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Supplementary material for


Towards Photographic Image Manipulation with Balanced


Growing of Generative Autoencoders


A. Training details


The architecture follows [13], so that the encoder and the


decoder are symmetric, composed of residual blocks with


two convolutional layer each, and 1×1 convolution for a


skip connection. The final layer of the encoder contains a


4x4 filter that reduces the feature map into 512 channels on


a 1×1 map that, flattened, represents the latent vector. Other


filters are 3×3. At each forward pass, the latent vector is


normalized to unit length. Each block in the encoder halves


the resolution of the input with stride equalling two, while


each block of the decoder doubles it by upsampling and then


running a convolution with stride equal to one.


The training proceeds via seven resolution phases, from


4×4 to 256×256. During the first half of each phase, the


skip connection of the most recently added residual block


is gradually faded out. During the second half, the skip


connection is off. During each phase up to 32×32, the


network sees a total of 2.4M image samples. The batch


size generally halves for each consequtive phase to fit in


GPU memory, with size 16 used for the final 256×256 stage.


The pre-training phases 64×64 and 128×128 contained 3.5–


6.2M samples so that the total sample count seen during pre-


training for Balanced PIONEER (20.04M in CELEBA-HQ,


21.4M in LSUN) was below the total for baseline PIONEER.


Two consequtive decoder training iterations were used for


every single encoder training iteration.


Margin values in range [0.2, 0.6] were tried. We switched


on the margins after 13M training samples (i.e. after the fade-


in phase and the first full-length epoch of 64×64 phase). For


the balanced PIONEER, the results with the best FID reached


for 256×256 resolution after seeing 27.3M training image


samples were selected. This limit was chosen as it was the


point around which the baseline PIONEER reached best FID


(10k) values for LSUN Bedrooms, slightly earlier than its


best value for CELEBA-HQ (at 27.5M). Applying lower


margin values, or even a margin of 0.2 before 64×64 resolu-


tion stage, resulted in obvious training failure already by the


end of the 64×64 stage. At the other extreme, applying very


high margin values would nullify the effect of the margin.


Following [13, 19], we maintain a moving exponential


running average for the weights of the generator, and use


it as the de facto generator after the training. Any other


hyper-parameters follow [13]. Accordingly, every resid-


ual block in both the encoder and the decoder ends with a


LeakyReLU (slope 0.2) activation function. However, at the


final layer that maps into the latent vector, this activation


in fact skews the distribution slightly away from the unit


Gaussian, thus making the learning task harder. In follow-up


works, we therefore strongly recommend removing the non-


linearity of the last layer. We optimize with ADAM [24]


(α = 0.001, β1 = 0, β2 = 0.99, and ε = 10−8).


B. Ablation study details


The comparisons in Fig. 3b were created by training the


model with PN, PN+EQLR etc. in CELEBA-HQ up to 20M


steps. The schedule for resolution increases and other hyper-


parameters except the normalization are the same as for


the main experiments that produced the results reported for


Balanced PIONEER in the paper. For the experiments that


involve the use of margin, we likewise follow the same sched-


ule of margins as the main experiments. Finally, we tried


removing all normalizations, and reproduced the negative


results of [13]—the training simply fails to converge already


before reaching 64×64 resolution. We also collect the FID


results at 20M training steps for each method in the ablation


study (Table 2).


In addition, we modified the original PGGAN by replac-


ing PN and EQLR in the generator with SN, and trained


with CELEBA-HQ in 128×128 up to 15,000,000 seen im-


age samples. The best FID (measured with 10k training


samples, 2 test runs) results were approximately the same


(with PN+EQLR 12.44 and with SN 12.65). Note that here,


there is no term corresponding to the KL margin.


C. Feature manipulation


Following the method in Sec. 3.4, we take the same CELEBA-


HQ model that was trained in a completely unsupervised


manner, and apply the feature vectors from the latent space


as in Fig. 6, but this time showing how each feature trans-


forms the (reconstruction of the) input image gradually as a


function of λ (Fig. 7). We also provide more examples of the


features in Fig. 6 applied to other images, and other features







Table 2. Comparison of Fréchet Inception Distance (FID) with


various normalization schemes, after training with the first 20M


samples in CELEBA-HQ. The final FID (20M) and the best FID


reached are shown. Note that some results could significantly


improve with more training. 10,000 samples were used for FID,


compared against the training set. Value for SN (without margin) is


not given because the training consistenly collapses when reaching


128×128. For all numbers, smaller is better.


