
Generating Positive Bounding Boxes for Balanced Training of Object Detectors

Kemal Oksuz, Baris Can Cam, Emre Akbas∗, Sinan Kalkan∗

Department of Computer Engineering
Middle East Technical University, Ankara, Turkey

{kemal.oksuz, can.cam, eakbas, skalkan}@metu.edu.tr

Abstract

In this document, we provide supplementary material
that were omitted in the submitted manuscript due to space
constraints. This supplementary material includes the
proofs for the theorems, some more details on the BB gen-
erator including derivations for equations 4 and 5 in the
paper and computing the feasible space in the bottom right
part, and finally some implementation details. As for im-
plementation details, we discuss how the pRoI generator
is integrated into the training, how pRoI generator uses BB
generator as a subroutine and configurations of BB sources.

1. The Properties of IoU(B, B̄)

Following upon the notation in Section 3 of the paper, we
introduce the following properties. For clarity we assume
that intersection of two boxes is greater than 0 and the last
pixel is not taken into account (i.e. instead of A(B) = (x2−
x1 + 1), we adopted A(B) = (x2 − x1)).

Theorem 1. IoU(B, B̄) is scale-invariant.

Proof. Assume that kx > 0 and ky > 0 are
the scaling factors in the x and y axes respec-
tively and Bs, B̄s are the scaled boxes. We
show that IoU(Bs, B̄s) = IoU(B, B̄) as follows:

IoU(Bs, B̄s) =
I(Bs, B̄s)

A(Bs) +A(B̄s)− I(Bs, B̄s)
(1)

=
(min (kxx̄2, kxx2)−max (kxx̄1, kxx1))× (min (ky ȳ2, kyy2)−max (ky ȳ1, kyy1))

(kxx2 − kxx1)× (kyy2 − kyy1) + (kxx̄2 − kxx̄1)× (ky ȳ2 − ky ȳ1)− I(Bs, B̄s)
(2)

=
kx (min (x̄2, x2)−max (x̄1, x1))× ky (min (ȳ2, y2)−max (ȳ1, y1))

kx(x2 − x1)× ky(y2 − y1) + kx(x̄2 − x̄1)× ky(ȳ2 − ȳ1)− I(kB, k̄B)
(3)

=
kxkyI(B, B̄)

kxky(x2 − x1)× (y2 − y1) + kxky(x̄2 − x̄1)× (ȳ2 − ȳ1)− kxkyI(B, B̄)
(4)

=
kxkyI(B, B̄)

kxky
(
(x2 − x1)× (y2 − y1) + (x̄2 − x̄1)× (ȳ2 − ȳ1)− I(B, B̄)

) (5)

= IoU(B, B̄) (6)

Eq. 1 defines the IoU and Eq. 2 replaces area and in-
tersection definitions. In Eq. 3, we use the property that
multiplying by a positive scalar does not change minimum
and maximum of two numbers. Eq. 4 incorporates the in-
tersection definition. Eq. 5 gets the denominator in the kk̂
parenthesis, which simplifies the term to the definition of

∗Equal contribution for senior authorship.

IoU(B, B̄).

Theorem 2. IoU(B, B̄) is translation-invariant.

Proof. Assuming that kx ∈ R and ky ∈ R are the pertur-
bation in the x and y axis respectively and Bt, B̄t are the
perturbed boxes. We show that IoU(Bt, B̄t) = IoU(B, B̄)
as follows:



IoU(Bt, B̄t) =
I(Bt, B̄t)

A(Bt) + A(B̄t) − I(Bt, B̄t)
(7)

=
(min (x̄2 + kx, x2 + kx) − max (x̄1 + kx, x1 + kx)) × (min (ȳ2 + ky , y2 + ky) − max (ȳ1 + ky , y1 + ky))

((x2 + kx) − (x1 + kx)) × ((y2 + ky) − (y1 + ky)) + ((x̄2 + kx) − (x̄1 + kx)) ∗ ((ȳ2 + ky) − (ȳ1 + ky)) − I(Bt, B̄t)
(8)

=
(min (x̄2, x2) + kx − max (x̄1, x1) − kx) × (min (ȳ2, y2) + ky − max (ȳ1, y1) − ky)

