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1. Active Learning with Ensembles
The authors of [1] showed that the use of ensembles is beneficial in active learning. They use different snapshots selected

during the training process of a CNN to obtain an ensemble of models. Features for the ensemble are obtained by applying a
average pooling operator. We use the same methodology here. A ResNet-18 model was trained for 90 epochs, six snapshots
were retained every 15 epochs and their features and probabilities were then averaged. The results obtained with the ensemble
before and after balancing are reported in Tables 6 and 7 respectively. They indicate that the use of ensemble features is indeed
effective in most configurations and provides a performance improvement over the non-ensemble counterpart. Further, the
findings reported in the main paper are replicated with ensemble features, with diversification based methods outperforming
random in most setting and balancing also providing improvement for all the AF . The best strategy for Food-101, the
dataset with lowest transferability from the source model, remains random as this was the case for the experiments in the
main paper. Note also that core − set with ensemble becomes competitive after the application of balancing in Table 7. It
has a global score which is only slightly behind that of our version of diversified entropy.

2. Active Learning with Balanced datasets
The balancing step introduced in Section 3.3 of the paper is intended for imbalanced datasets. However, it is interesting

to also test its behavior, as well as that of the proposed acquisition functions, for balanced datasets. Tests are performed
over balanced subsets of the datasets which include a number samples per class comparable to that of imbalanced versions.
There are 200 images per class for Food-101, CIFAR-100 and IMN-100 and 80 for MIT-67. The number of images is lower
for the latter dataset because its least represented classes include 80 images. The performance of diversification based AF
are comparable, with random being most effective especially at higher budgets and core-set the least effective method, as
reported in Table 8.

Somewhat surprisingly, results in Table 12 indicate that balancing is beneficial for all acquisition functions. Even though
the tested datasets are globally balanced, the selection of a subset for annotation results in an imbalanced distribution. Im-
balance is naturally larger for lower budgets because subset is least representative of the entire distribution. Accuracy gains

Dataset Food-101 CIFAR-100 IMN-100 MIT-67
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000
random 23.02 30.63 38.68 27.31 33.66 39.78 47.24 56.62 63.87 34.99 44.56 53.33
entdivinv 19.71 25.60 34.11 32.13 38.94 43.94 53.65 61.21 66.79 39.17 46.79 52.09

entdivinv +ens 19.63 26.20 33.84 34.67 42.67 47.78 58.24 63.67 69.11 43.17 46.34 55.01
lsdivinv 19.13 24.66 33.62 32.62 38.46 43.52 55.27 61.89 66.80 39.48 45.89 51.42

lsdivinv +ens 19.82 26.17 33.55 35.77 42.95 47.23 60.32 64.87 68.85 42.99 47.56 53.81
core− set 20.07 26.35 34.17 30.04 36.34 42.18 49.84 56.42 63.87 37.10 46.08 52.31

core− set +ens 19.90 26.34 33.86 31.95 38.29 46.10 54.08 59.90 66.41 38.73 48.79 55.62
Full 65.85 59.49 70.20 72.43

GAL

-0.792
-0.739
-0.672
-0.742
-0.663
-0.790
-0.723
-

Table 6. Accuracy of the acquisition functions with ensemble before balancing. We copy results for the main methods from Table 2 of the
main paper. For ensemble, we add +ens to method names and present the results in italics to improve readability. Note that random is
not influenced by ensembles and is the same as in Table 2.



Dataset Food-101 CIFAR-100 IMN-100 MIT-67
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000
random 23.53 30.52 37.95 28.86 37.29 44.32 53.79 62.59 68.31 42.36 54.14 60.16
entdivinv 23.20 27.43 38.00 34.32 40.78 45.34 56.98 64.12 68.21 47.80 53.74 60.39

entdivinv +ens 25.26 28.77 37.00 36.67 42.77 48.54 60.76 66.49 69.98 49.07 55.75 63.98
lsdivinv 21.77 28.71 36.16 32.21 39.92 45.13 55.55 64.05 68.86 45.34 51.79 61.06

lsdivinv +ens 22.12 28.59 34.72 35.53 42.93 48.77 59.47 67.08 69.61 45.53 54.26 63.98
core− set 20.84 28.21 37.44 32.68 39.70 44.43 54.57 62.14 67.97 46.42 54.34 60.46

core− set +ens 19.77 27.18 37.56 35.31 43.26 48.38 57.47 65.39 69.41 52.10 58.68 64.56
Full 65.85 59.49 70.20 72.43

GAL

-0.653
-0.612
-0.548
-0.637
-0.576
-0.640
-0.554
-

Table 7. Accuracy of the acquisition functions with ensemble after balancing. We copy results for main methods from Table 3 of the main
paper. For ensemble, we add +ens to method names and present the results in italics to improve readability. Note that random is not
influenced by ensembles and is the same as in Table 3.

