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Abstract

One major challenge in 3D reconstruction is to infer

the complete shape geometry from partial foreground oc-

clusions. In this paper, we propose a method to reconstruct

the complete 3D shape of an object from a single RGB im-

age, with robustness to occlusion. Given the image and a

silhouette of the visible region, our approach completes the

silhouette of the occluded region and then generates a point

cloud. We show improvements for reconstruction of non-

occluded and partially occluded objects by providing the

predicted complete silhouette as guidance. We also improve

state-of-the-art for 3D shape prediction with a 2D reprojec-

tion loss from multiple synthetic views and a surface-based

smoothing and refinement step. Experiments demonstrate

the efficacy of our approach both quantitatively and quali-

tatively on synthetic and real scene datasets.

1. Introduction

3D reconstruction from 2D images has many applica-

tions in robotics and augmented reality. One major chal-

lenge is to infer the complete shape of a partially occluded

object. Occlusion frequently occurs in natural scenes: e.g.

we often see an image of a sofa occluded by a table in

front and a dining table partially occluded by a vase on top.

Even multi-view approaches [34, 12, 19] may fail to recover

complete shape, since occlusions may block most views of

the object. Single-view learning-based methods [13, 6, 44]

have approached seeing beyond occlusion as a 2D semantic

segmentation completion task, but complete 3D shape re-

covery adds the challenges of predicting 3D shape from a

2D image and being robust to the unknown existence and

extent of an occluding region.

In this paper, our goal is to reconstruct a complete 3D

shape from a single RGB image, in a way that is robust to

occlusions. We follow a data-driven approach, using con-

volution neural networks (CNNs) to encode shape-relevant

features and decode them into an object point cloud. To

simplify the shape prediction, we split the task into: (1) de-

termining the visible region of the object; (2) predicting a
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Figure 1. Illustration. The person sitting on the sofa blocks much

of the sofa from view, causing errors in existing shape prediction

methods. We propose improvements to shape prediction, includ-

ing the prediction and completion of the object silhouette as an

intermediate step, and demonstrate more accurate reconstruction

of both occluded and non-occluded objects. Best viewed in color.

completed silhouette (filling in any occluded regions); and

(3) predicting the object 3D point cloud based on the silhou-

ette and RGB image (Fig. 1). We reconstruct the object in

a viewer-centered manner, inferring both object shape and

pose. We show that, provided with ground truth silhouettes,

shape prediction achieves nearly the same performance for

occluded objects as non-occluded objects. We obtain the

visible portion of the silhouette using Mask-RCNN [16] and

then predict the completed silhouette using an auto-encoder.

Using the predicted silhouette as part of shape prediction

also yields large improvements for both occluded and non-

occluded objects, indicating that providing an explicit fore-

ground/background separation for the object in RGB im-

ages is helpful 1.

1Code and data is available at https://github.com/

zouchuhang/Silhouette-Guided-3D
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Figure 2. Approach. Our approach is composed of three steps. In the first step, the silhouette completion network takes an RGB image and

the visible silhouette as input, and predict the complete silhouette of the object beyond foreground occlusions. In the second step, given

the RGB image and the predicted complete silhouette, the reconstruction network predicts point clouds in viewer-centered coordinates.

Finally, we perform a post refinement step to produce smooth and uniformly distributed point clouds. Best viewed in color.

Our reconstruction represents a 3D shape as a set of point

clouds, which is flexible and easy to transform. Our method

follows an encoder-decoder strategy, and we demonstrate

performance gains using a 2D reprojection loss from mul-

tiple synthetic views and a surface-based post refinement

step, achieving state-of-the-art. Our silhouette guidance ap-

proach is related to shape from silhouette [21, 3, 24], but

our silhouette guidance is part of learning approach rather

than explicit constraint.

Our contributions:

• We improve the state-of-the-art for 3D point clouds re-

construction from a single RGB image. We show per-

formance gains by using a 2D reprojection loss on mul-

tiple synthetic views and a surface-based refinement

step.

• We demonstrate that completing the visible silhouette

leads to better object shape completion. We propose a

silhouette completion network that achieves the state-

of-the-art. We show improvements for reconstruction

of non-occluded and partially occluded objects.

