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1. Samples

We first illustrate several samples from our sonar image
dataset in Figure 1. There are three categories with vari-
ous observed conditions and scales. Corpse has the poorest
imaging quality and lowest resolution because it is hard to
capture in the underwater area. The shipwreck and plane
wreckage have large volume so that the samples containing
these objects are relative high-resolution.

In addition, we show the noised samples which we use
in Section 4.6 of the paper in Figure 2. Four kinds of noised
samples illustrate different patterns in pixel space.

2. Detection Results

Figure 3 and Figure 4 show the results of detector with
several mechanisms. Figure 3 showcases the detection on
the original test set while Figure 4 is in the case of noise at-
tack to test set. It is obvious that the original Faster R-CNN
is vulnerable to noise attack while NAN brings performance
improvement. Equipped with NAN and NB simultaneously,
the detector yields high performance as well as noise robust-
ness in both cases.

3. Ablation Study on Different NAN Strategies

As a supplement for Section 4.3, in this part we explore
the contribution of different strategies utilizing the adver-
sarial examples. In this section only NAN works. As Table
1 shows, only taking advantage of KL-divergence loss to
approximate the distribution of noised feature gains a mAP
of 84.4%, making significant progress compared with the
baseline. When making the adversarial examples be in-
volved in classification and bounding box regression indi-
vidually, the detector yields results of 86.1% and 85.7%,
respectively. The combination of the two strategies makes
the performance reach 86.8% mAP. Furthermore, the inte-
gration of the three alternatives improves the performance
to 88.3% mAP. The result boosts an improvement of 6.6%
compared with the baseline. Only utilizing KL divergence
loss to approximate a true distribution obtains a relatively
low mAP of 84.4% compared with other strategies. We
hypothesize that in this case, NAN plays a role that only
generates adversarial examples with fixed parameters, none
backpropagation is used in NAN because instead of being
fed into the subsequent layers, the adversarial examples are
only used to measure the divergence with original examples.
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Figure 1. Samples from our collected dataset
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Figure 2. Noised samples used in Section 4.6. Spe, Gau, Poi and S&P represent speckle, gaussian, poisson and salt-and-pepper noised
samples, respectively.

4. Mechanism of Noise Block
We present detailed mechanism and flowchart of NB in

this section. In this paper, we embed NB between the first
and second convolutional layers of backbones, which aims
to predict Rayleigh noise in high resolution feature space
while provide prior knowledge to NAN.

As Figures 5 shows, x
′

i is the input feature map of
NB. Firstly it is feed into the rightmost branch to gener-
ate Rayleigh noise with zero mean and variance νi. To get
variance νi, the input feature x

′

i passes through three 3 × 3
convolutional layers and a RoI Align Pooling layer [1] as
well as a fully connected (FC) layer. The RoI Align Pool-
ing layer is to transfer feature maps into a fixed-length input

of FC layer. We get a parameter σi from FC layer. Unlike
NAN, here we do not directly use square value of σi as the
predicted variance because in the upstream layers of back-
bones (especially in ResNet-101), the absolute value of σi

has a high probability to be a large scalar which generates
dramatically intense noise and ruins detector. Therefore, we
set a threshold τ to restrict the noise into a reasonable range,
the variance νi is calculated by,

νi=

{
τ/σi

2, if σi
2 > τ

σi
2, otherwise,

(1)

τ is related to the distribution of training samples, we as-
sume that a training set with smaller variety is supposed to
be assigned a larger threshold, with the aim to improve the
variety in feature domain. In this paper, we set τ=1 when
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Figure 3. Detection results on original test set
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Figure 4. Detection results on speckle noise attacked test set (µ=0, σ2=0.5). The image without bounding boxes means that the detector
yields no box which is correct (overlap > 0.5)

training with our sonar dataset, and set τ=0.1 when training
with PASCAL VOC and MS COCO datasets.

Once the variance is predicted, the Rayleigh noise is gen-
erated by the Equ. (10) in the paper. Then as the middle
branch shows, the Rayleigh noise is add to the original fea-
ture map by the noise model Equ. (13) in the paper (γ=1),

yielding the adversarial Feature αi.

