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Figure 1. Motion reconstruction. Applying single-frame human shape and pose estimation method (HMR [16]) to a video frame-by-frame

often results in unwanted flickering artifacts. Temporal smoothing algorithm (SFV [34]) reduces the jitters but still suffers from foot slippage

artifact. With explicitly predicted ground contact constraint (marked in green), our method produces a more physically realistic motion

trajectory with significantly less footskate artifacts . Animations can be viewed at https://yuliang.vision/.

Abstract

In this paper, we aim to reduce the footskate artifacts

when reconstructing human dynamics from monocular RGB

videos. Recent work has made substantial progress in im-

proving the temporal smoothness of the reconstructed mo-

tion trajectories. Their results, however, still suffer from

severe foot skating and slippage artifacts. To tackle this

issue, we present a neural network based detector for lo-

calizing ground contact events of human feet and use it to

impose a physical constraint for optimization of the whole

human dynamics in a video. We present a detailed study

on the proposed ground contact detector and demonstrate

high-quality human motion reconstruction results in various

videos.

1. Introduction

Human sensing from visual data has been an active re-

search area in computer vision with many applications in

augmented and mixed reality, animation, and re-enactment.

Thanks to the success of deep learning methods and the avail-

ability of large-scale datasets, single-image-based 3D human

pose and shape estimation has made significant progress in

recent years [3, 16, 21, 25, 26, 29, 32, 40, 42, 45]. How-

ever, many applications in animation, motion re-targeting,

and imitation learning pose additional requirements for a

visual sensing system. First, in addition to recovering the

pose in a human-centric coordinate system (which is the

common practice for single-view reconstruction methods), it

is desired to recover the motion trajectory of the person as

well. Second, reconstructed motion sequences not only need

to be temporally smooth and coherent but also need to be

visually plausible. Recent works [17, 34, 36] take temporal

context into account to generate more smooth and accurate

459



motion trajectories. However, without explicit constraints

on the physical plausibility, these methods often suffer from

common artifacts such as foot skating.

In this paper, we propose a method to reduce footskate ar-

tifacts in human motion reconstruction, which can be readily

used for animation and retargeting tasks. Since foot skating

is crucial for the realism of a motion [18], we focus on ex-

plicitly modeling the physical constraints between human

feet and the ground plane. Our core idea is that when feet are

in contact with the ground, zero velocity constraints can be

exerted to corresponding joints (toes or heels). Optimizing

for motion trajectories with this additional constraint results

in visually satisfying motion, as illustrated in Figure 1, Fig-

ure 7, and the accompanying supplementary video.

Our approach consists of three main steps. First, given the

input video, we use a state-of-the-art single-view human pose

and shape estimation method [16] to obtain local estimates.

We then utilize the 2D pose information in a novel method

to predict ground contact events in the input video. Finally,

we present a novel optimization strategy to recover a motion

sequence that explores both temporal and ground contact

constraints. This results in a smooth and visually satisfying

motion along with the motion trajectory.

Our contributions are summarized below.

• We propose a novel network architecture to detect

ground contact events from 2D keypoint estimations.

Using such intermediate representations instead of raw

pixels as input simplifies the annotation of ground truth

contact events. Thus, we present a semi-automatic al-

gorithm to collect a dataset using motion capture data.

• We model ground contact events with a simple zero-

velocity constraint in our motion reconstruction opti-

mization. Together with the smoothness objective, this

significantly reduces the footskate artifacts.

• In addition to quantitative evaluations, we also verify

the effectiveness of our method in various real-world

videos. All the code and data will be made publicly

available to facilitate future research.

2. Related Work

3D pose and shape estimation from a single image.

Single-image 3D human pose estimation, often formulated

as locating major 3D joints of the human body in a human-

centric coordinate space, is a fundamental problem in com-

puter vision. Mainstream methods predict 3D pose either

from a single RGB image [21, 31, 40, 45] or from interme-

diate representations such as 2D joint detection [7, 25, 29].