2. Related Work

Single image 3D shape reconstruction is an active

topic of research. Approaches use RGB images [36, 39, 37,

11, 31], depth images [42, 46, 40, 30] or both [14, 9, 15].

Approaches include exemplar based shape retrieval and

alignment [2, 1, 14, 17], deformations from meshes [20,

25, 36], or a direct prediction via convolution neural net-

works [39, 41, 38]. Qi et al. [28] propose a novel deep net

architecture suitable for consuming unordered point sets in

3D; Fan et al. [7] propose to generate point clouds from

a single RGB image using generative models. More re-

cent approaches improve point set reconstruction perfor-

mance by learning representative latent features [27] or by

imposing constraints of geometric appearance in multiple

views [18].

Most of these approaches are applied to non-occluded

objects with clean backgrounds and no occlusions, which

may prevent their application to natural images. Sun et

al. [32] conduct experiments on real images from Pix3D, a

large-scale dataset with aligned ground-truth 3D shapes, but

do not consider the problem of occlusion. We are concerned

with predicting shape of objects in natural scenes, which

may be partly occluded. Our approach improves the state-

of-the-art for object point set generation, and is extended

to reconstruct beyond occlusion with the guidance of com-

pleted silhouettes. Our silhouettes guidance is closely re-

lated to the human depth estimation by Rematas et al. [29].

However, Rematas et al. use the visible silhouette (seman-

tic segmentation) rather than a complete silhouette, mak-

ing it hard to predict overlapped (occluded) regions. Dif-

ferently, our approach conditions on predicted silhouette to

resolve occlusion ambiguity, and is able to predict complete

3D shape rather than 2.5D depth points.

Seeing beyond occlusion. Occlusions have long been

an obstacle in multi-view reconstruction. Solutions have

been proposed to recover portions of surfaces from single

views, e.g. with synthetic apertures [35, 8], or to other-

wise improve robustness of matching and completion func-

tions from multiple views [34, 12, 19]. Other work decom-

pose a scene into layered depth maps from RGBD [26] im-

ages or video [45] and then seek to complete the occluded

portions of the maps. But errors in layered segmentation

can severely degrade the recovery of the occluded region.

Learning-based approaches [13, 6, 44] have posed recovery

from occlusion as a 2D semantic segmentation completion

task. Ehsani et al. [6] propose to complete the silhouette

and texture of an occluded object. Our silhouette comple-

tion network is most similar to Ehsani et al., but we ease
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the task by predicting the complete silhouette rather than

the full texture. We demonstrate better performance with

our up-sampling based convolution decoder instead of fully

connected layers used in Ehsani et al. Moreover, We go fur-

ther to try to predict the complete 3D shape of the occluded

object.

3. Point Clouds from a Single RGB Image

Direct point set prediction from a single image is chal-

lenging due to the unknown camera viewpoint or object

pose and large intraclass variations in shape. This requires a

careful design choice on the network architecture. We aim

to have an encoder that can capture object pose and shape

from a single image, and a decoder that is flexible in pro-

ducing unordered, dense point clouds.

In this section, we introduce our point prediction net-

work architecture, the training scheme including a 2D re-

projection loss on multiple synthetic views to improve per-

formance (Sec. 3.1). We then introduce a post-refinement

step via surface-based fitting (Sec. 3.2) to produce smooth

and uniformly distributed point sets.

3.1. Point Cloud Reconstruction Network

Our network architecture is illustrated in Fig. 2. The net-

work predicts 3D point clouds in viewer-centered coordi-

nates. The encoder is based on ResNet-50 [16] to better

capture object shape and pose feature. The decoder follows

a coarse-to-fine multi-stage generation scheme in order to

efficiently predict dense points with limited memory. Our

decoder follows the design of PCN [43]. The coarse predic-

tor predicts N = 1024 sparse points. The refinement branch

produces 4N finer points, by learning a 2 × 2 up-sampling

surface grid centered on each coarse point via local folding

operation. We experimented with a higher up-sampling rate

(e.g. 9, 16) as PCN but observed repetitive patterns across

all surface patches, missing local shape details. Note that

our network is able to generate a denser prediction with an-

other up-sampling branch on top, but the current structure

best balances accuracy and training/inference speed. Our

reconstruction network does not require features from par-

tial points like PCN, and produces an on-par performance

with PSG [7], a state-of-the-art method in point set genera-

tion (see experiments in Sec. 5.3), even without the refine-

ment step we will introduce in Sec. 3.2.