Dataset Food-101 CIFAR-100 IMN-100 MIT-67
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000
random 26.73 34.75 43.20 34.78 43.81 51.33 56.75 65.81 71.50 48.39 57.95 64.47
entdivinv 23.45 28.15 36.72 35.75 42.48 49.17 53.39 62.47 69.10 48.09 55.53 62.18
lsdivinv 23.33 28.04 36.96 35.99 43.42 49.76 55.46 62.07 69.67 46.67 54.63 62.78

core− set 22.43 28.55 37.82 32.34 41.65 49.13 51.32 59.34 67.29 45.99 55.05 62.78
Full 68.53 63.02 72.89 65.47

GAL

-0.538
-0.627
-0.620
-0.662

-

Table 8. Accuracy of the acquisition functions with balanced dataset before balancing. random and core− set are non deterministic and
their performance is averaged over five runs. Best results are presented in bold.

Dataset Food-101 CIFAR-100 IMN-100 MIT-67
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000
random 27.49 36.18 44.11 35.76 45.30 51.94 58.57 66.67 71.42 51.79 59.46 64.80
entdivinv 26.10 29.33 40.52 38.48 45.18 50.62 59.70 65.32 70.31 48.95 58.67 64.65
lsdivinv 25.18 31.53 40.91 37.89 46.09 51.05 59.96 65.69 70.40 50.75 57.10 64.28

core− set 24.83 32.23 41.42 35.03 43.50 50.42 55.71 64.44 69.84 49.72 58.30 63.39
Full 68.53 63.02 72.89 65.47

GAL

-0.502
-0.544
-0.536
-0.568
-

Table 9. Accuracy of the acquisition functions with balanced dataset after balancing. random and core − set are non deterministic and
their performance is averaged over five runs. Best results are presented in bold.

are generally between two and three top-1 accuracy points for lower budgets, which are most interesting in AL since they
require the lowest annotation effort. Also interesting, after balancing the global performance of entdivinv and lsdivinv becomes
closer to that of random . For the lowest budget, entdivinv and lsdivinv are more competitive than random after balancing for
CIFAR-100 and IMN-100, the two datasets with best transferability from the source. The comparison of imbalance ratio and
classes found in Table 10 and 11 shows that none of the AF methods finds a perfectly balanced subset for manual annotation.
However, the degree of imbalance is considerably reduced after the application of balancing. For instance, it is more than
halved for entdivinv and lsdivinv when applied to CIFAR-100 and IMN-100 for all three AL budgets. The number of discovered
classes is higher than that reported for imbalanced datasets (Tables 4 and 5 of the main paper). This is intuitive since class
discovery is simpler when classes are balanced and the odds to find representatives of each class are comparable. The results
presented here indicate that the balancing step might be useful for active learning in general and not only for imbalanced
datasets. Further evaluation with other acquisition functions and in an iterative setting is needed to reinforce this conclusion.

3. Diversification Pseudo-code
The pseudo code for the diversification procedure described in Subsection 3.2.2 is provided in Algorithm refalg:div. The

computational cost of the diversification is negligible since the selection of a new sample to label manually only requires
comparison the comparison of its top-1 prediction to a list of top-1 predictions for the samples which were already selected.



Dataset Food-101 CIFAR-100 IMN-100 MIT-67
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000

random
Classes 100.4 101 101 99.4 100 100 99 100 100 66.6 67 67

ir 0.463 0.316 0.204 0.442 0.318 0.216 0.446 0.293 0.220 0.361 0.227 0.146

entdivinv
Classes 87 100 101 97 100 100 99 100 100 66 67 67

ir 0.989 0.968 0.776 0.542 0.516 0.440 0.534 0.556 0.462 0.556 0.479 0.340

lcdivinv
Classes 90 99 101 99 100 100 100 100 100 66 67 67

ir 0.990 0.969 0.778 0.525 0.496 0.416 0.510 0.557 0.457 0.599 0.494 0.350

core− set
Classes 92.8 98.6 100.8 98.8 100 100 98.8 99.8 100 67 67 67

ir 0.957 0.860 0.763 0.578 0.542 0.465 0.707 0.654 0.578 0.627 0.488 0.359

Full
Classes 101 100 100 67

ir 0 0 0 0

Average

91.78
0.304
90.33
0.596
90.75
0.595
90.88
0.631
92
0

Table 10. Number of classes found and imbalance ratio for the main acquisition methods with balanced datasets before balancing. The
number of classes is not an integer for random and core − set because these methods are not deterministic and their performance is
averaged over five runs.