There are also recent methods [26, 27, 37, 39] that integrate

2D pose estimation to the 3D pose prediction pipeline. Note

that most of the methods above only estimate the joint loca-

tions, which is not sufficient for many applications in AR

and VR that require information about the body as well.

Methods combining UV maps [2] or parametric body mod-

els [3, 16, 32, 42] are thus proposed to provide more fine-

grained information. Built on the state-of-the-art 3D shape

estimation method HMR [16], our method also utilizes a

parametric body model (SMPL [24]) to produce motion re-

constructions with fine-grained information. Unlike most

of the above work, however, we also focus on recovering a

physically plausible motion trajectory of the person.

3D pose and shape estimation from monocular videos.

Due to the lack of temporal cues, directly applying single-

image 3D reconstruction models on videos frame-by-frame

results in non-smooth trajectories and suffer from artifacts

such as jitter. Prior works [28, 34, 36, 46, 48] formulate

a constrained optimization problem to obtain smooth mo-

tion trajectories by taking advantage of 2D cues. Rhodin

et al. [36] use human silhouettes to optimize 3D poses and

shapes in videos. Mehta et al. [28] propose an online skele-

ton tracking algorithm to obtain smooth pose sequences in

real-time. Zanfir et al. [46] integrate scene constraints to

the optimization problem for multi-person settings. Recent

methods also learn to predict smooth 3D pose sequences

directly from video input, either by LSTMs [20, 35] or tem-

poral CNNs [8, 33], which can be used to simplify the opti-

mization. Our method is built upon the 2D-3D optimization

proposed by Peng et al. [34] as it is flexible to integrate

additional nonlinear terms that are important for reducing

footskate artifacts .

Modeling physical contact. Physical contact plays an im-

portant role in modeling both human and humanoid robot

motions, such as walking [13]. Generating artificial mo-

tion is usually formulated as an optimal control problem

under contact and other physical constraints [9, 38], be-

ing widely studied in the robotics community. Due to the

non-smoothness introduced by the active/inactive status of

contact points, jointly optimizing for contact states and the

motion trajectory is challenging [44]. A common solution is

to estimate the sequence of contact states first and use it in a

subsequent optimization as a fixed variable [10, 19, 41]. The

pioneering work by Brubaker et al. [4] tackles the 3D pose

tracking and contact dynamics estimation simultaneously us-

ing a continuous contact model. This method can generate a

physically plausible motion trajectory, but it requires MoCap

data or multi-view videos as input, while our method only

takes monocular RGB videos as input. Livne et al. [23] also

tackles a similar problem but takes 3D point cloud as input

instead. Wei et al. [43] aims to recover physically realistic

human motions from monocular video sequences. However,

they require manual annotations of contact events, while our

system automatically detects those ground contact events.

In a recent work, Zanfir et al. [46] jointly optimize for both

human body shape and a ground plane where the humans are
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assumed to stand on. However, they estimate foot contacts

based on simple thresholding of the distance between the

ankle joints and the ground plane. This simple strategy is

not sufficient to avoid the foot slipping artifact that is com-

monly observed in motion sequences recovered by 3D pose

and shape estimation methods. Funk et al. [11] focuses on

estimating foot pressure from 2D human pose extracted in

an input video. We also utilize the 2D keypoints but in-

stead predict the binary state of foot contacts and further

utilize this information for optimizing the motion trajectory.

The most relevant work to ours is the concurrent work of

Li et al. [22], where they exploit the contact constraints to

estimate human pose and contact forces. While both Li et

al. [22] and our method adopt the two-step approach of first

identifying contact points, we have a few distinctions. First,

they utilize RGB image patches to train a separate model for

predicting the contact states of each keypoint, while we use a

single network taking as input the 2D keypoints, to estimate

the ground contact status. Second, building on top of the

work of Penget al. [34], we perform the motion trajectory

optimization in the latent space while Li et al. [22] optimize

for the motion variables explicitly. Our approach ensures to

stay in the learned motion manifold while ensuring physical

plausibility. Finally, we extensively evaluate both the robust-

ness of our contact detection module as well as the quality

of the reconstructed motion trajectories.