Loss function. We consider the training loss in 3D space

using the bidirectional Chamfer distance. Given predicted

point clouds p̂ ∈ P̂ and the ground truth p ∈ P , we have:

Lrec = dChamfer (P, P̂ )

=
1

|P |

∑

p∈P

min
p̂∈P̂

‖p− p̂‖2
2
+

1

|P̂ |

∑

p̂∈P̂

min
p∈P

‖p− p̂‖2
2

(1)

To further boost the performance, we propose a 2D repro-

jection loss on point sets as follows:

Lproj = d(Proj (P ),Proj (P̂ ))

=
1

|P |

∑

p∈P

min
p̂∈P̂

‖K[R t]p−K[R t]p̂‖2
2

(2)

Where Proj (·) is a 2D projection operation from 3D space,

with 3D rotation R and translation t in world coordinates

and a known camera intrinsic K. Since our reconstruction

is viewer-centered, we can simply set R = I, t = 0 assum-

ing projections on the image plane. Our 2D reprojection

loss is an unidirectional Chamfer distance; we only penal-

ize the average distance from each projected ground truth

point to the nearest projection of predicted point cloud. This

is because the Chamfer distance on another direction tends

to be redundant. When the predicted point is projected in-

side the ground truth 2D segmentation, the distance to the

nearest projected ground truth points tends to zero, result-

ing in a small gradient and having less effect for learning

better 3D point clouds. Although we project points instead

of surfaces or voxel occupancy, producing non-continuous

2D segments, our 2D reprojection loss is computational ef-

ficient and shows promising improvements in experiment.

Moreover, fitting a surface for post-refinement (Sec. 3.2) to

these points is effective.

We can extend Eq. 2 to project 3D points onto multi-

ple orthographic synthetic views: e.g. projecting to x − y

plane, y − z plane (image plane) or x − z plane in world

coordinates (detailed illustration in Appx. ??). In this case

we can simply change the rotation matrix R based on each

view. Our 2D reprojection loss does not require additional

rendered 2D silhouette ground truth of known view points,

which makes the training possible on the dataset where the

3D ground truth is available.

When being projected on the y − z plane (image plane),

the ground truth is a subset of the ground truth silhouette.

We thus use 2D points sampled from the ground truth seg-

mentation mask S instead of projecting ground truth 3D

points P :

Lsilhouette =
1

|S|

∑

s∈S

min
p̂∈P̂

‖s− π(K[R t]p̂)‖2
2

(3)

where π is the 3D projection wrap function.

The overall loss function is shown below:

L = wrecLrec + wsilhouetteLsilhouette + wprojLproj (4)

which is the weighted summation over the 3D Chamfer loss

and the 2D reprojection losses. Here Lsilhouette is the 2D

reprojection loss on the image plane, and Lproj is the pro-

jection on x−y, x−z planes. Note that different from PCN,

our network only penalizes on the finest output, which helps

ease training and shows no performance degrades.
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Input Image Network Output FSSR + Smoothing Re-sampling

Figure 3. Surface-based point clouds refinement. We show from

left to right: input RGB image, network prediction, FSSR surface

fitting and smoothing and the re-sampled point clouds from the

fitted surfaces. Each sample consists the same number of points

and we visualize each predicted shape in a novel view for better

illustration. Our refinement step is able to produce smooth and

uniformly distributed point sets. Best viewed in color.

Implementation details. Our network gets as input a

224 × 224 image with pixel values normalized to [0, 1].
The bottleneck feature size is 1024. The coarse decoder

consists two fc layers, with feature size of 1024 and 3072

and ReLU in between. We set the surface grid for point

up-sampling to be zero-centered with a side length of 0.1.

We use the ResNet encoder pre-trained from ImageNet and

apply a stage-wise training scheme for faster convergence

and easier training: first train to predict coarse point cloud,

fix the trained layers, then train the up-sampling header,

and finally train the whole network end-to-end. We use

ADAM [23] to update network parameters with a learn-

ing rate of 1e−4 and ǫ = 1e−6 and batch size 32. We set

wrec = 1, wsilhouette = 1e−9 and wproj = 1e−10 in Eq. 4

based on grid search in the validation set.