(x2 + kx − x1 − kx) × (y2 + ky − y1 − ky) + (x̄2 + kx − x̄1 − kx) × (ȳ2 + ky − ȳ1 − ky) − I(Bt, B̄t)
(9)

=
(min (x̄2, x2) − max (x̄1, x1)) × (min (ȳ2, y2) − max (ȳ1, y1))

(x2 − x1) × (y2 − y1) + (x̄2 − x̄1) × (ȳ2 − ȳ1) − I(Bt, B̄t)
(10)

=
I(B, B̄)

A(B) + A(B̄) − I(B, B̄)
(11)

= IoU(B, B̄) (12)

Again, Eq. 8 replaces area and intersection definitions in the IoU defi-
nition. In Eq. 9, we use the property that adding a scalar to numbers adds
a scalar to the minimum and maximum of two numbers. In Eq. 10, con-
stants cancel each other and Eq. 11 replaces area and intersection for the
IoU(B, B̄), which simplifies to the definition of IoU(B, B̄).

2. Details of the Bounding Box Generator
In this section we present the derivation

of the Equation 4 and 5, and explain the
findBRFeasibleSpace(B, T,TL(B̄)) function.

2.1. findTLFeasibleSpace(B, T ) function

Here, we derive Equation 4 and 5 in the paper, and
present the equations for the top-left space..

In order to derive Equation 4 depicting xImax, we bound
the x coordinate first. It is obvious that xImin = x1 due
to the boundary of Region I. For xImax, we know that
ȳ1 = y1 again thanks to the region boundary. Therefore,
since we have only one unknown, xImax, we use Eq.
the definition of the IoU to determine its value in Eq.
13-18. Eq. 14 defines IoU based on Eq. 13. In Eq.
15, we set min (x̄2, x2) = x2, max (x̄1, x1) = xImax,
min (ȳ2, y2) = y2 and max (ȳ1, y1) = y1 by tak-
ing into the intersection definition in Region I. Also
note that x̄1 = xImax, ȳ1 = y1, x̄2 = x2 and
ȳ2 = y2 in this case. In Eq. 16-18, we just rear-
range the terms to have xImax as a left hand side term.

IoU(B, B̄) =
I(B, B̄)

A(B) +A(B̄)− I(B, B̄)
(13)

=
(min (x̄2, x2)−max (x̄1, x1))× (min (ȳ2, y2)−max (ȳ1, y1))

(x2 − x1)× (y2 − y1) + (x̄2 − x̄1)× (ȳ2 − ȳ1)− I(B, B̄)
(14)

⇒ T =
(x2 − xImax)× (y2 − y1)

(x2 − x1)× (y2 − y1) + (x2 − xImax)× (y2 − y1)− (x2 − xImax)× (y2 − y1)
(15)

⇒ (x2 − x1)× (y2 − y1)× T = (x2 − xImax)× (y2 − y1) (16)

⇒ xImax = x2 −
(x2 − x1)× (y2 − y1)× T

(y2 − y1)
(17)

⇒ xImax = x2 − (x2 − x1)× T (18)

Now since we know the values of x̄1 based on the bounds,
we can derive the Equation 5 (in the paper) for any ȳ1 value
in equations by moving within bounds. Since I(B, B̄) =
(x2− x̄1)× (y2−y1), it does not rely on ȳ1 and we directly
use I(B, B̄) in the following equations:

IoU(B, B̄) =
I(B, B̄)

A(B) + (x2 − x̄1)× (y2 − ȳ1)− I(B, B̄)
(19)

⇒ T × (x2 − x̄1)× (y2 − ȳ1)

= I(B, B̄) + T × I(B, B̄)− T ×A(B) (20)

⇒ ȳ1 = y2 −
I(B,B̄)
T + I(B, B̄)−A(B)

(x2 − x̄1)
(21)



Table 1: Top-Left space bounds and equations. See Fig. 4 in the paper.

