized even in the

crowd and can help to estimate the full-body. Through the

network design of two regression tasks, our model implic-

itly encodes this capability by improving the shared ResNet

extractor’s capability of features extraction.

4.3.2 The effectiveness of feature fusion

Similarly, we validate the effectiveness of fusing the fea-

tures Fh and Fb through the feature fusion module. And the

output from the fusion features Ffusion with greedy-NMS

is thought to be the detection results. As a result, this model

model v2 improves the detection performance with a reduc-

tion of 1.33 MR−2, which is shown in Table 2.

This result suggests that the features of head region can

refine the full-body location based on guidance information

from head features as well as body posture of a human. In

other words, the fusion module guides the network to es-

timate the full-body regions from the characteristic head

regions with powerful features, rather than the body torso

where the features are not discriminating or even missing.

4.3.3 Joint-NMS

The Balance of Joint-NMS’ Thresholds: Our Joint-NMS

introduces an extra threshold by using both the IOU of head

boxes and full-body boxes. But how to find the most appro-

priate set of values remains to be discussed. To better in-

vestigate the role of the Joint-NMS in post-processing, we

experiment with different settings of Nt1 and Nt2, reported

in the Table 1.

When set Nt2 to 1.0, the Joint-NMS screens out the re-

dundant detections only based on the IOU of head-region
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(a) GT (b) w/o NMS (c) H-NMST=0.3∼0.7

(d) B-NMST=0.3 (e) B-NMST=0.7 (f) J-NMST=(0.2,0.7)

Figure 4. Illustration of different NMS results. (a) the detection

ground truth of the sample image; (b) the raw detections without

NMS; (c) results using head boxes to do NMS with different IOU

threshold from 0.3 to 0.7; (d) results using body boxes to do NMS

with threshold 0.3; (e) results using body boxes to do NMS with

threshold 0.7; (f) results using Joint-NMS with threshold Nt1 =

0.2 and Nt2 = 0.7. The yellow box shows the missing human,

and the red one highlights the false positive.

boxes. Under such a condition, APN yields the best perfor-

mance of 56.95 MR−2. When set Nt1 to 1.0, the Joint-

NMS is equivalent to Greedy-NMS. APN with Greedy-

NMS yields the best performance of 61.37 MR−2 When

Nt2 = 0.5.

By comparing the performance of above experiments

with control variable, we can find that using the human head

boxes is more effective when performing NMS than using

the body boxes. This confirms our original intention, the

head regions faces less occlusion caused by crowding.

By adjusting there two thresholds, the APN achieves the

improved results with 56.88 MR−2. It is undeniable that

most of the effectiveness of the Joint-NMS is due to the

predicted boxes of head regions. In the latter experiments,

we set Nt1 = 0.2 and Nt1 = 0.7, if not specifically pointed

out.

The Advantage of Joint-NMS: To evaluate our pro-

posed Joint-NMS, we first use the Joint-NMS to replace the

Greedy-NMS in model v1 to form model v3. As expected,

the model with Joint-NMS the performance of the detector

and reduces the MR−2 by 2.78.

In the final version model (model v4) with all three meth-

ods, we use this special Joint-NMS to suppress repeti-

tive detections based on the model v2. The model v2 and

model v4 use the same trained network and final learning

weights, except the different NMS are used in the post-

processing procedure when testing. In the end, the model v4

achieves 55.43 MR−2, which is an absolute 7.27 point im-

provement over our baseline.

In order to demonstrate the superiority of the head boxes

for NMS, some visualization results using NMS with dif-

ferent region boxes are shown in Figure 4. The large num-

bers of false positives produced by this model near the

ground truth are expected to be filtered out by the tradi-

tional greedy-NMS. As the Figure 4 (c) shown, NMS only

with head boxes is less sensitive to the threshold than NMS

only with body boxes, and is easier to get satisfying results

even the threshold changes. That is because that the head

regions are not easily occluded and there is a lower over-

lap between the head boxes of different individuals com-

pared with the full bodies, while the overlap between all

head boxes detected from one person can maintain a high

overlap. However, there may be some false positives of

head detections just as shown in Figure 4 (c). This is due to

the head as a separate body part, especially when its size is

small, lacks features sufficient to distinguish it from other

items with similar shape. When the body part and the head

region are considered simultaneously, as shown in 4 (f),

these two problems are solved, which can guarantee miss-

ing fewer highly overlapped ground truths while ensure less

false positive predictions.

