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Scale-aware Conditional Generative Adversarial Network for Image Dehazing


-Supplementary Material-


Abstract


This supplementary material consists of following items:


• Training and data augmentation pipeline.


• More LoGs of the images.


• Difference between Gradient and LoG losses.


• Details of the adopted evaluation metrics.


• Qualitative results of ablation study.


• Figure of merit (fom)


• More synthetic results on SOTS.


• More real-world results.


Algorithm 1 Data augmentation pipeline for proposed


method


Require: Paired training dataset {(I,J)}Tl=1


Require: Augmentation probabilities Phfp = Pvfp =
Prcp = Pdat = Prot = 0.5 and Nepoch = 104.


1: for n = 1, ..., Nepoch do


2: for l = 1, ..., T do


3: P ← get pair(I,J)
4: r ← random(0, 1)
5: if r < Pdat then


6: t1 ← horizontal flip(Phfp)
7: t2 ← vertical flip(Pvfp)
8: T ← randomly one(t1, t2)
9: Trot ← rotation(Prot)


10: Trcp ← crop(Prcp)
11: S ← shuffle({Trot, T, Trcp})
12: Pnew ← S(P )
13: perform training(Pnew)
14: else perform training(P )
15: end if


16: end for


17: end for


1. Training and data augmentation pipeline


Algorithm 1, 2 presents brief steps of data augmentation


and training pipelines of the proposed framework for the


problem of single image de-hazing.


Algorithm 2 Training pipeline for proposed method


Require: Paired training dataset {(I,J)}Tl=1


Require: Number of training epochs Nepoch = 104, num-


ber of training iterations for generator NG = 1 and


λE = λA = λP = λG = 1, λD = 0.5
Require: Load pretrained VGG-16 (V) network parame-


ters


Initialize: Weight parameters of generator and discrimina-


tor θG, θD
1: for n = 1, ..., Nepoch do


2: for l = 1, ..., T do


3: for t = 1, ..., NG do


4: #gA is gradient obtained by using LA
5: #gP is gradient obtained by using LP
6: #gE is gradient obtained by using LE
7: #gG is gradient obtained by using LLoG
8: LA ← −


∑
log (φD (φG(Il)))


9: gA ← ∇θGλALA


10: LP ←
∑


ci,wi,hi


‖V (φG(I))− V (J)‖
2


2


11: gP ← ∇θGλPLP


12: LE ←
∑


ci,wi,hi


‖φG(I)− J‖
2


2


13: gE ← ∇θGλELE


14: LLoG ←
∑


ci,wi,hi


‖L(φG(I))− L(J)‖
2


2


15: gLoG ← ∇θGλGLLoG


16: θG
+
← −


∑


y={gA,gP ,gE ,gLoG}


y


17: end for
18: LReal ← λDlog (φD (J))
19: gr ← ∇θDλDLReal


20: LFake ← λDlog (1− φD (φG(I)))]
21: gf ← ∇θDλDLFake


22: θD
+
← + [gr + gf ]


23: end for


24: end for


2. More LoGs of the images


Figures 1, 2, 3, 4, and 5 present more samples demon-


strating the comparison between Laplacians of Gaussian


(LoG) of existing methods and proposed scheme.
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Figure 1. Sample Laplacians of Gaussian (LoG) filters of (I) Hazy, (II) Dehazed by using [6, 8, 15], (III) Proposed and (IV) Clean images.


For each in I,II,III and IV, (i) G(m,n, kσ)−G(m,n, σ), (ii) G(m,n, k2σ)−G(m,n, kσ), (iii) G(m,n, k3σ)−G(m,n, k2σ), and (iv)


G(m,n, k4σ)− G(m,n, k3σ).
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Figure 2. Sample Laplacians of Gaussian (LoG) filters of (I) Hazy, (II) Dehazed by using [3, 10, 1], (III) Proposed and (IV) Clean images.


