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1. Introduction
In this supplementary material, we provide:

• a more detailed discussion of GIL, the proposed ag-
gregated evaluation score;

• results for fine tuning with B = 0, i.e. without past
exemplars memory;

• supplementary experiments related to the role of distil-
lation in class incremental learning;

• algorithm implementation details.

2. Measuring the performance gap of IL algo-
rithms

The proposal of aggregated measures is important for
tasks which are evaluated in a large number of configu-
rations [6, 8]. Building on previous work regarding such
measures, the authors of [8] list eight criteria which should
be met by global evaluation metrics when evaluating uni-
versal visual representations: (1) coherent aggregation, (2)
significance, (3) merit bonus, (4) penalty malus, (5) penalty
for damage, (6) independence to outliers, (7) independence
to reference and (8) time consistency. They note that none
of the global evaluation measures can fulfill all criteria si-
multaneously. However, their formulation which inspired
us to propose GIL fulfills the maximum number of crite-
ria. While the IL context is different from that of universal
representations, a majority of criteria from [8] are relevant
here. The aggregation is easier in our work since the use
of Full as reference score is a natural upper bound for in-
cremental learning algorithms. The aggregation of scores
is natural in GIL since all scores are compared to a single
reference. The significance criterion, put forward in [6] is
only implicitly modeled because configurations which give
the largest gain contribute more to the global score. The
merit bonus refers to the proportionality of the reward with
respect to the reference method and is modeled through the
denominator of Equation 3 of the paper. The penalty for

damage and the penalty malus are not applicable since all
methods penalize the performance compared to the upper
bound. The independence to outlier methods has low ef-
fect in our case since it refers to the contributions of in-
dividual configurations. Since GIL averages the contribu-
tions of a relatively large number of contributions, the risk
related to outliers is rather reduced. Naturally, the more
datasets and configurations are tested, the more robust the
score will be. However, the computational resources needed
for training in IL are large and we consider that the use
of four datasets, with three memory sizes and three incre-
mental learning splits gives a fair idea about the behavior of
each algorithm. Time consistency is respected since meth-
ods are not compared to each other but only to a reference
which is stable if the same deep model and data are used
across time. A question remains whether datasets of dif-
ferent sizes should be given the same weights in the score
but using weighting would further complicate the evaluation
measure.

3. Fine tuning without memory

States Z = 10
Dataset ILSVRC VGGFace2 Landmarks CIFAR-100
LwF 43.80 48.30 46.34 79.49

FTnoMem 20.64 21.28 21.29 21.27
FTL2 20.64 21.27 21.27 21.27
FTinit 60.95 90.90 68.77 55.05
FTL2

init 51.57 76.84 61.42 47.48
ScaIL 21.96 23.06 22.31 33.49

Table 1: Top-5 accuracy of fine tuning without memory
(B = 0) for the four datasets with Z = 10 states. For
reference, we also present LwF [3], which is equivalent to
iCaRL [7] without memory.

Table 1 provides results obtained with fine tuning with-
out memory for past classes (B = 0) and Z = 10 states.
Trends are similar for the other Z values tested in the paper
which are not presented here. The accuracy drops signif-



icantly for FT since the network cannot rehearse knowl-
edge related to past classes. Catastrophic forgetting is more
severe and past classes become unrecognizable in the cur-
rent state. The accuracy of FTnoMem is mostly due to the
recognition rate of new classes. When Z = 10, they repre-
sent between a half and a tenth of the total number of classes
for states S = 1 and S = 9, the first and the last incremen-
tal state respectively. The accuracy for past classes is close
to random. Since ScaIL depends heavily on the weights
of past classes in the current state, its performance drops
significantly. LwF [3] includes a distillation component
which is clearly useful in absence of memory. It outper-
forms FT and ScaIL for all datasets by a very large mar-
gin. This finding reinforces the conclusions of [7] regarding
the positive role of distillation in incremental learning with-
out memory.