4.4. Comparisons with state­of­the­art results

For fair comparison, we use the two evaluation re-

sults on the CrowdHuman validation set by using one-

stage detectors as reference models, which are both based

on the Feature Pyramid Network (FPN) [10] with a

ResNet-50 backbone network. It is worth noting that

{1 : 1, 1.5 : 1, 2 : 1, 2.5 : 1, 3 : 1} 5 anchors ratios are used

in these two reference networks to accommodate the more

complex body shape [19, 12], instead of {1 : 1, 2 : 1, 3 : 1}
only three ratios we use in our network to make the network

more concise.

In Table 2, our baseline model v0 achieves comparable

results as shao et al. [19] does. The slight difference in ac-

curacy may be due to the difference in the deep learning

framework, the number of anchor ratios and the training it-

erations.

The APN model v4 in Table 2 is the final version of

our proposed network that integrates all the three method

we discussed before. This model significantly reduces the

MR−2 to 55.43, achieving a ∼ 11.59% relative improve-

ment over the baseline model. The model v4 outperforms

the baseline network and these two reference models with

great margin, which verifies the effectiveness of the head

region assistance to address the crowd occlusion problem.

In addition, we also show some visual results of

model v4 and baseline model v0 for comparison. As shown

in Figure 5, the APN can achieve better detection results.

Although blurring or even missing of the features of the full-

body region due to crowd occlusion may cause location er-

ror of individual easily, the location regression of full-body
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Figure 5. Visual comparisons of the human detection results. Top row: our APN model v4; Bottom row: baseline network. Yellow solid

boxes are missing objects and yellow dotted boxes are false positives.

Table 2. Human detection results on the CrowdHuman validation set. The performance of detectors is compared mainly by MR−2

(lower is better). Several ablation experiments are run to validate the effectiveness of our proposed methods: adopting a function-aware

branches to extract features (FWB), fusing features by feature fusion module(FFM) and using Joint-NMS for suppression (J-NMS).

methods FWB FFM J-NMS MR−2 Recall AP

Shao et al. [19] 63.33 93.80 80.83

Liu et al. [12] 63.03 94.77 79.67

APN model v0 62.70 93.33 79.83

APN model v1
√

59.76 93.80 81.84

APN model v2
√ √

61.37 93.55 81.11

APN model v3
√ √

56.98 94.12 81.93

APN model v4
√ √ √

55.43 94.66 82.47

can be greatly improved and the false positives can even

be corrected because of the fusion of discriminating head-

region features. In addition, the heads are rarely occluded in

crowded scenes with heavy occlusion. So the overlap rate of

heads of different individuals is very low. At the same time,

the overlap rate of head regions from the same individual is

very high when detected repeatedly. As a result, Joint-NMS

keeps more crowded true positives and still screens out false

positives at the same time. This important effect is in accor-

dance with our intention that APN is specifically designed

to address the occlusion problem.

4.5. Inference Latency

We also evaluate the inference time of our proposed APN

on a single GTX-2080 Ti GPU. Our APN model v4 runs in

157 ms per image, while the baseline model runs 142 ms.

Our detecter only increases 15ms inference time, while im-

proving the detection performance with great margin. The

extra latency is mainly spent in the fusion module and rel-

atively complex NMS procedure, which is worthwhile due

to their huge gains.

5. Conclusion

In this paper, we propose a novel anchor-pair network to

detect human with crowd occlusion. To utilize the corre-

lations between different parts, we use function-aware net-

work structure to extract more powerful features from head

and body regions, which then are fused by feature fusion

module. Moreover, anchor-pair is designed to localize the

full-body and head regions of human simultaneously at tiny

computational cost. In addition, we present a new Joint-

NMS method to better suppress candidate detections, which

is more robust to NMS thresholds. Extensive experiments

on the CrowdHuman dataset demonstrate the effectiveness

of our methods.
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