To both utilize the original and adversarial features dur-
ing training stage without changing the shape of the input
feature, we concatenate both of them on channel dimen-
sion (leftmost branch), feeding it into a 1×1 convolutional
layer to get output feature xo

i . This feature map carries both



Method mAP cp shw plw
FRCNN [5] 79.8 72.8 90.6 76.0
FRCNN+ 81.7 84.1 90.5 70.5
Ours(kl) 84.4 82.9 90.6 79.6
Ours(bbox) 85.7 85.4 90.3 81.5
Ours(cls) 86.1 93.1 90.9 74.4
Ours(cls+bbox) 86.8 90.1 90.6 79.7
Ours(cls+bbox+kl) 88.3 96.7 90.8 77.4

Table 1. Detection average precision (%) of different strategies uti-
lizing the adversarial examples (with ResNet-101). The kl means
use the KL divergence loss to approximate a true distribution by
the adversarial examples. Cls and bbox refer to leveraging the
adversarial examples to participate in decision making of classifi-
cation and bounding box regression, respectively.

Method ResNet-101 VGG16
H ,W 300 600
H1,W1 150 150
H2,W2 75 75
H3,W3 38 38

C 64 64
P 38 38

Table 2. Feature map size, channel and pooling size (with 600 ×
600 input size).

the pattern of original feature and the Rayleigh noised fea-
ture, the Rayleigh noised pattern provide prior knowledge
to NAN.

During test stage, only the two leftmost branches work,
which means two identical input features are concatenated
and fed into the following layers.

When the input size of image is 600 × 600. The feature
map size, channel and pooling size in Figure 5 are showed
in Table 2.

5. Random noise augmentation in feature
space

To verify that NAN and NB have better performance and
robustness than random number generators, in this section
we compare the our method with random noise augmenta-
tion in feature space.

We conduct two experiments of feature space noise aug-
mentation. In the first one, we keep the structure of NAN
and NB, only replacing the predicted noise with random
noise. In this case, the NAN and NB are still active, but in-
stead of predicting noise variance by its learnable weights,
they generate variance in a random way. We mark this
model as Model A.

In the second experiment, we remove both NAN and NB,
only training baseline with random noise introduced in fea-
ture space, which is to exclude the effect of the structure of
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Figure 5. Flowchart of Noise Block.

the two sideway networks. We mark this model as Model
B.

In each experiment, we use the ResNet-101 as backbone,
the noises are introduced to the same layers as our approach.
In addition, the randomly generated noises follow Rayleigh
distribution with zero mean, and the variances randomly
varies from 0 to v1. All the random noises are added to
the features with noise model Equ. (13) in the paper (γ=1).

Before comparing the performance, we analyze the dis-
tribution of variances generated in each model. We train our
model, Model A and model Model B for 50k iterations, re-
spectively. In k-th iteration, we record a pair of variances{
νk, σ2

k

}
. νk is generated where NB locates; σ2

k is gen-
erated where NAN locates (note that in each iteration, the
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Figure 6. Marginal distribution of N and Σ as well as their joint distribution from each model. (a) Distribution on our model; (b) Distribution
on model A, v1=0.1; (c) Distribution on model A, v1=0.5; (d) Distribution on model A, v1=1.
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Figure 7. Results on our model, Model A and Model B under different magnitudes of speckle noise attack. The variance of noise attack
on test set randomly varies from 0 to v2. we set three cases of v2: 0.1, 0.5 and 1.

output from RoI Pooling is a mini-batch which contains n
feature maps, thus there are n variances σ2

i generated. We
use the arithmetic mean σ2 of the n variances to represent
the variance of this mini-batch).

Totally, we record N= {ν1, ν2, ..., νk} and
Σ=

{
σ2

1, σ2
2, ..., σ2

k

}
. Figure 6 shows the both marginal

distribution of N and Σ as well as their joint distribution
from each model. It is obvious that in our method, there
is a qualitatively negative correlation between N and Σ
generated from NB and NAN (Figure 6 (a)). Instead, there
is no remarkable correlation between N and Σ in Model A
(Figure 6 (b)(c)(d)) and Model B (since the scatter plots
of Model A and Model B are similar, we only illustrate
plots of Model A). We also report the Pearson Correlation
Coefficient (PCC) [2] on each plot. The negative PCC
means there is a negative linear correlation between N and
Σ (Figure 6 (a)). The PCC close to 0 means no linear
correlation between N and Σ (Figure 6 (b)(c)(d)). In
addition, we illustrate p-value [6] on each plot, smaller
p-value means higher statistical significance of the results.
From the marginal distribution of N and Σ as well as their
joint distribution, we can prove that the noise predicted
by our model (Figure 6 (a)) has different pattern from
one generated from a random number generator (Figure 6

(b)(c)(d)).

Figure 7 illustrate the results on our model, Model A and
Model B under different magnitudes of speckle noise at-
tack. It is remarkable that our model (Ours) yields competi-
tive results and noise robustness. On the contrary, Model A
and Model B shows relatively weaker performance. Model
A achieves better results when the introduced random vari-
ances vary from 0 to 0.5 or 1. However, with slighter noise
augmentation (v1=0.1) in feature space, the robustness of
Model A dramatic drops (54.9% mAP under noise attack
with v2=1). Model B yields poorer performance and ro-
bustness than Model A, especially under intense noise at-
tack, e.g. in the case of v1=1, the performance and noise
robustness of Model B is far behind Model A when v2=0.5
or 1.