3. Method

Our goal is to reduce footskate artifacts in human mo-

tion reconstruction, which takes as input monocular RGB

videos. Our system can handle both static and moving cam-

eras. For moving cameras, structure-from-motion (SfM) is

first applied to estimate the camera motion. For simplic-

ity, we assume the camera is fixed over the whole video

sequence in the following discussion. Our system consists

of three stages: 1) pose estimation, 2) ground contact pre-

diction, and 3) motion reconstruction. Figure 2 shows a

high-level sketch of our system. Given a video clip, we

first run OpenPose [5] and HMR [16] to estimate 2D and

3D human pose for each frame. We then feed the 2D pose

data into a pre-trained ground contact prediction model to

estimate the ground contact state of each foot joint for each

frame. With the estimated ground contact states, we solve

an optimization problem with explicit ground contact con-

straints to generate a motion trajectory with less footskate

artifacts . In this section, we first describe how we model

the ground contact events and the network design. We then

provide background for human pose and shape estimation

using HMR [16] and how temporal smoothing works. Lastly,

we introduce the proposed zero velocity constraint based on

ground contact events.

3.1. Ground contact detection

We aim to recognize the occurrence of the physical event

of human feet contacting the ground. We model each foot

with a rigid skeleton of three connected joints: ankle, toe,

and heel, as illustrated in Figure 2. We assume only toe and

heel can contact the ground and use a binary label to indicate

whether each one of the four joints (left toe, left heel, right

toe, and right heel) contacts the ground. Thus, a ground

contact event at a particular frame can be represented by a

four-bit vector. We assume general ground surfaces are not

slippery, so zero velocity should be observed in the video

when the contact happens for a particular foot joint.

Dataset construction. There are no existing datasets with

ground-contact annotations available, and thus we choose to

construct a new dataset for this purpose. Manually annotat-

ing contact status for videos can be tedious, so we develop

a semi-automatic method to obtain ground truth contact la-

bels. We first collect multi-view videos from the walking

motion category in the Human3.6M dataset [15] as well as

dancing and sports sequences in the MADS dataset [47].

We run OpenPose [5] on all these videos to extract 2D key-

points on feet (left big toe, left heel, right big toe, and right

heel). Based on the zero velocity assumption, we decide

the ground contact status of each keypoint by measuring the

distance between two consecutive frames. If it is smaller

than a threshold, we consider it is contacting the ground.

We manually annotate a small portion of frames to tune the

threshold and use it for the whole dataset. The human ac-

tion sequences are captured by multiple RGB cameras, so

we accept the label only if the status predictions from four

views are consistent. Now that we have a large training set

with noisy labels, we screen all the frames to examine their

annotations and filter out the bad ones to correct manually.

In total, we have around 60,000 frames for the training set

and around 15,000 frames for the validation set.

Learning. Since our training data comes from MoCap

videos in lab environments, training our model using raw

pixels would not have a good generalization ability to real-

world indoor/outdoor scenes. We thus choose to use other

features as our input. Intuitively, 2D keypoint locations

within a local temporal window contain the motion cues.

However, raw 2D keypoint locations from OpenPose [5] has

two issues. First, OpenPose [5] produces missed keypoints

over the frames due to detection failures or occlusions. Sec-

ond, OpenPose [5] estimates joint positions frame by frame,

where temporal inconsistency could cause high-frequency

jitters. To address these issues, we first perform linear in-

terpolation, which also provides estimates of the locations

of those missed keypoints. We then apply the OneEuro Fil-

ter [6] to reduce high-frequency noise, suggested by Mehta et

al. [28].

To detect the ground contact events for each foot keypoint,
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Figure 2. Overview. Our system consists of three stages: pose estimation, ground-contact prediction, and motion reconstruction. The foot

skeleton model is illustrated in bottom left.

we utilize a temporal convolution network with residual

connections, inspired by Pavllo et al. [33]. Figure 3 shows

the network architecture. The input is a B×T ×K×C tensor,

where B is the batch size, T is the temporal window size, K

is the number of keypoints, and C is the number of features.