Dataset Food-101 CIFAR-100 IMN-100 MIT-67
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000

random
Classes 99.4 101 101 98.4 100 100 97.6 100 100 66.8 67 67

ir 0.415 0.225 0.104 0.321 0.186 0.095 0.280 0.144 0.084 0.174 0.092 0.056

entdivinv
Classes 99 100 101 98 100 100 98 100 100 67 67 67

ir 0.661 0.802 0.428 0.261 0.192 0.134 0.261 0.192 0.134 0.302 0.171 0.122

lcdivinv
Classes 98 100 101 99 100 100 99 100 100 67 67 67

ir 0.721 0.542 0.446 0.192 0.191 0.149 0.192 0.191 0.149 0.244 0.167 0.143

core− set
Classes 97 101 101 98.3 100 100 97.8 99.6 100 66.6 67 67

ir 0.642 0.464 0.291 0.315 0.213 0.168 0.363 0.241 0.204 0.331 0.181 0.141

Full
Classes 101 100 100 67

ir 0 0 0 0

Average

91.52
0.181
91.42
0.305
91.50
0.277
91.27
0.296
92
0

Table 11. Number of classes found and imbalance ratio for the main acquisition methods with balanced datasets after balancing. The
number of classes is not an integer for random and core − set because these methods are not deterministic and their performance is
averaged over five runs.

4. Dataset Imbalance Induction
As stated in the Section 4.1, a common imbalance induction procedure was applied to all datasets using a target imbalance

ratio to guide the pruning process. Similar imbalance ratio was obtained across datasets to facilitate comparability of results.
Imbalance induction process for the 4 target dataset was guided to attain similar imbalance ratio to that of the full ImageNet
dataset, which is 0.813 by transferring the class distribution of ImageNet dataset to the target dataset. Binning is performed
on number of images per classes in the ImageNet dataset. The number of bins is set to the number of classes present in the
target dataset. Thereafter, the mean of each bin is normalized and multiplied to the mean number of images per class in target
dataset to give the images in target imbalanced dataset.

5. Evaluation of Accuracy
Performance is calculated by averaging the top-1 accuracy for all Nt classes present in the unlabeled dataset. Let the total

number of classes found by an acquisition function be Nf and the average accuracy over these classes be ACCf . The final
accuracy ACCt of a configuration is calculated over all the classes which could be discovered using:

ACCt = Accf
Nf

Nt
(1)

Taking all classes into consideration, even if some of them are not discovered during AL acquisition, is necessary because
our objective is to evaluate accuracy over the complete task. The merits of the different methods tested are only comparable
if tested for all classes which could be discovered.



Algorithm 1 Diversification algorithm
1: U : a list of unlabeled samples
2: top: a dictionary containing top prediction source class for all samples in U
3: b : budget of samples to be selected
4: procedure DIV(U , top, b)
5: Build L: a list of selected samples from U of length b
6: while len(L)≤ b do
7: seenclasses = empty list : reinitialize memory of source classes
8: for each item i in U do
9: topsourceclass = top[i] :predicted source class for sample U [i]

10: if topsourceclass not in seenclasses then
11: if i not in L then
12: add sample i in L
13: add topsourceclass in seenclasses
14: end if
15: end if
16: end for
17: end while
18: L = L[0 : b]
19: return L
20: end procedure

Dataset Food-101 (SVM) Food-101 (CNN) CIFAR-100 (SVM) CIFAR-100 (CNN)
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000
random 21.74 27.62 32.54 23.02 30.63 38.68 27.31 33.66 39.78 16.34 28.50 37.89
entdivinv 20.54 24.55 30.17 19.71 25.60 34.11 32.13 38.94 43.94 23.23 30.75 39.66
lsdivinv 19.09 24.08 29.43 19.13 24.66 33.62 32.62 38.46 43.52 22.67 27.70 37.85

coreSet 19.30 23.55 28.69 20.07 26.35 34.17 30.04 36.34 42.18 18.77 25.88 32.19
Full 42.84 65.85 50.4 59.49

Table 12. Accuracy of the acquisition functions with unbalanced dataset before balancing for two schemes of training (SVM and CNN).
random and core− set are non deterministic and their performance is averaged over five runs. Best results are presented in bold.

6. Comparison of Training Schemes
As mentioned in the main paper Section 3.4, the target modelMT on the labeled dataset DL

T can be trained by transferring
deep features fromMS or by fine-tuning this model. In the first setting a SVM classifier is trained on top of the embedding f
from the source model. This setting is advisable when there is strong transferability between the source and target domain, as
is established to be the case of Cifar-100. Results from as Table 12 show that for Cifar-100, the SVM setting is significantly
better than fine-tuning a CNN, especially for lower budgets. The difference is larger for lower budgets as fine-tuning the
model is difficult with less data. In case of Food-101, the features from the source model are not directly usable and it is
better to learn all the layers of the model. The upper-bound Full for both the datasets is provided by fine-tuning(CNN), as
with enough data, fine-tuning the model over-performs SVM training.