Data augmentation. We augment the training samples

by gamma correction with γ between 0.5-2. We re-scale

image intensity with a minimum intensity ranges between

0-127 and a fixed maximum intensity of 255. We add color

jittering to each RGB channel independently by multiplying

a factor ranges in 0.8-1.2. Each augmentation parameter is

uniformly and randomly sampled from the defined range.

3.2. Surface­based Point Clouds Refinement

One important 3D shape property is the smooth and con-

tinuous shape surfaces, especially for thin structures like

chair legs and light stands. To impose this property, we

perform a post-refinement step (Fig. 3), fitting surfaces

from dense points, smoothing surfaces and uniformly re-

sampling points from the surfaces again. Our surface fit-

ting method is based on Floating Scale Surface Reconstruc-

tion (FSSR) [10], which is the state-of-the-art for surface-

based reconstruction from dense point clouds. We set the

parameter of point-wise normal by plane fitting on 6 near-

east neighbors, and set the per-point scale as the average dis-

tance to the two closest points. A mesh cleaning step goes

after FSSR to remove small and redundant patches. We also

experimented with Poisson surface reconstruction [22], but

FSSR produces a better surface in our case.

Smoothing. Given the fitted surfaces, we perform

smoothing by implicit integration method [5]. We use cur-

vature flow as the smoothing operator for 5 iterations. We

then uniformly sample point clouds based on Poisson disc

sampling to obtain our final output.

Our surface fitting, smoothing, and re-sampling enables

production of evenly distributed points that can model thin

structures and smooth surfaces, but the predicted shape

may not be closed, preventing volumetric-based evaluation.

Also, small and disconnected sections of points that model

details may be lost, and points that are incorrectly con-

nected to the mesh surfaces may increase errors in some

area. Overall, though, our proposed post-processing refine-

ment step improves the performance ( large gain in earth-

mover’s distance with a small cost to Chamfer distance).

4. Reconstruction of Occluded Objects

So far, our proposed point cloud reconstruction approach

does not consider foreground occlusions: such as a table in

front of a sofa, or a person or pillows on the sofa. Standard

approaches do not handle occlusions well since the model

does not know whether or where an object is occluded.

Starting with an RGB image and an initial silhouette of the

visible region, which can be acquired by recent approaches

such as Mask-RCNN [16], we propose a 2D silhouette com-

pletion approach to generate the complete silhouette of the

object. We show that prediction based on the true completed

silhouette greatly improves shape prediction and brings per-

formance on occluded objects close to non-occluded; using

predicted silhouettes also improves performance, with com-

pleted silhouettes outperforming predicted silhouettes of the

visible portion.

4.1. Silhouette Completion Network

We assume a detected object, its RGB image crop I and

the segmentation of the visible region Sv . Our silhouette

completion network (Fig. 2) predicts the complete 2D sil-

houette Sf of the object based on Sv . The network follows

an encoder-decoder strategy, gets as input the concatenation

of I and Sv , and predicts Sf with the same resolution as

Sv . The encoder is a modified ResNet-50 and the decoder

consists 5 up-sampling layers, producing a single channel

silhouette. Intuitively, when occlusion occurs, we want the

network to complete silhouette, and when no occlusion oc-
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curs, we want the network to predict the original segmenta-

tion. We add skip connections to obtain this property. We

concatenate the feature after the i − th conv layer of the

encoder to the input feature layer of the (6 − i) − th de-

coder layer. A full skip connection helps ease training and

produces the best results.

Implementation details. For each input image I and

visible silhouette Sv , we resize them to 224× 224 with pre-

served aspect ratio and white pixel padded. The value of I

is re-scaled to [0, 1] and Sv is a binary map with 1 indicating

the object. For the encoder, we remove the top fc layer and

the average pooling layer of a pre-trained ResNet on Ima-

geNet and obtain a bottleneck feature of 7×7. The decoder

applies nearest neighbor up-sampling with a scale factor of

2, followed by a convolution layer (kernel size 3× 3, stride

1) and ReLU. The decoder feature sizes are 2048, 1024,

512, 256, 64 and 1 respectively, with a Sigmoid operation

on top. We train the network using binary cross entropy loss

between the prediction and the ground truth complete sil-

houette. We use ADAM to update network parameters with

a learning rate of 1e−4 and ǫ = 1e−6 and batch size 32.