The kernel size of all the temporal convolutional layers is

3, except for the last one, which we set it to the size of the

temporal window to reduce the temporal size to one. Before

all the temporal convolutional layers except for the last one,

we perform replicate padding to deal with the boundaries.

The last layer consists of four sigmoid units for generating

contact labels.

3.2. Single­frame estimation and temporal smooth­
ing

Notations. We adopt the recent state-of-the-art method

HMR [16] to initialize the pose and shape parameters, which

uses the SMPL body model [24] as the representation. SMPL

is a generative model factoring out human 3D mesh into

shape parameters, β ∈ R10, and pose parameters, θ ∈ R69.

Shape parameters control the body proportion, height, and

weight, while pose parameters are bone rotation angles, con-

trolling the body deformation. Given an image as input,

HMR first encodes it into an embedding space z ∈ R2048,

then decodes the embedding to predict shape parameters

β , pose parameters θ , and camera parameters Π. The

local 3D keypoint positions can then be represented as

x3D = SMPL(β ,θ), whereas the local 2D keypoint positions

are denoted as x2D = Π(x3D).

Optimization objective. When running on an input video,

HMR predicts shape and pose parameters on each frame

independently, without considering any temporal coherency.

Building on top of HMR, SFV [34] solves the following

optimization problem to ensure temporal smoothness:

LSFV = w2DL2D +w3DL3D +wshapeLshape

+wsmoothLsmooth +wcamLcam (1)

The 2D consistency loss L2D minimizes the reprojection er-

ror between the projection of predicted 3D joint locations

and the OpenPose [5] output. The error for each joint is

weighted by the detection confidence from OpenPose [5].

Note that HMR predicts 3D shape and local pose parameters,

which are used to obtain local 3D keypoint locations relative

to the root, i.e., hips. However, HMR works on fixed-size

input images where the images have been scaled such that

the height of the person is roughly half the height of the

image. In order to ensure the OpenPose predictions and the

projection of predicted 3D keypoints are at the same coor-

dinate system, we convert the global 2D keypoint positions

from OpenPose xOP, global to local coordinates xOP ∈ [−1,1]:

xOP = 2
S(xOP, global −P)

H
−1 (2)

where S is a scale factor to normalize the person height, P

is the starting point from where we crop out the patch, H is

a pre-defined size of the cropped patch. Thus, the 2D con-

sistency loss is L2D = ∑t ‖x
(t)
2D − x

(t)
OP‖. The 3D consistency

loss L3D enforces the optimized 3D pose parameters to stay

close to the initial 3D pose parameters predicted by HMR.

The shape consistency loss Lshape minimizes the variance of

the predicted shape parameters, enforcing the shape of the

person does not change rapidly over time. The smoothness

loss Lsmooth minimizes the difference of 3D joint locations
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Figure 3. Network architecture of the ground contact detection model.

between adjacent frames enforcing temporal smoothness.

Lastly, a camera consistency loss is added to minimize the

camera parameter difference between adjacent frames. Note

that SFV [34] does not optimize for pose, shape, and camera

parameters directly, instead it optimizes for the latent code

z in the embedding space. For more details, we refer the

reader to the original SFV paper [34].

3.3. Motion reconstruction with ground contact
constraint

As shown in Figure 1, compared to the single frame base-

line (HMR), temporal smoothing (SFV) reduces the jittering

and generates a more temporal coherent motion trajectory.