For each in I,II,III and IV, (i) G(m,n, kσ)−G(m,n, σ), (ii) G(m,n, k2σ)−G(m,n, kσ), (iii) G(m,n, k3σ)−G(m,n, k2σ), and (iv)


G(m,n, k4σ)− G(m,n, k3σ).
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Hazy Image PQC [11] Proposed Ground Truth
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Figure 3. Sample Laplacians of Gaussian (LoG) filters of (I) Hazy, (II) Dehazed by using [7, 13, 11], (III) Proposed and (IV) Clean images.


For each in I,II,III and IV, (i) G(m,n, kσ)−G(m,n, σ), (ii) G(m,n, k2σ)−G(m,n, kσ), (iii) G(m,n, k3σ)−G(m,n, k2σ), and (iv)


G(m,n, k4σ)− G(m,n, k3σ).
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Hazy Image DSIE [5] Proposed Ground Truth
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Hazy Image Cycle-Dehaze [4] Proposed Ground Truth
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Figure 4. Sample Laplacians of Gaussian (LoG) filters of (I) Hazy, (II) Dehazed by using [12, 5, 4], (III) Proposed and (IV) Clean images.


For each in I,II,III and IV, (i) G(m,n, kσ)−G(m,n, σ), (ii) G(m,n, k2σ)−G(m,n, kσ), (iii) G(m,n, k3σ)−G(m,n, k2σ), and (iv)


G(m,n, k4σ)− G(m,n, k3σ).
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(i) (ii) (i) (ii) (i) (ii) (i) (ii)


(iii) (iv) (iii) (iv) (iii) (iv) (iii) (iv)


Comparison with MAMF


Hazy Image MS-PPD [14] Proposed Ground Truth


(i) (ii) (i) (ii) (i) (ii) (i) (ii)


(iii) (iv) (iii) (iv) (iii) (iv) (iii) (iv)


Comparison with MS-PPD


Hazy Image EPDN [9] Proposed Ground Truth


(i) (ii) (i) (ii) (i) (ii) (i) (ii)


(iii) (iv) (iii) (iv) (iii) (iv) (iii) (iv)


Comparison with EPDN


Figure 5. Sample Laplacians of Gaussian (LoG) filters of (I) Hazy, (II) Dehazed by using [2, 14, 9], (III) Proposed and (IV) Clean images.


For each in I,II,III and IV, (i) G(m,n, kσ)−G(m,n, σ), (ii) G(m,n, k2σ)−G(m,n, kσ), (iii) G(m,n, k3σ)−G(m,n, k2σ), and (iv)


G(m,n, k4σ)− G(m,n, k3σ).







Hazy Image DCPDN [13] Proposed Ground Truth


(a) (b) (a) (b) (a) (b) (a) (b)
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(iii) (iv) (iii) (iv) (iii) (iv) (iii) (iv)


Comparison with DCPDN


Figure 6. Edge-Gradient vs LoG Loss. Sample Laplacians of Gaussian (LoG) filters of (I) Hazy, (II) Dehazed by using [13], (III) Proposed


and (IV) Clean images. For each in I,II,III and IV, (i) G(m,n, kσ)−G(m,n, σ), (ii) G(m,n, k2σ)−G(m,n, kσ), (iii) G(m,n, k3σ)−
G(m,n, k2σ), and (iv) G(m,n, k4σ)− G(m,n, k3σ). (a) variation along x-axis, (b) variation along y-axis.


3. Difference between Gradient and LoG losses


Zhang et al. [13] has used an image gradient loss for


preserving the edges in the images. For this, an image gra-


dient operator has been used. The 2D operator results in


two gradient maps, one along the x-axis and the other one


along the y-axis. To compare the LoG loss introduced in the


submitted manuscript with the image gradient loss, we have


calculated the 2D image gradients by using the Sobel opera-


tor, as shown in Figure 6. It can be observed that the LoG’s


retains more edgy details of an image than the conventional


gradients. With the results provided in the manuscript, it


can be observed that the introduced LoG loss is beneficial


over the image gradient loss used in Zhang et al. [13].