Our final prediction is a binary mask obtained by a thresh-

old of 0.5. To account for the truncation of the full object

due to the unknown extent of occluded region, we expand

the bounding box around each object by 0.3 on each side.

Data augmentation. For each training sample, we per-

form random cropping on the input image. We crop with

a uniformly and randomly sampled ratio ranges between

[0.2, 0.4] on each side of the input image. Other augmen-

tations include left-right flipping with 50% probability and

random rotation uniformly sampled within ±5 degrees on

the image plane. We also perform image gamma correction,

intensity changes and color jittering as in Sec. 3.1.

4.2. Silhouette Guided 3D Reconstruction

Given the predicted complete silhouette Sf , we modify

our point cloud reconstruction network to be robust to oc-

clusion. We concatenate our predicted complete silhouette

Sf as an additional input channel to the input RGB image

I , which can effectively guide reconstruction for both par-

tially occluded and non-occluded objects. We show in ex-

periments the importance of using silhouette compared to

the approach with no silhouette guidance at all.

Synthetic occlusion dataset. Since there is no large-

scale 3D dataset of rendered 2D object image with occlu-

sion and the complete silhouette ground truth available, we

propose to generate a synthetic occlusion dataset. Instead of

off-line rendering samples which is time consuming and has

limited variety of occlusion, we propose a “cut-and-paste”

strategy to create random foreground occlusion. Starting

with a set of pre-rendered 2D images without occlusion

and with known ground truth silhouettes, for each input im-

age I , we randomly select another image I ′ from the same

split (train/val/test) of the dataset as I , cutting out the object

segment O′ from I ′, pasting and overlaying O′ on the input

image I . To be more specific, we paste on the location uni-

formly sampled from [(h0−h′, w0−w′), (h1+h′, w1+w′)],
where [(h0, w0), (h1, w1)] denotes the top left and bottom

right position of the bounding box around the object seg-

ment O in I . h′, w′ are the height and width of the pasted

segment O′ which is considered as foreground occlusion.

To ease training, we exclude input samples with pasted

occlusion covering over 50% of the complete object seg-

ment. We perform “cut-and-paste” with 50% probability in

training and further add randomly sampled real-scene back-

ground with 50% probability. We use the same data aug-

mentation as in Sec. 3.1 to train the network. We penalize

the network on the ground truth complete 3D point clouds

and the 2D reprojection loss assuming full shape 2D repro-

jection. We use the ground truth visible and complete sil-

houettes to train the network.

5. Experiments

5.1. Setup

We verify the following three aspects of our proposed

framework: (1) the performance of our reconstruction net-

work compared with the state-of-the-art, the positive impact

of surface refinement and reprojection loss (Sec. 5.3); (2)

the performance of our silhouette completion network com-

pared with the state-of-the-art (Sec. 5.4); (3) the impact of

silhouette guidance with robustness to occlusion (Sec. 5.5).

Please find more results in the appendix.

We use ShapeNet to evaluate the overall reconstruc-

tion approach. However, since ShapeNet features already-

segmented objects, it is not suitable for evaluating silhouette

guidance. For that, we use the Pix3D dataset [32], which

contains real images of occluded objects with aligned 3D

shape ground truth. We consider the following two standard

metrics for 3D point cloud reconstruction:

1. Chamfer distance (CD), defined in Eq. 1.

2. Earth mover’s distance (EMD), defined as follows:

dEMD(P, P̂ ) = min
φ:P→P̂

1

|P |

∑

p∈P

‖p− φ(p)‖ (5)

where φ : P → P̂ denotes a bijection that minimizes

the average distance between corresponding points.

Since φ is expensive to compute, we follow the ap-

proximation solution as in Fan et al. [7].

For silhouette completion, we evaluate our approach on

the synthetic DYCE dataset [6] and compare with the state-

of-the-art. DYCE contains segmentation mask for both vis-

ible and occluded region in photo-realistic indoor scenes.

