
Synthetic Examples Improve Generalization for Rare Classes: Supplementary

1. Architecture Selection

To select a single classification architecture to use across
our experiments, we trained three classifiers: ResNet-101
V2, Inception V3, and Inception-ResNet V2. All three clas-
sifiers were pretrained on no-animal ImageNet then trained
on the Caltech Camera Traps (CCT) training set (described
in the main paper, Section 3.1) with no added simulated im-
ages. We found that Inception-ResNet V2 performed best
on deer in cis and trans scenarios (see Table 1), so we de-
cided to use Inception-ResNet V2 as the base architecture
for all further experiments.

Cis Test Trans+ Test
Architecture Deer Other Deer Other

Resnet 101 V2 47.86 11.18 88.63 29.76
Inception V3 50.00 11.74 81.73 32.74

Inception Resnet V2 29.28 10.17 77.69 31.07

Table 1: Error for different architectures. Error is defined as
the number of incorrectly identified images divided by the
number of images for each test set, where “Deer” contains
only deer images and “Other” contains all non-deer images.

2. Additional analysis

2.1. Per-class analysis of the effect of adding simu-
lated deer images

By averaging over the performance of the non-deer
classes in Figure 5 in the main paper, we have not changed
the overall trend. The performance on each non-deer class
stays reasonably constant until the number of added deer
images goes above 325K.

2.2. Analyzing the value of real images

We find that our simulated data is sufficient to learn to
recognize some deer even without real examples, though
the real examples give a large boost in performance. The
performance breakdown can be seen in Table 2. These re-
sults are promising for both researchers studying zero-shot
learning and biologists studying highly endangered species:
it is possible to learn a species with no real training data.
This avenue remains open for further study.

0 ... 101 102 103 104 105 106

Number of simulated deer images

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

bobcat
opossum
coyote

raccoon
bird
dog

cat
squirrel
rabbit

skunk
rodent

(a) Cis test

0 ... 101 102 103 104 105 106

Number of simulated deer images

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

bobcat
opossum
coyote

raccoon
bird
dog

cat
squirrel
rabbit

skunk
rodent

(b) Trans test

Figure 1: Per-class performance on non-deer classes
when adding simulated deer images. The trends seen in
Figure 5 in the main paper when averaging across classes
hold for each individual class. Performance stays relatively
constant until the number of added simulated deer images
starts to bias the classifier, above 325K added images.

2.3. Comparing night and day performance

We further analyze the effect of day and night simula-
tion by comparing three experiments: one trained with only
simulated daytime images, one trained with only simulated
nighttime images, and one trained with half day and half

1



night (see Fig 2). We find that the models trained on only
day and only night perform similarly on trans deer, and that
the 50/50 split performs best on trans deer (highlighted re-
gion in Fig 2). Training on day or night alone gives us
a 20% performance boost on trans deer, while training on
both gives us a 40% performance boost. This suggests that
the day and night simulated images help the classifier in
complementary ways: day helps with day images and night
helps with night images. Performance on other classes is
not strongly effected. Cis performance is quite noisy, and
performs best with no added simulated data, see Fig. 2 in
the main paper for further analysis.

Cis Test Trans+ Test
Real Training Data Deer Other Deer Other
CCT train w/o deer 94.29 18.64 68.56 34.42
CCT train w/ deer 52.14 10.91 44.05 30.47

% decrease from real deer 44.7 41.5 35.7 11.5

Table 2: Error with and without the 44 real deer examples
when adding 100K simulated deer images. Error is com-
puted as in Table 1.

trans+
deer

cis
deer

trans+
other
(avg)

cis
other
(avg)

Test set

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

CCT
Day sim only
Night sim only
Night+day sim

Figure 2: Error as a function of day or night simulated
images: 100K simulated deer images. Error is calculated
as in Fig. 4 in the main paper. Trans+ deer performance
is highlighted. Models trained on added night- or day-only
simulated data perform better on trans deer than CCT alone,
but the best trans deer performance comes from the 50/50
day/night split of added simulated data.

2.4. Investigating the effect of adding simulated data
for a common class

In order to investigate how added simulated data might
effect a common class, as opposed to a rare one, we cre-
ated “coyote” simulated data with TrapCam-Unity, using

trans+
deer

cis
deer

trans+
coyotes

cis+
coyotes

Test set

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

CCT
Deer sim
Coyote sim

Figure 3: Error as a function of deer or coyote simulated
images: 100K simulated images. Error is calculated as in
Fig. 4 in the main paper. Trans+ deer and coyote perfor-
mance are highlighted.

