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Figure 1: Network Architecture depicting different parts & information transition between different modules. Top Row:

network parameters of EpO-Net, that takes motion frame (Optical Flow + Epipolar Distance) as input and output a motion
saliency map. Middle Row: appearance network takes RGB video frame and produces an intermediate representation.
Bottom Row: Fusion Network combines the two-stream representation (Motion Saliency + Appearance Features) using the
Convolutional GRU module and CRF is applied to produce the final segmentation result. The height (h), width (w) of the
feature maps, and size of convolutional filters are mentioned at each layer.



Figure 2: Qualitative Comparison of our our motion network (EpO-Net in Red) with Mp-Net [6] (Blue) against the ground
truth (Green). EpO-Net only relies on optical flow and dense trajectories based epipolar distances. Unlike MpNet, we do not
require any objectness score for motion segmentation.
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Figure 3: Qualitative Comparison of our EpO+ with STP [I], LSMO [8] (an improved version of LVO [7]), MOA [4],
and AGS [9] (an improved version of PDB [5]) on validation sequences of DAVIS-2016, all the networks are trained on
DAVIS-2016. Green is GroundTruth, Blue is STP, LSMO, MOA, AGS and Red is EpO+ (our fusion network). Most of
the errors in the other methods are over-segmenting, and are due to over-exploitation of appearance information. While the
proposed method, due to more informative proposed motion features (based on geometric constraints) and input-dropout
training procedure, is being able to learn, how to balance appearance and motion cues.
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Figure 4: Qualitative Comparison of our EpO+ with LVO [7], PDB [5], and AGS [9] on DAVIS-2017, all the networks
are trained on DAVIS-2016 and tested on validation set of DAVIS-2017. Green is GroundTruth, Blue is LVO, PDB, AGS
and Red is EpO+ (our fusion network). Most of the errors in the other methods are over-segmenting, and are due to over-
exploitation of appearance information. While the proposed method, due to more informative proposed motion features
(based on geometric constraints) and input-dropout training procedure, is being able to learn, how to balance appearance and
motion cues.



Figure 5: Frames from RBSF dataset sequences are shown.

RBSF Dataset: We create our own synthetic dataset, called RBSF (Real Background, Synthetic foreground), by overlay-
ing 20 different foreground objects performing various movements with 5 different real background videos. We downloaded
both the foreground and background videos from YouTube and mixed them using Video Editing Tool. The foreground objects
include running dog, cat, camel, jumping human, football player, dancing girl, etc. The background videos include scenes
capturing riversides, shipyard, house-outdoors, houses-indoors, and playgrounds. The videos are stored in 720p (720x1280)
resolution and foreground objects are fairly large size (30% to 50% of the frame). The reasonable fast motion of foreground
objects allows us to compute accurate optical flow and long trajectories.

We use this dataset to only train the EpO (motion) network, using the optical flow and the epipolar distances. No ap-
pearance information was used, therefore, repeating background shall not affect the learning process. It is easy to scale this
dataset up. However, for our requirements, the dataset is large enough, containing 100 videos and 19,797 frames., We ob-
serve that generating more data does not improve results, thanks to the well-constrained epipolar distances (ED). Therefore
the backgrounds do not affect the training. Frames from few sequences from RBSF are shown in Fig 5. The dataset is
released at https://github.com/mfaisal59/RBSF.

Attribute| EpO+ EpO | AGS[9] MOA[4] LSMOI[&] STP[!] PDB[5] ARP[3] LVO[7] Mp-Net[6] FSeg[?]
AC  |0.83-0.04 0.77 -0.03|0.80 -0.01 0.78 -0.01 0.78 +0.00 0.72 +0.07 0.78 -0.01 0.79 -0.04 0.75 +0.01 0.71 -0.02 0.71 -0.01
DB |0.72 +0.10 0.63 +0.14|0.66 +0.16 0.61 +0.20 0.55 +0.27 0.66 +0.15 0.62 +0.17 0.72 +0.05 0.55 +0.24 0.58 +0.14 0.50 +0.24
FM  [0.78 +0.04 0.72 +0.06|0.77 +0.04 0.74 +0.05 0.73 +0.08 0.75 +0.04 0.74 +0.04 0.73 +0.04 0.70 +0.09 0.68 +0.04 0.68 +0.04
MB  |0.78 +0.06 0.67 +0.14|0.74 +0.10 0.71 +0.10 0.73 +0.10 0.74 +0.06 0.72 +0.09 0.71 +0.09 0.71 +0.09 0.65 +0.10 0.64 +0.13
OCC (0.75 +0.08 0.67 +0.11{0.76 +0.05 0.78 -0.02 0.74 +0.06 0.81 -0.05 0.76 +0.02 0.72 +0.06 0.73 +0.03 0.69 +0.01 0.61 +0.13