It is worth noting that although Model A introduces noise
in a random way, compared with Model B, it still shows
moderate robustness with v1=0.5 or 1. It demonstrates the
effect of NAN and NB, even introducing noise variances in
a random way, they still guarantee the robustness of detec-
tor. All in all, our method is far more than a random number
generator on both performance and noise robustness.



6. Results on PASCAL VOC 2012 and MS
COCO

Backbone ResNet-101 VGG16
test set O Gau O Gau

FRCNN [5] 73.8 - 70.4 -
Ours (Gau) 75.6 73.9 71.5 68.8

Table 3. PASCAL VOC 2012 test mAP (%). O means test on
original test set; Gau means test on gaussian noised (zero mean,
variance is 0.1) test set; Ours (Gau) means our approach with
gaussian noised adversarial examples.

We evaluate our method on additional optical datasets
PASCAL VOC 2012 and MS COCO [3] to verify its
correctness. For PASCAL VOC 2012, We use VOC07
trainval+test and VOC12 trainval (”07++12”)
for training, and test on VOC12 test set. Following the
stage-wise training strategy in Section 3.2 in the paper, we
set SGD for 20K and 180K training on each stage. The ini-
tial learning rate is 0.001 and decreases to 0.0001 after 8K
and 60K iterations, respectively. For MS COCO, we use
trainval for training and test on the test-dev set. We
train the model for 50K and 320K iterations on each stage,
with a starting learning rate 0.01 for first 20K and 80K iter-
ations, divided by 10 for each 50K iterations (second stage).
During training stage, the batch size of image is 4 in each
iteration. We introduce gaussian noise adversarial examples
in both NAN and NB. For other implementation details, we
follow the Section 4.2 in the paper.

Table 3 shows the results on VOC12 test set. Com-
pared with the base network Faster R-CNN [5], our method
achieves better performance, 75.6% on ResNet-101 and
71.5% on VGG16, which is the similar improvement as on
VOC07. We also verify the gaussian noise robustness, in-
troducing gaussian noise (zero mean, variance is 0.1) to the
test set. Under noise attack, our model yields dropped re-
sults which are still competitive (71.5% on ResNet-101 and
68.8% on VGG16).

Results on MS COCO are summarized on Table 4. On
test-dev set, our method improves the results to 35.8%
and 22.3% with the two backbones, respectively. The model
based on ResNet-101 shows better performance on both me-
dian and large objects while drops on the small ones, which
implicitly shows that our the noise adversarial method may
have side effects on small objects. In addition, we also re-
port the results under gaussian noise attack. As expected, in
this case the results drop with a certain amount of degree.

The results on both PASCAL VOC 2012 and MS COCO
further demonstrate the correctness of our approach, which
means that our method not only works on sonar images but
also on optical images.

7. Effect of the Exponential Parameter

We specifically discuss the exponential parameter γ of
subsection 3.2. The parameter γ is related to the depen-
dence on the original examples χ. Figures 10 shows the
effects of γ on the test performance on our dataset. For the
detector with VGG16, the mAP has a slow downward trend
with the increase of γ. The strategy of gradient clipping
with a gradient threshold τ=10 is applied in VGG16’s train-
ing approach to avoid gradient explosion. It gains a largest
mAP of 81.3% at the initial value of γ=0, which is the case
that the perturbation noise is induced by an additive noise
model.

The detector with ResNet-101 shows a substantial higher
performance when γ ≤ 3, reaching a highest mAP of 88.3%
with γ=1. However, the model collapses when γ ≥ 4 with
a gradient explosion. It is mainly because that without gra-
dient clipping [4], the gradient accumulates with the expo-
nential growth of the original examples χ, which ruins the
model during several iterations.

Both of the performance of two models decrease from
γ=1, it is mainly because that the larger exponential param-
eter γ means a heavier dependency on the original feature
γ, which induces larger gradient failing to be reduced and
degrade the effect of perturbation noise.

Figure 7 (a) and Figure 7 (b) show the result with speckle
noise added to the test set on ResNet-101 and VGG16, re-
spectively. In Figure 7 (a), the detector equipped with NAN
which is tuned by γ from 0 to 3 yields competitive results
compared to the baseline. The mAP of NAN decreases with
the increase of γ. However, all the cases in NAN outper-
form the original detector. The higher mAPs explain that
the noise robustness detector is strengthened by the intro-
duction of noise perturbation from NAN. Figure 7 (b) il-
lustrates similar cases with lower mAPs. It is obvious that
VGG16 is prone to be attacked by the noise with large inten-
sity (e.g. σ2 = 0.5). With VGG16, NAN provides higher
robustness with a relatively low γ (e.g., γ ≤ 1).