Method FID-10k (20M) FID-10k (best)


PN 165.81 129.60


PN+margin 223.90 117.00


EQLR 181.22 162.99


EQLR+margin 183.53 128.97


EQLR+PN 151.94 140.60


EQLR+PN+margin 223.43 127.65


SN — —


SN+margin (ours) 22.20 22.20


computed with the same method, and their combinations


(Fig. 8).


D. Latent space interpolations


We show 4-way interpolation examples for uncurated


CELEBA-HQ test set images, following the same method as


used for Fig. 1, but with evenly spaced (spherical) interpola-


tion between the reconstructions of each of the input images


in the corners (Fig. 10–12). Fig. 11 represents a failure case.


E. Random samples


We show more random generated samples for CELEBA-HQ


using Balanced PIONEER (ours) (Fig. 13), the baseline PI-


ONEER (Fig. 14), GLOW (Fig. 15) and PGGAN (Fig. 16).


Similarly, we show more random samples for LSUN us-


ing Balanced PIONEER (ours) (Fig. 17) and the baseline


PIONEER (Fig. 18).


F. Reconstructions


We show more uncurated examples of CELEBA-HQ recon-


structions, comparing Balanced PIONEER (ours) against the


baseline PIONEER (Fig. 19–20).


G. Feature transformation videos


The attached video demonstrates various gradual feature


transformations (as in Fig. 7). Each transformation show-


cases λ varying on a subrange of [−2.0, 2.0], applied on the


original test set images shown in Fig. 21.
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Figure 7. Balanced PIONEER gradual feature manipulation (CELEBA-HQ) at 256×256 resolution by increasing λ for a single feature.


Column 1: Input; Column 2: Reconstruction (λ = 0); Columns 3–6: λ increasing. Row 1: Female → Male; Row 2: Make bald; Row 3:


Add smile; Row 4: Add sunglasses.







Input Reconstruction Older/Add beard Older+Glasses Darken/whiten Switch sex+Darken/whiten


Figure 8. Balanced PIONEER discrete feature manipulation (CELEBA-HQ) at 256×256 resolution by adding various feature vectors.


Column 1: Input; Column 2: Reconstruction (λ = 0); Column 3: Make older (females) or Add beard (males); Colum 4: Make older + Add


(sun)glasses; Column 5: Darken/whiten the skin; Column 6: Switch sex + Darken/whiten the skin.







Figure 9. Interpolation between random uncurated test set CELEBA-HQ images in 256×256. The model captures most of the salient


features, although fails with some details such as the unsual make-up of the top-left person. Note that the moderate rotation angles of the


faces are almost perfectly preserved, and the intermediate faces are rotated to the correct degree.







Figure 10. Interpolation between random uncurated test set CELEBA-HQ images in 256×256.







Figure 11. Interpolation between random uncurated test set CELEBA-HQ images in 256×256. Bottom-left image reconstruction is clearly


inadequate.







Figure 12. Interpolation between random uncurated test set CELEBA-HQ images in 256×256.







Figure 13. Balanced PIONEER (ours) random samples (CELEBA-HQ) at 256×256 resolution.


Figure 14. Baseline PIONEER random samples (CELEBA-HQ) at 256×256 resolution.







Figure 15. GLOW random samples (CELEBA-HQ) at 256×256 resolution, temperature T = 0.7.


Figure 16. Progressively Growing GAN (PGGAN) random samples (CELEBA-HQ) at 256×256 resolution.







Figure 17. Balanced PIONEER (ours) random samples (LSUN Bedrooms) at 256×256 resolution.


Figure 18. Baseline PIONEER random samples (LSUN Bedrooms) at 256×256 resolution.







Figure 19. More examples of reconstruction quality in 256×256 resolution with typical images from the CELEBA-HQ test set (top row), by


our balanced PIONEER (middle) and baseline PIONEER (bottom). Here, the input images are encoded into 512-dimensional latent feature


vector and decoded back to the original dimensionality (middle and bottom rows). The encoding–decoding of balanced PIONEER tends to


preserve facial features, orientation, expressions, and hair style. Small mistakes can still be observed, especially in male subjects.


Figure 20. More examples of reconstruction quality in 256×256 resolution with typical images from the CELEBA-HQ test set (top row), by


our balanced PIONEER (middle) and baseline PIONEER (bottom). Here, the input images are encoded into 512-dimensional latent feature


vector and decoded back to the original dimensionality (middle and bottom rows). The encoding–decoding of balanced PIONEER tends to


preserve facial features, orientation, expressions, and hair style. Small mistakes can still be observed, especially in male subjects.







Figure 21. CELEBA-HQ test set images used as input for the image transformation videos.
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