However, if we have a closer look at the results, we ob-

serve a severe foot sliding phenomenon when the feet are

supposed to be planted on the ground. With the estimated

ground contact states, a natural way is to set the velocity of

those keypoints that contact the ground to zero. Thus, we

formulate this constraint on the position of the global 2D

joint locations. We first recover the global position of the

projections of the predicted 3D keypoints as

x2D,global =
H(x2D +1)

2S
+P (3)

We assume x
(k,t)
2D,global denotes the global position of the 2D

projection of the keypoint k in frame t, Sfoot denotes the set

of foot keypoints which we use in our ground contact model
1 , and y(k,t) is the binary label of ground contact status for

the keypoint k at the frame t. The proposed zero velocity

constraint can then be represented as

Lzv =
T

∑
t=2

∑
k∈Sfoot

y(k,t−1)y(k,t)
∣

∣

∣

∣

∣

∣
x
(k,t−1)
2D,global − x

(k,t)
2D,global

∣

∣

∣

∣

∣

∣

2

(4)

The overall objective can thus be written as

Loverall = LSFV +wzvLzv (5)

1The keypoint definition of SMPL does not contain left or right heel,

we get the keypoint location from mesh representation with corresponding

vertex IDs.

where wzv is the trade-off weight. However, we found that

optimizing (5) is very challenging as Lzv introduces non-

smoothness at ground contacts. Therefore, we propose to

first optimize LSFV to its convergence and then optimize

Loverall . In Sec. 4.2, we compare the loss curves of each term

with and without Lzv.

4. Experimental Results

We evaluate our system from two perspectives, ground

contact estimation performance and the quality of our recon-

structed motion.

4.1. Ground contact prediction

For the test set, we select a few sequences from Hu-

man3.6M [15], MADS [47], and real-world videos used

in Peng et al. [34]. We then carefully annotate the ground

contact labels for them, resulting in around 1,500 frames.

Note that they are non-overlapping with the training set.

Sample videos can be found in the supplementary material.

Implementation details. We set the batch size B to 512,

temporal window size T to 7. We set the number of key-

points K to 16 for the network training, by selecting the

lower body joints from OpenPose output. The intermediate

feature channel is 512. The initial learning rate is 1e-4, and

it decreases under the exponential schedule for each epoch,

with a decay rate of γ = 0.99. The max number of epochs

is 80. We implement the ground contact predictor using

PyTorch [30]. It takes less than two hours to finish train-

ing a single model on a GTX1080 GPU. The best network

for each model discussed below is selected according to its

performance on the validation set.

Comparing different input features. Since the 2D key-

point detection might be inaccurate, we also explore other

features such as optical flow vectors. Instead of using a dense

flow field from the whole image, we crop a 5× 5 window

around each keypoint and compute the median value as the

flow representation of that keypoint. Empirically, we found

FlowNet2 [14] generates accurate flow for our data. We also

try to include the OpenPose detection score as an additional

input channel.
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Table 1. Ground contact prediction results. The best performance of each column is in bold.

Left Toe Left Heel Right Toe Right Heel mean AP

Keypoint (w/o training) 0.9418 0.8314 0.9437 0.7876 0.8761

Flow (w/o training) 0.9169 0.8003 0.9426 0.7881 0.8620

Flow 0.9670 0.8559 0.9422 0.8284 0.8984

Keypoint 0.9755 0.8960 0.9662 0.8789 0.9292

Keypoint + Detection score 0.9686 0.8783 0.9588 0.8762 0.9205

Keypoint + Flow 0.9725 0.8846 0.9634 0.8700 0.9226

Baselines. Using the input features discussed above, we

use two learning-free heuristics as our baselines: 1) When

the distance between the same keypoint in two consecutive

frames is less than a threshold, we label the keypoint in

the first frame as contacting the ground; 2) When the flow

feature of a keypoint is smaller than a threshold, we label it

as contacting the ground.

Quantitative evaluation. To make comparisons among

different methods, we choose to use average precision (AP)

as our evaluation metric. We report the average precision

for each foot keypoint, and also the mean average precision

(mAP). Table 1 shows the performance of each method on

our ground contact test set. The learning-based method

outperforms the two simple baseline methods by a large

margin, which validates the necessity of training a model

for ground contact detection. And we notice that the model

with keypoint as input achieves a better mAP than the model

with flow as input. Also, adding the detection score from

OpenPose as additional input decreases the performance. We

conjecture that it increases the difficulty of network learning

since the detection score does not provide direct information

about ground contact state.