We also report performance on the Pix3D real dataset since

we perform silhouette guided reconstruction on Pix3D. We
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Figure 4. Qualitative results of point cloud reconstruction on

ShapeNet dataset. Each from left to right: input RGB image, re-

construction in viewer-centered coordinates and a novel view of

the predicted 3D shape. Our approach is able to reconstruct thin

structures and smooth surfaces. Best viewed in color.

use the evaluation metric of 2D IoU between the predicted

and the ground truth complete silhouette. For detailed com-

parison, we consider the 2D IoU of the visible potion, the

invisible portion and the complete silhouette.

To verify the impact of silhouette guidance, we compare

with the following three baselines:

1. Without silhouette guidance (ours w/o seg);

2. Guided by visible silhouette (ours w/ vis seg). We use

the predicted visible silhouette (semantic segmentation

by Mask-RCNN) to guide reconstruction;

3. Guided by ground truth complete silhouette (ours w/

gt full seg). This shows the upper bound performance

of our approach.

5.2. Implementation Details

We implement our network using PyTorch, train and test

on a single NVIDIA Titan X GPU with 12GB memory. A

single forward pass of the network takes 15.2 ms. The point

cloud refinement step is C++ based and takes around 1s on

a Linux machine with Intel Xeon 3.5G Hz in CPU mode.

To train our reconstruction approach on ShapeNet, we

follow the train-test split defined by Choy et al. [4]. The

dataset consists 13 objects classes. Each object has 24 ran-

domly selected views rendered in 2D. We randomly select

10% of the shapes from each class of the train set to form

the validation set. The viewer-centered point clouds ground

truth is generated by Wang et al. [36]. Since ShapeNet ob-

jects are non-occluded, we train our approach without sil-

houette guidance.

To train the network with silhouette guidance, we con-

struct a synthetic occlusion dataset (Sec. 4.2) based on

ShapeNet and add real background from LSUN dataset. We

Category
CD EMD

PSG Pixel2Mesh Ours PSG Pixel2Mesh Ours

plane 0.430 0.477 0.386 0.396 0.579 0.527

bench 0.629 0.624 0.436 1.113 0.965 0.815

cabinet 0.439 0.381 0.373 2.986 2.563 2.147

car 0.333 0.268 0.308 1.747 1.297 1.306

chair 0.645 0.610 0.606 1.946 1.399 1.257

monitor 0.722 0.755 0.501 1.891 1.536 1.314

lamp 1.193 1.295 0.969 1.222 1.314 1.007

speaker 0.756 0.739 0.632 3.490 2.951 2.441

firearm 0.423 0.453 0.463 0.397 0.667 0.572

couch 0.549 0.490 0.439 2.207 1.642 1.536

table 0.517 0.498 0.589 2.121 1.480 1.340

cellphone 0.438 0.421 0.332 1.019 0.724 0.674

watercraft 0.633 0.670 0.478 0.945 0.814 0.730

mean 0.593 0.591 0.501 1.653 1.380 1.205

Table 1. Viewer-centered single image shape reconstruction per-

formance compared with the state-of-the-art on ShapeNet. We re-

port both the Chamfer distance (CD, left) and the Earth mover’s

distance (EMD, right).

fine-tune the network we previously trained on ShapeNet

on our generated synthetic occlusion data. We train the

baseline network having predicted visible silhouette as in-

put with the ground truth visible silhouette generated from

ShapeNet. We train the baseline network having no silhou-

ette guidance with RGB images as input only. All config-

urations use the same training settings. It’s worth noting

that we do not train reconstructions on Pix3D in any of our

experiments to avoid the classification/retrieval problem as

discussed by Tatarchenko et al. [33].

For silhouette completion, since Pix3D has fewer im-

ages, we first train our approach on the synthetic DYCE

dataset. We use DYCE’s official train-val split and use

ground truth visible 2D silhouette as input. On Pix3D, we

use Mask-RCNN to detect and segment the visible silhou-

ette of the object in each image, then perform completion

upon the segmentation. We obtain valid detections with cor-

rectly detected object class and a 2D IoU > 0.5 compared

to the ground truth bounding box. We use 5-fold cross val-

idation to fine-tune the silhouette completion network pre-

trained on DYCE. We further split out 10% val data from

each train split in each fold to tune network parameters.

Note that images in Pix3D with the same 3D ground truth

model are in the same split of either train, val or test.