(a) Coyote [4] (b) Wolf [16]

Figure 4: Wolves and coyotes are visually similar.

rendered models of wolves as a proxy for coyotes. Off-the-
shelf, high-quality wolf models were more widely available,
and wolves and coyotes are visually very similar (see Fig.4).
This is a coarse-grained experiment, and it remains to be
seen what would happen if simulated data from two visu-
ally similar classes (e.g. wolves and coyotes) was added at
the same time.

We find that adding simulated “coyote” data improves
trans+ coyote performance slightly, while cis coyote perfor-
mance remains the same. Unsurprisingly, for the deer class
(which has few training examples) adding a large amount of
simulated coyote data harms both cis and trans+ deer per-
formance.

3. Creating Sim and Real on Empty Data

Alternative to the full synthetic methods of data genera-
tion with AirSim and Unity, we generated synthetic images
by overlaying either simulated deer or real cropped deer on
real empty background images from the CCT dataset (see
Fig. 5).

For the Sim on Empty dataset generation, we posed either
a stag or a doe deer from the GiM model set in front of a



simulated camera in Unity. We randomized the animation,
orientation in azimuth (0-360 degrees), position, direction
of light orientation in azimuth (0-360 degrees), and eleva-
tion (20-90 degrees).

For the Real on Empty dataset, we manually segmented
and cropped out the 44 instances of deer from the CCT
training set. Then we pasted the cropped deer foreground
images on top of empty camera trap images in random loca-
tions. It is worth noting that we use real empty background
to investigate the effect of real versus sim foreground deer,
it is possible in future work to combine either type of fore-
ground with sim background images.

(a) Simulated deer
foreground

(b) Cropped real deer
foreground

(c) Empty background from
CCT

(d) Empty background from
CCT

(e) Sim on empty overlay (f) Real on empty overlay

Figure 5: Sim and Real on Empty Generation. (a),(c),(e)
demonstrate the process of overlaying a simulated deer on
top of an empty background image from the CCT dataset.
(b),(d),(f) show the process of overlaying a cropped real
deer on top of an empty background image from the CCT
dataset.

4. TrapCam-AirSim Details
It took time and thought to derive the overall require-

ments for the AirSim TrapCam environment. With a sizable
number of potential biomes globally, we narrowed the scope
of what we intended to build to a SW United States environ-
ment similar to what is seen in the CCT data. Eventually
we settled on a sub-alpine woodland scene that is readily

found across most of the Western/ Southwest US. A major
requirement and challenge was how to get the most data out
of a relatively small, but detailed, area - this was key to the
project without expanding the size of the area of interest.
The overall intent was to leverage Microsoft AirSim’s com-
puter vision mode to move a pre-configured camera around
the scene, providing varied background.

We used various off-the-shelf components such as an
animal pack from Epic Studios [5] (Animals Vol 01: For-
est Animals by GiM [6]), background terrain from Un-
real Marketplace [14], vegetation from SpeedTree [13], and
rocks/obstructions from Megascans [11]. In other AirSim
environments, the general scenery is fairly static with ex-
ception of particle effects (snow/rain/dust/etc). For this ef-
fort we wanted a method to vary the background, to repli-
cate a variety of terrains within a single environment (see
Fig.6). The actual area of the environment is small, at
50 meters long, but the modularity allows many possible
scenes to be constructed. The randomization was designed
to facilitate artists by allowing them to make a list of dif-
ferent objects to randomize from. Those objects are pri-
oritized based on their order on the list. The BiomeTer-
rain class generates them by tracing random areas across
the field based on a global seed. If there’s space available
it spawns the desired object. There are a number of ob-
ject types available in TrapCam-AirSim; animal type, rocks,
logs, grasses, shrubs, trees, and each type can be varied by
density and distribution. Additionally, we provide 9 GiM
animal models: deer (doe/stag), wolf, fox, rat, spider, bear,
raccoon, and buffalo. The doe model was created by re-
moving the antlers from the stag model with Maya [9], a
common modeling tool. All animal objects were assigned
segmentation IDs for efficient ground truth extraction.

We created a simple UI to vary parameters, along with a
command line API for parameter configuration. The UI was
constructed with Unreal Motion Graphics (UMG) Widgets
and allows for future flexibility for modifications, DPI res-
olutions and platforms. The main core functionalities were
created with C++ for better performance as a parent class
for data-only blueprints, which allows the technical artists
to easily swap assets for different environments without re-
compiling the C++ code.