Design choices. To validate our design choices for the

ground contact detection model, we conduct two more ex-

periments. First, we change the size of the temporal window

and evaluate how this affects the final performance. As we

can see in Figure 4, the best performance is achieved with

a temporal window of size T = 7. Second, we verify the

effectiveness of the OpenPose keypoint clean up step and

find it improves the mean AP from 0.91 to 0.9292 and the

AP of the left heel by 3%.

Table 2. With and without keypoint clean-up.

Left Toe Left Heel Right Toe Right Heel mean AP

w/o clean-up 0.9515 0.8630 0.9610 0.8645 0.9100

w/ clean-up 0.9755 0.8960 0.9662 0.8789 0.9292

Qualitative result. Figure 5 shows qualitative results from

our trained ground contact model. It contains both indoor

and outdoor scenes, and the motions range from walking to

dancing and sports, showing that our model can generalize

to different motion patterns not seen in the training set.

Figure 4. Different temporal window size.

Figure 5. Qualitative results of ground contact estimation.

When the prediction for a keypoint is in contact with the ground,

we plot it in green, otherwise we use red. Our ground contact model

generates accurate detections from indoor to outdoor scenes, from

walking sequence to challenging dancing and sports sequences,

validating the generalization ability of our model. Animations can

be viewed at https://yuliang.vision/.

4.2. Motion reconstruction

Qualitative result. In Figure 7, We compare our recon-

structed motions with HMR [16] and SFV [34]. More videos

can be found in supplementary materials.

Implementation details. We implement the motion re-

construction optimization based on SFV [34], using Ten-

sorFlow [1] and the Adam solver. For the first stage of
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optimization, we use the default setting of SFV [34]. In the

second stage of optimization, we set wzv = 0.5. The learning

rate of the second stage is set to 1e-4, which is one-tenth of

the initial learning rate used in the first stage. The number

of optimization iterations is set to 100, since empirically we

found the whole objective converges within 100 iterations.

3D pose estimation. As a byproduct of the optimization,

our motion reconstruction achieves better pose estimation

results. We evaluate pose estimation performance on walk-

ing sequences of the Human3.6M dataset [15]. We evaluate

on the front-view camera. The performance is measured

by mean per-joint position error (MPJPE) after rigid align-

ment [12]. We show the results in Table 3.

Table 3. 3D Pose estimation results on Human3.6M [15]. We

evaluate mean per-joint position error (MPJPE) on the front-view

camera after robust alignment.

WalkDog Walking WalkTogether Average

HMR [16] 75.05 64.82 73.29 71.05

SFV [34] 72.68 66.63 72.21 70.42

Ours 72.26 65.61 71.27 69.63

Why is two-stage optimization necessary? As we men-

tioned previously, directly optimizing (5) is very challenging

as Lzv introduces non-smoothness at ground contacts. To

validate this claim, we apply the single-stage optimization

strategy on a demo video (shown in Figure 1) with two dif-

ferent objectives, LSFV and Loverall. Figure 6 shows the loss

curves of each constraint. We can see that the zero veloc-

ity loss conflicts with the other constraints if we directly

optimize all the loss terms simultaneously in one stage.

5. Conclusions

We have presented a method to reduce footskate artifacts

in 3D human motion reconstruction by explicitly modeling

the ground contact events. We proposed a zero velocity

constraint at contact points to optimize the whole sequence

jointly to remove foot skating. To learn when and where

the ground contacts happen, we collected a dataset and de-

veloped a neural network based foot contact detector using

2D keypoints as input, which we also found more robust

than non-learning heuristic-based detection methods. We

presented motion reconstruction results on various lab and

real-world videos and demonstrated the improvement of our

method made over the state-of-the-art.

Our work handles foot contacts with the ground plane,

and it will be interesting to generalize it to more contact

events of other parts of the body and of other objects and

people in the environment.
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Figure 6. Zero velocity constraint for optimization. To validate

the necessity of the two-stage optimization strategy, we conduct

the single-stage optimization experiments with different objectives,

LSFV only and Loverall. The loss curves show that the zero velocity

loss conflicts with other loss terms if we try to optimize them

simultaneously in one single stage.
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