5.3. Single Image 3D Reconstruction without Oc­
clusion

We show in Fig. 4 sample qualitative results of our recon-

structions on ShapeNet. We report in Tab. 1 our quantitative

comparison with the state-of-the-art viewer-centered recon-

struction approaches. PSG [7] generates point clouds and

Pixel2Mesh [36] produces meshes. We sample the same

2466 points as PSG and Pixel2Mesh for fair comparison.

Our approach outperforms the two methods on both met-

rics.

46



Method CD EMD

Ours w/o surface refine & w/o 2D proj loss 0.398 1.784

Ours w/o surface refine 0.389 1.660

Ours w/o 2D proj loss 0.502 1.220

Ours Full 0.501 1.205

Table 2. Ablation study. We evaluate our performance on

ShapeNet based on CD (left) and EMD (right) with different con-

figurations. Our full approach seeks for a balanced performance

on both two metrics.

Method CD EMD

3D-LMNet [27] 5.40 7.00

Ours 5.54 5.93

Table 3. Comparison with the state-of-the-art object-centered point

cloud reconstruction approach on ShapeNet, reported in both

CD (left) and EMD (right). Although our method is trained on

a harder viewer-centered prediction, our method achieves a much

better EMD and a slightly worse CD compared to 3D-LMNet.

Method Full Visible Occluded

SeGAN [6] 76.4 63.9 27.6

Ours (ResNet-18) 82.8 82.9 33.9

Ours (ResNet-50) 84.3 83.4 36.2

Table 4. Silhouette completion performance on DYCE dataset. We

report the 2D IoU of visible, occluded and complete silhouette.

“Ours (ResNet-18)” use the same encoder as SeGAN.

Ablation study. We show in Tab. 2 our performance

with different configurations: without both surface-based

refinement step and 2D reprojection loss, without refine-

ment step only, without 2D reprojection loss only and our

full approach. We observe the improvement with 2D re-

projection loss on both CD and EMD. The improvement

with 2D loss is less significant when we have the surface-

based refinement step, showing the refinement step miti-

gates some problems with point cloud quality that are oth-

erwise remedied by training with the reprojection loss. The

refinement step increases Chamfer distance, mainly due to

the smoothed out small and sparse point pieces that model

the thin and complex shape structure like railings or han-

dles (Fig. 4, 1st row, 2nd column), and the enhanced error

point predictions by connecting sparse point sets (Fig. 4, 3rd

row, 2nd column). It’s also worth noting that, even without

the post-refinement step, our approach achieves a better CD

than PSG and a slightly worse EMD, proving the superiority

of our network architecture.

Comparison with object-centered approach. Tab. 3

shows our comparison with the state-of-the-art object-

centered point cloud reconstruction approach: 3D-

LMNet [27] on ShapeNet. We follow the evaluation pro-

cedure as 3D-LMNet, sample 1024 points and re-scale our

prediction (and ground truth) to be zero-centered and unit

length of 1, then perform ICP to fit to the ground truth. Al-

though our approach targets the more difficult task of joint

shape prediction and view point estimation, we achieve a

Method
Training

data

Occluded Non-occluded

sofa chair table sofa chair table

Mask-RCNN real 84.34 59.05 60.14 91.99 69.96 60.88

Ours syn 87.58 59.61 58.12 92.02 69.88 64.94

Ours syn+real 88.56 59.25 68.83 92.19 72.01 56.90

Table 5. Silhouette completion performance on Pix3D dataset. We

report the 2D IoU between the predicted and the ground truth com-

plete silhouette for occluded and non-occluded objects.

Method
CD EMD

sofa chair table sofa chair table

Ours w/o seg 15.54 17.96 24.35 16.63 16.51 22.56

Ours w/ pred vis seg 9.15 13.20 17.96 9.29 13.38 17.81

Ours w/ pred full seg 8.70 13.14 16.50 8.81 13.04 16.36

Ours w/ gt full seg 8.27 10.16 11.36 8.11 10.47 11.44

Table 6. Quantitative results for reconstructing occluded objects in

the Pix3D dataset. We report both CD (left) and EMD (right).