We started the requirements and scoping in mid-August
2018 with a go-ahead approximately 6 September, and pro-
duced a working prototype two weeks later, with continued
development and refining through mid-October. A second
phase late in the year modified the camera system to include
flash capability, and animals were updated to provide eye-
shine, and the UI was modified to include variability for that
eye-shine.



Figure 6: TrapCam-AirSim environment. The TrapCam-
Airsim envionment was designed to be modular and ran-
domizeable, which allows a variety of biomes to be synthe-
sized within a limited simulated area.

(a) Models of deer

(b) Models of wolves

Figure 7: Models of deer and wolves. In TrapCam-Unity
we used 17 different models of deer from 5 different artists
and 5 models of wolves from 5 different artists. We used the
wolf models as proxies for coyotes (see Section 2.4). Model
details are available in Section 5.

5. TrapCam-Unity Details
5.1. Simulation

The overall goal of our simulation is to take advantage
of off-the-shelf components crafted for game development
as much as possible so that we minimize manual labor and
make the method more scalable and generalizeable. Specif-
ically, we used off-the-shelf animal models and environ-
ment.

The “Book of The Dead” environment [3] we use is
published for free by Unity. As shown in Fig.8, the near-
photorealistic environment simulates a large patch of forest
in a valley with volumetric grass, a variety of high definition
trees, logs, and bushes, as well as rocks and terrain. The en-
vironment is a irregular area of roughly 20,000 m2. It runs
on a desktop PC in real time and enables us to generate large
amounts of images efficiently.

Figure 8: TrapCam-Unity environment. The Book of The
Dead environment is a large natural environment with di-
verse sub regions.

To create daytime images we varied the orientation of
the simulated sun in both azimuth and elevation. To cre-
ate images taken at night we created a spotlight attached to
the simulated camera to simulate a white-light or IR flash
and qualitatively match the low color saturation of the night
time images. To simulate animals’ eyeshine (a result of the
reflection of camera flash from the tapetum lucidum), we
placed small reflective balls on top of the eyes of model an-
imals (see Fig.9).

For deer simulation, we used 17 animated deer mod-
els from 5 publishers on Unity (GiM[7], 4toon[1],



Protofactor[10], Red Deer[12], Janpec[8]). For coyote sim-
ulation, we used 5 models from 5 publishers (GiM[7],
4toon[1], Protofactor[10], Janpec[8], WDallgraphics[15]).
We created the GiM doe model by removing the antlers of
the GiM stag model with Blender[2]. For each of the an-
imated models, we included an animation controller that
contains several animation clips ranging from commonly
seen behavior episodes like walking and eating, to rare oc-
currences like attacking and sleeping. During dataset gen-
eration, we randomly picked a clip for each instance of ani-
mals and freeze it at a random time point, then we move the
cameras around to sample a static scene with animals and
environment.

Figure 9: Example of eyeshine simulation.

We had 300 seed locations and randomly placed ani-
mals in the vicinity of a subset of the seed locations. This
process was repeated multiple times to simulate animals in
random locations within the environment. A similar ran-
dom placement process was used to determine the locations
of the cameras. All images generated are in full HD resolu-
tion (1980 x 1080).

For ground truth generation, we turned off the lighting
and rendered each instance of the animal in a unique color
by replacing the original animal shader with an unlit shader.
We then used customized python scripts to extract animal
bounding boxes by extracting pixels with these unique col-
ors.

5.2. Scalability and Generalizability

All synthetic examples in this study are generated with
off the shelf environments and models. We use our simula-
tors to generate deer images for the sake of this study, but
the simulators each currently include up to 30 simulation-
ready species.

A large number of high quality assets already exist on-
line in the game development community. For example,
Unity Asset Store alone has 1382 items under the Animal
category. There are also many environments available on-
line, like the “A Boy and His Kite” environment for Un-
real. Despite the abundance of readily made animal models
and environments, it might still remain challenging if the

species-environment combination is not covered by exist-
ing assets as the 3D assets need to be created by artists first.
However, recent work in automating 3D model generation
[18, 20, 17, 19], might reduce the need for hand-crafted as-
sets in the future.