Figure 7 (a) and Figure 7 (b) display the same case with
Figure 7 (a) and Figure 7 (b), but instead of NAN only,
they leverage the combination of NAN and NB. Both of
them show that the detector equipped with NAN and NB
simultaneously achieves strong noise robustness as well as
high performance with various parameter γ, especially in
the case of γ = 1.

8. Error analyses

We specifically display the error analyses in terms of
class in Section 4.5. As Figure 12 shows, with the speckle
noise attack, corpse and plane wreckage can be easily con-
fused with other classes by the original detector. Only the
shipwreck has less false positives, which is mainly caused
by the high resolution of original shipwreck sonar images.



Method noise attack? backbone AP AP 50 AP 75 AP s APm AP l

FRCNN [5] no ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9
FRCNN [5] no VGG16 21.9 42.7 - - - -
Ours (Gau) no ResNet-101 35.8 55.9 38.6 14.7 41.1 51.6
Ours (Gau) no VGG16 22.3 42.8 22.8 5.9 25.2 35.8
Ours (Gau) yes ResNet-101 32.3 53.6 37.1 12.9 33.7 50.3
Ours (Gau) yes VGG16 19.8 41.7 20.6 3.3 24.0 32.1

Table 4. MS COCO test-dev mAP (%). Ours (Gau) means our approach with gaussian noised adversarial examples.
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Figure 8. Changes of mAP with different noise attack (with NAN).
The var refers to variance σ2 of speckle noise with zero mean. Std
refers to the standard pipeline (baseline) while γ is the exponential
parameter.

The combination of NAN and NB improves the perfor-
mance by eliminating most of the Sim error in corpse as
well as reducing the location error in three classes.

var=0
.05 var=0

.1
var=0

.5
0

20

40

60

80

m
AP

(%
) 55.4

48.3

34.3

89.5 88.6 86.7
89.9 89.6 87.985.4 84.1 82.580.9 80.3 79.5

std
γ=0
γ=1
γ=2
γ=3

(a) Result on ResNet-101

var=0
.05 var=0

.1
var=0

.5
0

10

20

30

40

50

60

70

80

m
AP

(%
)

35.3 34.3

17.3

80.1 79.9 78.6
83.1 82.9 81.6

76.5 74.5 72.272.1 70.9 70.6

std
γ=0
γ=1
γ=2
γ=3

(b) Result on VGG16
Figure 9. Changes of mAP with different noise attack (with NAN
and NB). The var refers to variance σ2 of speckle noise with zero
mean. Std refers to the standard pipeline (baseline) while γ is the
exponential parameter.

9. Feature maps
During test stage, we add speckle noise to the test sam-

ple, feeding them into the detectors. We visualize the fea-
ture maps from several backbone layers of ResNet-101 with
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both original Faster R-CNN and our model (with the com-
bination of NAN and NA). In Figure 11, it is obvious that
the speckle noise deteriorates the original detector from the
upstream layers such as Res1, especially for corpse objects.
Without robustness of speckle noise, the original detector
cannot distinguish the object from background under noise
attack, which impedes the generation of the activate region
from downstream layers such as Res3. The informative fea-
tures degrades layer by layer.

However, our model can easily differentiate the noise
and objects. From shallow layers such as Res1, our model
mitigates the effect of speckle noise so that the deep layers
suffice to predict the region precisely, especially in corpse
and plane wreckage. The activated informative features are
crucial for the following regression and classification tasks.
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(b) Feature maps of shipwreck

0.

1.0

0.6

0.4

0.2

0.8

0.

1.0

0.6

0.4

0.2

0.8

0.

1.0

0.6

0.4

0.2

0.8

0.

1.0

0.6

0.4

0.2

0.8

Original Res1 Res2 Res3 Original Res1 Res2 Res3

(c) Feature maps of plane wreckage
Figure 11. Feature maps of several layers (specifically in ResNet-101, they are output of Res1, Res2, Res3 blocks). The feature maps are
extracted from original Faster R-CNN (first row) and Faster R-CNN equipped with NAN and NB (second row), respectively. Every single
feature map here is the result of the channel-wise mean of its corresponding layer.
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Figure 12. Error analyses distibuted on three classes. Test set is attacked by speckle noise (µ=0, σ2=0.5). Distribution of top-ranked
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