4. Supplementary experiments related to dis-
tillation in IL

In Figure 1, we provide detailed top-5 accuracy per in-
cremental state for FT , FT distill and iCaRL for B =
0.5% and Z = 50 states. The largest value of Z from the
paper was chosen in order to observe the behavior with and
without distillation for a small number of classes per in-
cremental state. For ILSVRC, VGGFace2 and Landmarks,
the difference between FT and FT distill is small for ini-
tial incremental states, increases a lot afterwards and tends
to decrease toward the end of the process but remains very
large. This behavior is explained by the fact that, since past
memory is only B = 0.5%, the number of exemplars per
class becomes very small toward the end. For instance, B
includes 5000 images for ILSVRC and there will be only 5
exemplars per class in the last states of the incremental pro-
cess. It is noticeable that rehearsal in FT still works with
such a small number of exemplars. These finding provides
further support to the results reported in the paper regard-
ing the negative role of distillation at large scale for imbal-
anced datasets when a memory of the past is available. Con-
firming the results from [7], distillation is indeed useful for
CIFAR-100, where its performance is slightly better than
that of FT . Also, the introduction of an external classifier
in iCaRL is clearly useful.

In Table 2 and Figure 2, we extend the analysis of top-1
types of errors presented in Table 2 and Figure 4 of the pa-
per to the four datasets. The e(p, p) errors related to the last
incremental state are overrepresented for all four datasets
compared. However, the errors toward the first incremen-
tal state are also better represented for VGGFace2 and even
become dominant for Landmarks and CIFAR-100. This be-
havior is probably due to the fact that the initial state is
stronger for easier tasks. In these cases, the model evolves
to a lesser extent compared to ILSVRC, a more complex
visual task.

Incremental states
S1 S2 S3 S4 S5 S6 S7 S8 S9

ILSVRC

F
T

c(p) 2117 2995 3415 3875 3653 4451 4558 5003 3119
e(p, p) 156 450 807 1363 1842 2710 2626 3932 2388
e(p, n) 2727 6555 10778 14762 19505 22839 27816 31065 39493
c(n) 4151 4322 4103 4141 4267 4304 4247 4378 4248

e(n, n) 809 638 875 828 716 674 743 595 741
e(n, p) 40 40 22 31 17 22 10 27 11

F
T

d
is
ti
ll

c(p) 850 1008 1355 1355 1195 1344 1419 1543 1562
e(p, p) 472 1746 3700 4999 6904 8246 10771 13400 14556
e(p, n) 3678 7246 9945 13646 16901 20410 22810 25057 28882
c(n) 3645 3834 3597 3607 3744 3754 3605 3766 3662

e(n, n) 1043 793 928 905 785 776 828 692 751
e(n, p) 312 373 475 488 471 470 567 542 587

VGGFace2

F
T

c(p) 4168 7718 11062 14293 15953 19614 21075 24690 24196
e(p, p) 89 282 611 947 1354 2170 3203 3827 4929
e(p, n) 743 2000 3327 4760 7693 8216 10722 11483 15875
c(n) 4825 4834 4866 4865 4881 4879 4887 4874 4883

e(n, n) 155 143 118 119 108 102 101 108 108
e(n, p) 20 23 16 16 11 19 12 18 9

F
T

d
is
ti
ll

c(p) 1729 2109 1886 1787 1520 1657 1412 1199 1131
e(p, p) 242 1455 2553 3360 4056 5766 6248 6506 7838
e(p, n) 3029 6436 10561 14853 19424 22577 27340 32295 36031
c(n) 4620 4637 4694 4740 4747 4714 4693 4685 4728

e(n, n) 299 239 236 203 212 224 218 248 216
e(n, p) 81 124 70 57 41 62 89 67 56

Landmarks

F
T

c(p) 1670 3072 4476 5550 6564 7626 8081 9303 10309
e(p, p) 38 131 318 616 879 1005 1340 1961 2237
e(p, n) 292 797 1206 1834 2557 3369 4579 4736 5454
c(n) 1945 1970 1959 1956 1973 1966 1975 1973 1971

e(n, n) 51 27 35 37 24 27 25 23 27
e(n, p) 4 3 6 7 3 7 0 4 2

F
T

d
is
ti
ll

c(p) 901 1011 859 815 788 769 622 533 419
e(p, p) 159 831 1770 2617 3194 3880 4708 5889 6744
e(p, n) 940 2158 3371 4568 6018 7351 8670 9578 10837
c(n) 1893 1893 1902 1910 1937 1913 1949 1926 1936