Region Min Bound Max Bound Equation

I x̄1 = x1 x̄1 = x2 − (x2 − x1) × T ȳ1 = y2 −
I(B,B̄)

T
+I(B,B̄)−A(B)

(x2−x̄1)

II ȳ1 = y1 ȳ1 = y2 − A(B)×T
x2−x1

x̄1 = x2 − I(B,B̄)×A(B)
(y2−ȳ1)

III ȳ1 = y1 ȳ1 = y2 − A(B)×T
x2−x1

x̄1 = x2 −
I(B,B̄)

T
−A(B)+I(B,B̄)

(y2−ȳ1)

IV ȳ1 =
(y2×(T−1))+y1

T ȳ1 = y1 x̄1 = x2 − A(B)
T×(y2−ȳ1)

Table 2: Bottom-Right space bounds.

Region Min Bound Max Bound

I ȳ2 = T×A(B)+T×(x2−α)×β+β×(x2−α)−T×ȳ1×(x2−x̄1)
((T+1)×(x2−α)−T×(x2−x̄1)) ȳ2 = y2

II x̄2 = x2 x̄2 = x̄1 +
I(B,B̄)

T −A(B)+I(B,B̄)

(y2−ȳ1)

III ȳ2 = y2 ȳ2 = ȳ1 +
I(B,B̄)

T −A(B)+I(B,B̄)

(x2−x̄1)

IV x̄2 = T×A(B)+T×(y2−β)×α+α×(y2−β)−T×x̄1×(y2−ȳ1)
((T+1)×(y2−β)−T×(y2−ȳ1)) x̄2 = x2

Table 1 presents all of the equations derived using the same
methodology.

2.2. findBRFeasibleSpace(B, T,TL(B̄)) Function

We follow the same approach for the bottom right cor-
ner with the top left corner. However, different from top-
left space this step is required also consider the point gen-
erated top-left point. Note that the size of the polygon
in the bottom-right space is affected by the distance be-
tween TL(B̄) and TL(B). Maximum bottom-right poly-
gon size, with exactly the same size of the top-left polygon,
is achieved when TL(B̄) = TL(B). Conversely, bottom-
right polygon degenerates to a point at BR(B) if the sam-
pled TL(B̄) hits the border of the top-left polygon.

We add two additional parameters for the sake of clarity:
α = max(x̄1, x1), β = max(ȳ1, y1), α̂ = min(x̄2, x2) and
β̂ = min(ȳ2, y2). The bounds and the equations are derived
by the same methodology that is illustrated in the first step
presented in Tables 2 and 3 respectively.

3. Implementation Details

3.1. Integrating pRoI Generator into the Training

The training of the two-stage object detectors involves 3
different networks as shown in Fig. 1. The first network
is the feature extractor (i.e. ResNet[3]) which presents the
base features to the second network, the proposal generator
(i.e. RPN [4]), and the third network, which is the object de-
tector (i.e. R-CNN [2], R-FCN [1]). The feature extractor
is trained with the gradients back-propagated from the pro-

posal generator and the object detector. The proposal gener-
ator is trained by a subset of the anchor-ground truth combi-
nations (chosen by Sample Anchors to Train RPN in Figure
1) and a subset of these RPN proposals (i.e. RoIs) (chosen
by Sample RoIs to Train R-CNN in Figure 1) are fed into the
R-CNN after a series of operations including NMS and RoI
Pooling that do not include learnable parameters. Finally,
the loss is back-propagated through the entire network to
update the parameters. However, the RoIs from the RPN is
limited in number and diversity, which can impact the anal-
ysis and training. To address this, pRoI generator aims to
generate RoIs with any desired property and in any number.
Note that the gradients can also be back-propagated to the
feature extractor as in the conventional training (i.e. RPN)
since positive RoI Generator uses ground truths to gener-
ate an RoI in a similar manner to the conventional training,
but differently it can generate boxes with the desired prop-
erties. During training, only for positive RoIs, pRoI Gen-
erator does not use the modules that are under the transpar-
ent red rectangle in Figure 1. However, during test time,
our method follows the conventional approach, namely the
RoIs from RPN are used due to the fact that no ground truth
information is available during testing.

3.2. Connection Between genRoIs() and
generateBB()

As described in the text, generateBB() is a low-level
function and any approach uses generated BBs approach
is to rely on this function. That‘s why it is a subrou-
tine of genRoIs(). The main idea in our implementation



Table 3: Bottom-right space equations.

