
Cloud Removal in Satellite Images Using Spatiotemporal Generative Networks:
Supplementary Materials

1. Image Crop Classification
We aim to take publicly-available Sentinel-2 images

from 32270 distinct regions, or tiles, where each tile is a
10980×10980-pixel image with a resolution of 10m/pixel,
and generate 256×256-pixel image crops that are classified
as clear or cloudy images. The cloud mask detection al-
gorithm proposed by Hollstein et al.[2] can classify the en-
tire tile as clear or cloudy based on the percentage cloud
cover it detects. However, how can we classify individual
256×256-pixel image crops? The larger 10980×10980-
pixel tile is not necessarily uniform in cloud cover. As
a result, after applying Hollstein et al.’s algorithm [2] to
determine whether an image is clear (cloud cover < 1%)
or cloudy (cloud cover > 10%), we apply a thresholding
heuristic to each crop to determine an individual crop’s level
of cloud cover.

Opaque cloud cover of the individual crop can be heuris-
tically detected through measuring the ratio of cloudy pixels
in an image crop, rc. We finally categorize the image crops
into two different groups: (1) cloudy, {Zt

`}t,` and (2) not
cloudy, {Xt

`}t,`. This classification is based on the follow-
ing ratio thresholds:

rc < 0.01 Cloud− Free
rc > 0.01 and rc < 0.10 Discard

rc > 0.10 and rc < 0.30 Cloudy

rc > 0.30 Discard

(1)

We discard the images with more than 30% cloud cover by
our heuristic, as many of the images labeled with higher
than 30% of cloud cover are simply indecipherable upon
manual inspection. The importance of a two-stage cloud
detection process is illustrated in Figure 1: the large tile
is classified as "cloudy" by the cloud mask detection algo-
rithm, but one of the two extracted crops appears to be clear
and is detected by the thresholding heuristic. We discard
any crops that are labeled clear but part of a cloudy tile or
vice versa to maximize quality of the dataset.

2. Pix2Pix Model Description
The objective function of the overall Pix2Pix model con-

sists of a conditional GAN loss and an L1 loss, with the

weighted sum parameterized by the hyperparameter λs:

LcGAN (Gs, Ds) = EZt
` ,X

t
`
[logDs(Zt

` , X
t
`)]+

EZt
`
[log(1−Ds(Zt

` , G
s(Zt

`))]
(2)

LL1(G
s) = EZt

` ,X
t
`
[||Xt

` −Gs(Zt
`)||1] (3)

Gs∗ = argmin
Ds

max
Gs
LcGAN (Gs, Ds) + λsLL1(G

s) (4)

where Gs, and Ds represent the generator and discrimina-
tor networks. The input to the discriminator, Ds, is a clear
image, Xt

` , or a fake clean image, X̂t
` = Gs(Zt

`), generated
by Gs. Thus, the overall min-max competitiveness of the
Pix2Pix model can be interpreted as it attempts to fool the
discriminator by generating cloud-free images, X̂t

` , similar
to the real cloud-free images, Xt

` .
The Pix2Pix discriminator is slightly non-standard in

that it has a PatchGAN architecture, meaning that different
patches of x̂, and x are evaluated in parallel, and each of the
values in the 30×30×1 output corresponds to a 70×70×3
patch from the original images. This allows it to have
greater granularity and specificity as it returns much more
information than the standard binary label.

3. STGAN Model Details
We construct a spatiotemporal generative (STGAN)

model called the branched ResNet. The branched ResNet
is composed of individual blocks where each ResNet block
is a conv block with skip connections, as mentioned in Sec-
tion 5.2. The ResNet block is composed of a conv layer,
a normalization layer, and a non-linearity layer (ReLU). It
takes in account the number of channels in the conv layer,
the name of padding layer (reflect, replicate or zero), the
normalization layer, dropout layer, and bias.

Similarly, we construct another STGAN called the
branched U-Net. In order to do so, we construct a U-Net
submodule with skip connections and recursively use that
to construct the model as mentioned in Section 5.2. The
U-Net submodule takes into account the number of filters
in the outer conv layer, the number of filters in the inner
conv layer, the number of channels in input images/features,
previously defined submodules (recursive approach), if the
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Figure 1: An illustration of the large tile to individual image crops pipeline. The large tile is classified as cloudy by Hollstein
et al.’s algorithm [2] as cloudy. Thresholding heuristics confirm one of the crops as cloudy, whereas the other is detected as
clear and is discarded.

module being used is the outermost module, if the mod-
ule being used is the innermost module, normalization layer
and dropout layers.

Using the defined ResNet block and U-Net submodule,
we are able to build up and customize the STGAN architec-
ture as thoroughly described in the paper.