Method
CD EMD

sofa chair table sofa chair table

Ours w/o seg 12.62 16.00 20.65 13.18 15.44 19.92

Ours w/ pred vis seg 8.75 11.34 15.55 8.66 11.84 15.75

Ours w/ pred full seg 8.42 10.82 13.65 8.40 11.13 13.85

Ours w/ gt full seg 8.24 9.21 10.50 8.18 9.66 11.44

Table 7. Quantitative results for reconstructing non-occluded ob-

jects in the Pix3D dataset. We report CD (left) and EMD (right).

much better EMD and only a slightly worse CD. Note that

the reported CD and EMD are of different scales compared

to that in Tab. 1, this is because 3D-LMNet takes a squared

value when computing CD and the ground truth is re-sized.

5.4. Silhouette Completion

Tab. 4 shows the comparison with the state-of-the-art

silhouette completion approach SeGAN [6] on DYCE test

set. SeGAN uses ResNet-18 encoder, our approach with

ResNet-18 outperforms SeGAN, due to our better up-

sampling based decoder that predicts better region beyond

occlusion, and the skip connection architecture that pre-

serves the visible region. We use ResNet-50 encoder which

yields the best performance to complete silhouettes for the

downstream reconstruction task.

Tab. 5 reports our silhouette completion performance on

Pix3D. Our approach achieves a better performance than

the Mask-RCNN baseline (visible region). We show bet-

ter performance by fine-tuning our completion approach on

Pix3D (“syn+real” v.s. “syn” for training data).

5.5. Robustness to Occlusion

In Fig. 5 we show our qualitative performance on Pix3D

for the three object classes that co-occur in ShapeNet. Tab. 6

and Tab. 7 present our quantitative performance of recon-

structing occluded objects and non-occluded objects respec-

tively. For evaluation, we use the ground truth point cloud

provided by Mandikal et al. [27] and sample the same num-

ber of points from our approach for evaluation. Since Pix3D

evaluates object-centered reconstruction, we rotate each
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Input Image &
Visible Seg Recon. w/ GT Full Seg Pred Full Seg Recon. w/ Visible SegRecon. w/ Pred Full Seg

Recon. 
w/o SegGT Full Seg

Figure 5. Qualitative results on Pix3D dataset. We show in each row from left to right: input RGB image with predicted visible silhouette

obtained by Mask-RCNN (outlined in red), ground truth complete silhouette, reconstruction guided by ground truth complete silhouette in

two views (viewer-centered and a novel view), our predicted complete silhouette, reconstruction guided by predicted complete silhouette,

reconstruction guided by visible silhouette and reconstruction without silhouette guidance. The first row shows a non-occluded object, and

other rows show occluded objects. Best viewed in color.

ground truth shape to have the viewer-centered orientation

w.r.t. camera. We then re-scale both ground truth and our

prediction to be zero-centered and unit-length, and perform

ICP with translation only. We follow the officially provided

evaluation metrics of Chamfer distance and Earth mover’s

distance by Sun et al. [32]. We compare the performance of

our silhouette guided reconstruction “Ours w/ pred full seg”

with three baselines: without silhouette guidance, guided

with predicted visible silhouette from Mask-RCNN, and

guided with ground truth complete silhouette. Compared to

the qualitative results on ShapeNet (Fig. 4), we see the chal-

lenges of 3D reconstruction given real images due to occlu-

sion and complex background. Using ground truth com-

plete silhouette can make the network be robust to occlu-

sion. Without silhouette guidance, the prediction is difficult

because the network does not know whether or where an

object is occluded and what to reconstruct; and the network

faces the challenges of synthetic to real, since our recon-

struction network is only trained on synthetic dataset. Our

proposed silhouette guidance is able to bridges the gap be-

tween synthetic and real, referring to the large performance

boosts from “Ours w/o seg” to other rows. With the guid-

ance of predicted complete silhouettes, our approach is able

to narrow down the performance gap between occluded and

non-occluded objects, and outperforms the approach with

predicted visible silhouettes.

6. Conclusion

We propose a method to reconstruct the complete 3D

shape of an object from a single RGB image, with robust-

ness to occlusion. Our point cloud reconstruction approach

achieves the state-of-the-art with the major improvement

by the surface-based refinement step. We show that, when

provided with input ground truth silhouettes, the shape

prediction performance is nearly as good for occluded as

for non-occluded objects. Using the predicted silhouette

also yields large improvements for both occluded and non-

occluded objects, indicating that providing an explicit fore-

ground/background separation for the object in RGB im-

ages is helpful.
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