Region Equation

I x̄2 = x̄1 +
I(B,B̄)

T −A(B)+I(B,B̄)

ȳ2−ȳ1

II ȳ2 = ȳ1 +
I(B,B̄)

T −A(B)+I(B,B̄)

x̄2−x̄1

III x̄2 = T×A(B)+α×T×(β̂−β)+α×(β̂−β)−T×x̄1×(ȳ2−ȳ1)

(T+1)×(β̂−β)−T×(ȳ2−ȳ1))

IV ȳ2 = T×A(B)+β×T×(α̂−α)+β×(α̂−α)−T×ȳ1×(x̄2−x̄1)
(T+1)×(α̂−α)−T×(x̄2−x̄1))

Anchors to 
Train RPN

Top N 
RoIsRPN

RoIs to 
Train R-CNN

R-CNN

RoIs to Train
R-CNN 
Output

Anchors to 
Train

RPN Output

Top N RoIs
R-CNN Ouput

Only Active During Training
Active During Training/Inference
Only Active During Inference

Input/Output

Learned Parameters

Unlearned Operations

1 RoI/
Anchor

Sample 
Anchors to 
Train RPN

Sample RoIs
to Train 
R-CNN

NMS + 
Top N

NMS

Detection 
Output

Image

Feature 
Extractor

Base 
Features

Anchors
RoI

Pooling
Pooled 

Features

RPN Loss R-CNN 
Loss

Ground 
Truth

Ground 
Truth

Ground 
Truth

Positive RoI
Sampler

Figure 1: Conventional Faster R-CNN Training and our modification. During training, Positive RPN RoIs are not utilized
and thus the modules presented under the large red rectangle are not used for positive RoIs. These RoIs are generated by the
Positive RoI Generator shown in yellow box.

is to generate bounding boxes by iteratively calling the
generateBB() for RoINum times.

Apart from RoINum, the number of RoIs to be gener-
ated, there are two main input sets to the genRoIs function.
Firstly, GTs and perGTRoI together have the information
about the box coordinates and the number of RoIs to be
generated from each ground truth box. Therefore, for ith

ground truth box (GTsi), we call generateBB() function
for perGTRoIi times. And the second set of input com-
prises ψIoU and WIoU , which together have information
about the weights of each IoU interval. Therefore, for deter-
mining an IoU for each box, we first generate perGTRoI

number of samples of IoU intervals using the multinomial
distribution defined in WIoU and then, for each resulting
interval, we again sample uniformly an IoU within its lim-
its. These IoUs are clipped from 0.95 in order to pre-
vent the problems arising from the precision problem in the
samplePolygon() acceptance process. This sampling strat-
egy distributes the input IoUs over an interval evenly. Fi-
nally, we randomly shuffle this set of IoUs and associate
them to the ground truths, which completes the generation
of the ground truth and desired IoU pairs as the input of the
generateBB() function.



Table 4: The configurations ofWIoU for the different tables
in the paper.

Table RoI Source IoU = 0.5 IoU = 0.6 IoU = 0.7 IoU = 0.8 IoU = 0.9
1 Right Skew 0.02 0.10 0.20 0.30 0.38
1 Balanced 0.33 0.17 0.18 0.17 0.15
1 Left Skew 0.73 0.12 0.15 0.05 0
4 Balanced, IoU=0.5 0.33 0.17 0.18 0.17 0.15
4 Balanced, IoU=0.6 0 0.38 0.20 0.22 0.20
4 Balanced, IoU=0.7 0 0 0.48 0.25 0.27
4 Balanced, IoU=0.8 0 0 0 0.64 0.36
4 Balanced, IoU=0.9 0 0 0 0 1

3.3. Configurations of WIoU

The configurations of theWIoU (i.e. the distribution over
ψIoU = [0.5, 0.6, 0.7, 0.8, 0.9]) used for the experiments is
shown in Table 4.

References
[1] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: Object detection

via region-based fully convolutional networks. In Advances
in Neural Information Processing Systems (NIPS), 2016.

[2] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature
hierarchies for accurate object detection and semantic seg-
mentation. In Proceedings of the 2014 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2014.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[4] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN:
Towards real-time object detection with region proposal net-
works. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(6):1137–1149, 2017.