4. Experimental Details
Training, validation, and test data splits are determined

randomly, with 80%, 10%, and 10% of images allocated
to the respective splits. For Ysingle = (Xt

` , Z
t−1
` ),

this resulted in 78112, 9764, and 9764 image pairs
for train, val and test respectively. For Ytemporal =
(Xt

` , Z
t−1
` , · · · , Zt−T

` ), with 3 cloudy images correspond-
ing to each cloud-free image, this resulted in 2481, 310, and
310 image groups for train, val, and test respectively.

For each of the models, we tune the L1-element of the
generator loss and the batch size of the input through a
random grid search. For each temporal model, separate
weights are trained for each of the different "branches." We
train our models for 200 epochs, using the Adam optimizer
[3] with a momentum of 0.5 and a beta of 0.99. The learn-
ing rate of 1e-3 was kept the same for the first 100 epochs

and then linearly decayed to zero over the next 100. We de-
termine the optimal hyper-parameters following a random
grid search and used the models with highest SSIM in vali-
dation.

5. Composite Baseline
We explore image composite techniques as a baseline al-

gorithm. This technique relies on using 13-band spectral
data for cloud mask detection, so it incorporates much more
information than the techniques explored in our paper. For
each of three input cloudy images, we use Hollstein et al.’s
algorithm [2] with 13-band Sentinel-2 spectral data to de-
tect binary cloud masks. Then, we return a composite im-
age that, for each pixel, averages all corresponding cloud-
free pixels across the three input images. However, for the
vast majority of image pairs in Ytemporal, some part of the
image is covered by all three cloudy images in the training
dataset. This leads to "holes" in the composite image where
we have no values, as seen in both Figure 3 and Figure 4.
These holes are both qualitatively implausible and make the
images unusable for downstream tasks. Figure 4 is a par-
ticularly egregious example: filmy and widespread clouds
lead the cloud detection algorithm to detect clouds covering
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nearly all pixels, leading to an extremely incomplete com-
posite image.

6. Downstream Tasks
We evaluate downstream performance by training a

baseline model on the pre-labeled Eurosat dataset [1],
which consists of 27,000 labeled Sentinel-2 satellite im-
ages across 10 classes (examples shown in Figure 5). We
then went through our test dataset, examined cloud-free im-
ages, manually-annotated 149 clear images with an approx-
imately even distribution amongst the 10 classes, and re-
trieved their corresponding cloudy images. Next, the cloudy
images were passed through our models to generate cloud-
free images. The Eurosat-trained land classification model
then made class predictions for each of the generated cloud-
free images. The accuracy of the model was then deter-
mined by comparing the prediction against the manually-
annotated label and the same set of annotated images was
used across all models. Note that the land classification
model also made predictions on the raw cloudy and cloud-
free images to provide reference points for comparison. The
same images were used across all models

7. Dataset and Code
Data can be found at:
https://doi.org/10.7910/DVN/BSETKZ.
Code can be found at:
https://github.com/VSAnimator/stgan.

8. Supplementary Images
Figure 2 has additional examples of the performance of

the state-of-the-art STGAN (RGB + IR) across a variety of
terrains. Figure 5 illustrates the type of classes and images
used in the downstream task of land cover classification.
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Figure 2: Further examples of cloud-free images generated by the state-of-the-art Resnet-based STGAN utilizing both RGB
and IR data. The first three columns represent the three input temporal images, the fourth column is the cloud-free image
generated by the STGAN and the fifth is the ground-truth cloud-free image. This model attained top results in both SSIM
and PSNR amongst all baselines and models evaluated.
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Figure 3: From left to right, three cloudy images and one generated composite "clear" image. The image on the right is
generated by first calculating binary cloud masks for the three cloudy images, then calculating pixel values by averaging
across all images where a given pixel is not covered by a cloud mask (i.e. marked as "not cloudy"). The assorted black
regions (clear pixels could not be found in any of the input images) in the composite image show the consequences of
persistent cloud coverage on this technique.

Figure 4: Another example of the composite baseline. This is a failure case where the cloud detection algorithm detects
most pixels as covered by clouds in all three input images, even though the clouds are fairly filmy. As a result, the resulting
generated "clear" image is composed almost entirely of black pixels. This starkly contrasts with Figure 3 where most pixels
are visible in at least one input image. However, in both images substantial areas are not successfully reconstructed.
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Figure 5: Examples of each of the ten classes based on the EuroSat dataset [1] which was used for the downstream task
of land cover classification. As seen, each classification requires nuanced and explicit details in the images, making this an
appropriate downstream task for evaluating the usability of the generated cloud-free images.
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