e(n, n) 66 53 58 61 37 53 36 52 38
e(n, p) 41 54 40 29 26 34 15 22 26

CIFAR-100

F
T

c(p) 366 614 675 605 686 950 779 692 467
e(p, p) 10 181 312 288 641 974 835 732 601
e(p, n) 624 1205 2013 3107 3673 4076 5386 6576 7932
c(n) 791 873 886 866 848 859 834 888 915

e(n, n) 196 114 103 131 146 127 159 104 80
e(n, p) 13 13 11 3 6 14 7 8 5

F
T

d
is
ti
ll

c(p) 719 1160 1507 1706 1988 2195 2349 2404 2251
e(p, p) 91 457 847 1210 1800 2551 2929 3499 3743
e(p, n) 190 383 646 1084 1212 1254 1722 2097 3006
c(n) 694 742 735 752 723 767 708 786 814

e(n, n) 78 62 40 53 48 35 57 38 28
e(n, p) 228 196 225 195 229 198 235 176 158

Table 2: Top-1 correct and wrong classifications for vanilla
fine tuning (FT ) and fine tuning with distillation (FT distill)
for the four datasets with Z = 10 and B = 0.5%.

5. Algorithm implementation details

We used the Github1 public implementation from [7]
to run iCaRL on TensorFlow [1] with the same hyper-
parameters and training settings provided by the authors.
Hyperparameters are as follows: lr = 2.0, weight decay =
0.00001, momentum = 0.9, batch size = 128. iCaRL
was run with a total of 60 epochs for the large datasets and
for 70 epochs for CIFAR-100. The learning rate is divided
by 5 at epoch = {20, 30, 40, 50} for the large datasets and

1https://github.com/srebuffi/iCaRL



Figure 1: Detailed Top-5 Test accuracy for the four datasets with Z = 50 and memory B = 0.5%. In this experiment, a
comparison is done between FT , FT distill and iCaRL to analyze the role of distillation.

at epoch = {49, 63} for CIFAR-100. We tried to opti-
mize the learning process by changing hyperparameters but
couldn’t improve the results presented by the original au-
thors.

BiC [9] was also run using the public Github imple-
mentation2 provided by the authors and the same hyper-
parameters.

All the other methods were implemented in Py-
torch [4] with batch size = 256 (128 for CIFAR-100),
weight decay = 0.0001 (0.0005 for CIFAR-100) and a
momentum = 0.9. The first non-incremental state was
trained for 100 epochs for large datasets and 300 epochs for
CIFAR-100. The learning rate is set to 0.1 and divided by
10 when the error plateaus for 10 consecutive epochs (60
epochs for CIFAR-100). FT was run for 35 epochs (60
epochs for CIFAR-100). The only change compared to the
standard training was to set initial learning rate per incre-

2https://github.com/wuyuebupt/LargeScaleIncrementalLearning

mental state at lr = 0.1
k+1 , with 1 ≤ k ≤ Z − 1. This results

in a gain of less than 1 top-5 accuracy point for ILSVRC
with Z = 10 and B = 0.5%. During training, the learning
rate is divided by 10 when the error plateaus for 5 epochs
(15 epochs for CIFAR-100).

The balanced fine tuning performed after FT in FTBAL

was run for 15 more epochs (30 epochs for CIFAR-100) and
the learning rate is reinitialized to lr = 0.01

k+1 . We also tried
to initialize the balanced fine tuning with lr = 0.1

k+1 and
continue from the last learning rate of the imbalanced fine
tuning but results were lower. Equally important, training
with more epochs did not provide any gain.

The fixed representation in DeeSIL [2] is trained only
with data from the first incremental batch. No exter-
nal data was used to ensure that the method is com-
parable with the others. SVM training is done using
the scikit-learn framework [5]. SVMs were optimized
by dividing the IL training set to 90

10 train/val subsets
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Figure 2: Detail of past-past errors e(p, p) for individual states of FT distill on the four datasets with Z = 10 and B =
0.5%. In each state, errors due to the latest past state are over-represented as a result of learning its associated state with an
imbalanced training set. Best viewed in color.

and iterate through the values of the regularizer C =
{0.0001, 0.001, 0.01, 1, 10, 100, 1000}. The optimal value
was retained for each dataset configuration. SVMs are opti-
mized only for the non-incremental state. The regularizer is
then frozen and used for the subsequent incremental states.
We used the default values of the other hyper-parameters
provided in sklearn.
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