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1. Introduction

We provide the hyper-parameters evaluation of Tempo-
ral Attention Vectors (TAVs) on UCF101. We also eval-
uate the TAVs on the Diving48 dataset with two back-
bones (frame/clip features extractor), ImageNet pre-trained
resNet-152 [2] and Kinetics 400 pre-trained I3D [1] net-
works. Both backbones are not trained with Diving48 dur-
ing the entire evaluation.

2. Diving48 Dataset

The newly released Diving48 dataset [3] which contains
15,943 training and 2096 testing videos of professional
divers performing 48 types of dives. We choose this dataset
because unlike datasets such as Kinetics or UCF101, Div-
ing48 is designed to minimize the bias towards particular
scenes or objects.

3. Implementation details

During the following evaluations, we use the Short-long
dynamic Gaussian (SLDG) to initialize the TAVs and use
the Short-long term Fusion to fuse the TAVs for different
temporal terms. The training and testing procedures are the
same as we explained Sec. 4.3 in the paper. All evaluations
of hyper-parameters are performed with both RGB and op-
tical flow as input and the evaluation on Diving48 are per-
formed with only RGB frames as input.
resNet-152 backbone. The input configuration is the same
as we explained in Sec. 4.1.

I3D backbone. The videos are resized preserving aspect
ratio so that the smallest dimension is 256 pixels, with bi-
linear interpolation. We use 10x data argumentation with
randomly select an 224 x 224 image crop. Pixel values are
then rescaled between —1 and 1. We use video clip with 8
continuous frames as input. If the video length is not divisi-
ble by 8, we just simple discard the rest frames. We modify
the kernel size of 3D average pooling layer to 1 X 7 and use
the output as clip features (1024D).

Base I3D. The input configuration is the same as the 13D
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# vectors K | # iteration N | # chunks m,, | Accuracy
7 2 6,1 78.4
8 2 6,2 78.3
9 2 6,3 77.7
9 3 6,2,1 754
9 2 8,1 77.4
10 2 8,2 77.1
12 2 8,4 76.7
14 3 8,4,2 76.5
15 4 8,4,2,1 75.7
17 4 8,6,2,1 75.1
17 2 16,1 76.9
18 2 16,2 76.5
20 2 16,4 76.1
21 2 16,5 76
21 3 16,4, 1 76.6
24 2 16, 8 74.8
28 3 16, 8, 4 75.9

Table 1: Average accuracy (%) on the UCF101 split 1 (the
experiments are repeated 10 times and each time 10 training
videos are uniformly chosen for each class) of SLDG with
different parameters. The short-long term fusion is applied.

backbone except we use 64 frames video clip as the input.
We follow the frame selection approach in [5]. First split
the whole video into 64 chunks. If the video which has
insufficient frames we just simply repeat the video multiple
times. Then from each chunk, we uniformly choose a frame
to construct the video clip. We only retrain the last layer on
Diving48 dataset.

Importance Score Learner We use the inflate-shrink dur-
ing the evaluations. The first convolution layer has 16 1
filters and others remain the same as indicate in the paper.

3.1. Analysis of the SLDG Vector

We introduce the SLDG initialized TAVs in Section 3
which is generated by repeating the DG initialization N
times and each time the number of chunks is set to m,,.
As the number of iteration increases, we highlight more in-
formation on different temporal range. In this section, we



focus on finding a good combination between the iteration
number N and the set of chunk numbers m.

The results are shown in Table 1. We first focus on the
top and middle parts of the table. We notice that i). When
the iteration number N does not change, as the value of K
increases, the accuracy actually decreases. For example, the
first three rows in the top and middle parts of Table 1 indi-
cate the accuracy drops along with an increase of K. This is
because the long-term information is not highlighted (when
m, = 1 or 2). ii). There is a negative correlation between
the iteration number N and the accuracy when the number
of SLDG K remains the same. For example, row 3 and row
4 show the accuracy decreases by 2.3% as N goes up to 3
from 2 when K = 9. Then we move to the bottom part of
Table 1. However, the second observation is not valid when
my = 16. The fourth and fifth rows in the bottom part of the
table show an increase in accuracy as the iteration number
N goes up when K = 21. This is because the SLDG vec-
tors with chunk numbers (16, 5) only highlight the short-
term temporal information but ignore the long-term one.

3.2. Analysis of Different Initialized TAVs with Dif-
ferent Fusion Approaches

In Section 3 and Section 4.2, we discuss four initializa-
tion approaches of TAVs to encode the frame features and
three two-stream fusion approaches. The goal here is, given
few labeled training data (e.g. 10 training video per class),
finding the best-performed combination of the TAVs num-
ber and the fusion approach for the TAVs initialization ap-
proaches. Table 2 lists the fusion approaches (early con-
catenation, late fusion or short-long term fusion), the TAVs
initialization approaches (Random, SSD, DG or SLDG) and
the number of the TAVs that is used. The value of 6 is set to
2 for DG TAVs and we sort the SSD TAVs with ascending
order since we find the order does not impact their perfor-
mance. Note that, the short-long fusion is only applicable
to the SLDG TAVs.