References
[1] 4toon studio. https://assetstore.unity.com/

publishers/3695. Accessed: 2019-03-27. 4, 5
[2] Blender. https://www.blender.org/. Accessed:

2019-03-28. 5
[3] Book of the dead environment. https:

//assetstore.unity.com/packages/
essentials/tutorial-projects/
book-of-the-dead-environment-121175.
Accessed: 2019-03-27. 4

[4] Coyote in a camera trap. https://www.
inaturalist.org/photos/7738216. Accessed:
2019-03-28. 2

[5] Epic studios. http://epicstudios.com/. Accessed:
2019-03-21. 3

[6] Forest animals by GiM. https://www.
unrealengine.com/marketplace/en-US/
animals-vol-01-forest-animals. Accessed:
2019-03-21. 3

[7] GiM studio. https://assetstore.unity.com/
publishers/18347. Accessed: 2019-03-27. 4, 5

[8] Janpec. https://assetstore.unity.com/
publishers/1066. Accessed: 2019-03-27. 5

[9] Maya. https://www.autodesk.com/products/
maya/overview. Accessed: 2019-03-28. 3

[10] Protofactor inc. https://assetstore.unity.com/
publishers/265. Accessed: 2019-03-27. 5

[11] Quixel megascans library. https://quixel.com/
megascans. Accessed: 2019-03-21. 3

[12] Red deer studio. https://assetstore.unity.com/
publishers/12623. Accessed: 2019-03-27. 5

[13] Speedtree. https://store.speedtree.com/. Ac-
cessed: 2019-03-21. 3

[14] Unreal game engine. https://www.unrealengine.
com/en-US/what-is-unreal-engine-4. Ac-
cessed: 2019-02-05. 3

[15] Wdallgraphics studio. https://assetstore.unity.
com/publishers/5060. Accessed: 2019-03-28. 5

[16] Wolf in a camera trap. https://3c1703fe8d.site.
internapcdn.net/newman/csz/news/800/
2018/cameratrapst.jpg. Accessed: 2019-03-28. 2

[17] T. J. Cashman and A. W. Fitzgibbon. What shape are dol-
phins? building 3d morphable models from 2d images. IEEE
transactions on pattern analysis and machine intelligence,
35(1):232–244, 2013. 5

[18] A. Kanazawa, S. Tulsiani, A. A. Efros, and J. Malik. Learn-
ing category-specific mesh reconstruction from image col-
lections. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 371–386, 2018. 5

https://assetstore.unity.com/publishers/3695
https://assetstore.unity.com/publishers/3695
 https://www.blender.org/
https://assetstore.unity.com/packages/essentials/tutorial-projects/book-of-the-dead-environment-121175
https://assetstore.unity.com/packages/essentials/tutorial-projects/book-of-the-dead-environment-121175
https://assetstore.unity.com/packages/essentials/tutorial-projects/book-of-the-dead-environment-121175
https://assetstore.unity.com/packages/essentials/tutorial-projects/book-of-the-dead-environment-121175
 https://www.inaturalist.org/photos/7738216
 https://www.inaturalist.org/photos/7738216
http://epicstudios.com/
https://www.unrealengine.com/marketplace/en-US/animals-vol-01-forest-animals
https://www.unrealengine.com/marketplace/en-US/animals-vol-01-forest-animals
https://www.unrealengine.com/marketplace/en-US/animals-vol-01-forest-animals
https://assetstore.unity.com/publishers/18347
https://assetstore.unity.com/publishers/18347
https://assetstore.unity.com/publishers/1066
https://assetstore.unity.com/publishers/1066
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview
https://assetstore.unity.com/publishers/265
https://assetstore.unity.com/publishers/265
https://quixel.com/megascans
https://quixel.com/megascans
https://assetstore.unity.com/publishers/12623
https://assetstore.unity.com/publishers/12623
https://store.speedtree.com/
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
 https://assetstore.unity.com/publishers/5060
 https://assetstore.unity.com/publishers/5060
https://3c1703fe8d.site.internapcdn.net/newman/csz/news/800/2018/cameratrapst.jpg
https://3c1703fe8d.site.internapcdn.net/newman/csz/news/800/2018/cameratrapst.jpg
https://3c1703fe8d.site.internapcdn.net/newman/csz/news/800/2018/cameratrapst.jpg


[19] F. Pahde, M. Puscas, J. Wolff, T. Klein, N. Sebe, and
M. Nabi. Low-shot learning from imaginary 3d model. arXiv
preprint arXiv:1901.01868, 2019. 5

[20] B. Reinert, T. Ritschel, and H.-P. Seidel. Animated 3d
creatures from single-view video by skeletal sketching. In
Graphics Interface, pages 133–141, 2016. 5