Table 2: The Attribute Analysis comparing state-of-the-art methods on DAVIS-2016 dataset. Mean IoU for a specific at-
tribute: Appearance change (AC), Dynamic Background (DB), Fast Motion (FM), Motion Blur (MB) and Occulusion (OCC)
is presented. The values in small font size show the increase or decrease in performance without the sequences correspond-
ing to that specific attribute. Our method outperforms in AC, FM, DB, and MB. The best scores are highlighted in bold and
second best are underlined.


https://github.com/mfaisal59/RBSF

Sequence EpO EpO+ |AGS [9] MOA [4] LSMO [8] PDB [5] STP [1] ARP [3] LVO [7] MpNet [6] FSeg [2]
blackswan 0.7816 0.8418| 0.7958 0.9198  0.9296 0.9080 0.6741 0.8815 0.7426 0.5059 0.8109
bmx-trees 0.4129 0.4898|0.51905 0.4644  0.5023 0.4634 0.6446 0.5017 0.5011 0.5224 0.4353
breakdance  |0.6678 0.8221| 0.6078 0.3638  0.4595 0.5912 0.7783 0.7628 0.3715 0.5276  0.5109
camel 0.8824 0.9207| 0.8578 0.8290  0.8863 0.8240 0.8328 0.9016 0.8816 0.7847  0.8355
car-roundabout {0.9251 0.8903| 0.8439 0.7685  0.8595 0.8522 0.8523 0.8164 0.8836 0.7978  0.9015
car-shadow  |0.8893 0.8855| 0.9141 0.9209 0.8817 0.9126 0.7316 0.7287 0.9199 0.8362 0.8960
cows 0.8904 0.9109| 0.9217 0.9438 0.9099 0.9181 0.9049 0.9081 0.9023 0.8382 0.8681
dance-twirl ~ ]0.6392 0.8267| 0.7894 0.6737  0.8309 0.6603 0.8154 0.7988 0.8089 0.5974 0.7042
dog 0.9008 0.8971| 0.9352 0.9393 0.9292 0.9232 0.8380 0.7169 0.8870 0.8188 0.8891
drift-chicane  |0.7038 0.6780| 0.6910 0.7543  0.6899 0.6014 0.4538 0.7932 0.6289 0.6751  0.5985
drift-straight  |0.7318 0.8253] 0.8935 0.9105 0.8233  0.8571 0.7078 0.7046 0.8472 0.7145 0.8106
goat 0.8325 0.8407| 0.8474 0.8832  0.8446 0.8374 0.8515 0.7770 0.8226 0.7517 0.8308
horsejump-high [0.8120 0.8400| 0.8398 0.8776 0.8621 0.8574 0.8888 0.8358 0.8235 0.8319 0.6493
kite-surf 0.5202 0.6549| 0.6880 0.6907 0.5005 0.6745 0.4361 0.5931 0.6461 0.5381 0.3897
libby 0.6035 0.7338| 0.6583 0.8307 0.7812 0.7307 0.8233 0.6573 0.6932 0.6500 0.5847
motocross-jump |0.7714 0.8535| 0.8213 0.8541  0.8228 0.8547 0.5040 0.8257 0.8052 0.7036 0.7749
paragliding-launch|0.6010 0.6238| 0.6295 0.6404  0.6352  0.6337 0.6423 0.6011 0.6246 0.6380  0.5699
parkour 0.8151 0.8735| 0.9063 0.9053 0.8926 0.9007 0.8907 0.8248 0.8489 0.7720 0.7580
scooter-black  [0.8288 0.8301| 0.7509 0.5457 0.7083 0.6893 0.7880 0.7436 0.7182 0.7206  0.6847
soapbox 0.8224 0.8825| 0.7556 0.7170  0.8796  0.7312 0.9071 0.8433 0.8114 0.7636  0.6256
Mean IoU 0.7516 0.8061| 0.7970 0.7720  0.7820 0.7711 0.7483 0.7608 0.7585 0.6995  0.7065

Table 1: Comparison of our motion (EpO) and fusion network (EpO+), with state-of-the-art on validation set of DAVIS-2016
with intersection over union 7 on each sequence. The mean IoU of ARP and STP differs from the paper, because here we
are reporting the results on validation set only. The best scores are highlighted in bold and second best are underlined.

Ground Truth

Figure 6: Failure Cases of our EpO Network. In the Left sequence, the trajectories are short due to occlusion that results in
low epipolar distance. The optical flow in the right sequence was too noisy because of the smoke in some of the frames. This
results in an under-segmentation of the foreground object.
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