We first focus on the performance of the TAVs with dif-
ferent fusion approaches. Not surprisingly, the simple early
concatenation outperforms the late fusion over all TAVs
initialization approaches since the feature extractor is only
trained with RGB images (e.g. ImageNet), the imprecise op-
tical flow features result misprediction. For the SLDG ini-
tialization, the short-long term fusion provides marginal im-
provements (about 1%) than the early concatenation when
m = (2,1) and m = (4, 2). Then we investigate the effec-
tiveness of using different number of the TAVs. Increasing
the number of them leads to a small improvement (0.6%)
for the random initialized TAVs and a significant boost for
the DG TAVs (3.6%). However, as the number of TAVSs in-
creases, the accuracy slightly drop for the SSD and SLDG
TAVs. We also perform the same experiments on UCF101
split 1 with 20 training video per class and we get the same
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Figure 1: Accuracies (%) on UCF101 split 1 with change
in the size of the labeled training set. The experiments are

repeated 10 times and each time the training videos are uni-
formly chosen for each class.

results.

We choose the best-performed combination of the TAVs
number K and fusion approaches for each type of the TAVs
and evaluate their performance with various size of the
training set. The results are shown in Figure 1. Using SLDG
TAVs with m = (2,1) and short-long term fusion outper-
forms other combinations over all training sets.

4. Evaluation of TAVs with Very Few Training
Data of Diving48

In this section, we compare TAVs using resNet-152 and
13D as backbones with base I3D on Diving48 with change
in the size of the labeled training set. All experiments are
done with the same training sets. The top 1 and top 5
average accuracy are shown in Figure 2a and Figure 2b,
respectively. Clearly, the accuracy has a significant gap
between the base I3D and the I3D+TAVs. For example,
with only 10 labeled training video per class, the top 1
accuracy of I3D+TAVs achieves 5.5% on Diving48 which
are 3.3% higher than the accuracy of base I3D network.
If we compare the top 5 accuracy, the gap even becomes
larger (17.13% with 10 labeled training videos). Overall,
I3D+TAVs outperforms the base 13D network with very few
training videos. The interesting thing is, even we use a less
powerful backbone (resNet-152), the TAVs still outperform
the base I3D network with very few training data. Also,
the performances of resNet-152+TAVs and I3D+TAVs are
really close which shows the TAVs could effectively en-
code the temporal information of videos with both 2D or
3D backbones.



Temp. Vectors Base SSD DG SLDG
Fusion K=4 ‘ K=8 ‘ K=12 | K=4 ‘ K=8 ‘ K=12 | K=4 ‘ K=8 ‘ K=12 | K =3, m=,1) | K =6, m=(4.2) | K =12, m=(10,2)
Early Concat. 775 [ 718 [ 781 [ 772 [ 769 ] 762 [ 742 [ 73.1 [ 718 71.6 713 712
Late Fusion 754 [ 714 [ 724 [743 [ 682 742 | 72 [ 71 [ 724 72.8 72.9 72.7
Short-Long term Fusion - - - 78.5 78.4 76.8

Table 2: Average accuracy (%) on the UCF101 split 1 (the experiments are repeated 10 times and each time 10 training videos
are uniformly chosen for each class) of different combinations of TAVs with different numbers and fusion approaches.
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Figure 2: Comparisons of TAVs using different backbones with I3D for action recognition with change in the size of the
labeled training set on Diving48. The experiments are repeated 10 times and each time the training videos are uniformly
chosen for each action class. The average accuracy (%) are reported.

Methods Framework Input Pre-train Full-FT | Accuracy
TSN [5] 2D RGB ImageNet (objects) Yes 16.8
TSN [5] 2D RGB+FLOW | ImageNet (objects) Yes 20.3
TSN+TAVs (Ours) 2D RGB ImageNet (objects) No 22.1
13D [1] 3D RGB Kinetics (actions) No 12.2
R(2+1)D [4] 3D RGB Kinetics (actions) Yes 28.9
I3D+TAVs (Ours) 3D RGB Kinetics (actions) No 20.5

Table 3: Comparison with the state-of-the-art methods on the Diving48 dataset. The full-FT: “yes” indicates end-to-end
fine-tuning on Diving 48, “no” means only train the last layer for I3D or the importance score learner of TAVs.

5. Comparison with the state-of-the-art on Full
Diving48

Finally, we compare TAVs to the state-of-the-art action
recognition results on Diving48 datasets. The performance
is summarized in Table 3. The accuracy shows significant
improvement when using TAVs with 2D framework. For
example, the Temporal Segment Network(TSN)+TAVs out-
perform 5.7% than the end-to-end fine-tuning TSN network
when using only RGB as input, even the backbone network
never see the video in Diving48. The end-to-end fine-tuning
seems much important for 3D framework than 2D frame-
work. For example, the end-to-end fine-tuning R(2+1)D
[4] network gives 28.9% classification accuracy which is
higher than I3D+TAVs. We believe the reason is that the

I3D backbone are not trained on Diving48 since the 13D
and R(2+1)D networks show similar performance on other
video action recognition datasets (e.g. Kinetics). However,
when using TAVs on top of I3D, 8.3% accuracy improve-
ment is still achieved comparing with the base I3D network.

6. Conclusions

In this supplementary material, we provide the detailed
evaluation of TAVs on Diving48 dataset. We build the TAVs
on both 2D (resNet-152) and 3D (I3D) backbones. The sig-
nificant improvement is achieved on both backbones. The
TAVs show the best performance with very few training
videos. Also, compared to other state-of-the-art frameworks
on full diving48 dataset, the TAVs still shows competitive
results, especially with 2D backbone.
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