4. Details of the adopted evaluation metrics


The proposed scheme has been compared with existing


approaches using following 16 full-reference and norefer-


ence image quality metrics: Full-reference - SSIM which


compares the images based on their structural informa-


tion, PSNR, Visual information fidelity (VIF) which resem-


bles the human visual system, Universal image quality in-


dex (UQI) which considers the loss of correlation in addi-


ton to luminance and contrast distortions, Learned percep-


tual image patch similarity (LPIPS) evaluates the difference


between images, Mean squared error (MSE), Multi-scale


structural similarity (MS-SSIM), Feature similarity (FSIM)


index which considers the low-level features of the im-


ages while differentiating, Color difference (CIEDE 2000)


that estimates the color differences between two images,


Haar wavelet-based perceptual similarity index (HaarPSI)


that takes haar-wavelet decomposition of the images into


account for calculating the difference, Gradient magnitude


similarity deviation (GMSD) considers the image gradients


and SpEED-QA: Spatial Efficient Entropic Differencing for


Image and Video Quality computes the perceptually rele-


vant image features efficiently. No-reference - Total vari-


ation error (TV-Error) calculates the total amount of noise


present in an image, Naturalness image quality evaluator


(NIQE) compares an image to a default model computed


from images of natural scenes, Blind Image Quality Assess-


ment: A Natural Scene Statistics Approach in the DCT Do-


main (BLINDS II) estimates the score using a simple proba-


bilistic model, and Blind/referenceless image spatial quality


evaluator (BRISQUE) compare an image to a default model


computed from images of natural scenes with similar dis-


tortions.







Input M-LE M-LP M-LE + LP M-LE + LA M-LE + LA + LP M-NDA Proposed Clean


Figure 7. Qualitative demonstration of the ablation study presented in the manuscript.


5. Qualitative results of ablation study


Figure 7 demonstrates the qualitative analysis of the ab-


lation study presented in the submitted manuscript.


6. Figure of merit (fom)


We have used 16 image quality assessment metrics to


compare the proposed approach with the existing state-of-


the-art schemes. However, to give a fair comparison, we


have used the following figure of merit (fom) to give a final


score to any method


Score = (0.6×Best+0.4×SecondBest)/Total Metrics
(1)


where, Best indicates the number of entries among all met-


rics with best score and Second Best indicates the number


of entries among all metrics with second best score, ”/” (out


of) total number of metrics, for any method. For example,


if a method has 4 entries with best scores and 3 entries with


second best scores, then its final score becomes 3.6 out of


(”/”) total number of metrics.


7. More synthetic results on SOTS.


Figures 8, 9, and 10 shows the qualitative comparison of


the proposed scheme with existing methods on SOTS Out-


door images. Figures 11 and 12 shows the qualitative com-


parison of the proposed scheme with existing methods on


SOTS Indoor images.


8. More real-world results.


Figures 13, 14, 15 and 16 shows the qualitative compar-


ison of the proposed scheme with existing methods on the


real-world hazy images.
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Figure 8. Qualitative comparison of the proposed model with existing schemes on SOTS Outdoor hazy images.
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Figure 9. Qualitative comparison of the proposed model with existing schemes on SOTS Outdoor hazy images.
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Figure 10. Qualitative comparison of the proposed model with existing schemes on SOTS Outdoor hazy images.
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(e)
Figure 11. Qualitative comparison of the proposed model with existing schemes on SOTS Indoor hazy images.
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(d)
Figure 12. Qualitative comparison of the proposed model with existing schemes on SOTS Indoor hazy images.
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Figure 13. Qualitative comparison of the proposed model with existing schemes on real-world hazy images.
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Figure 14. Qualitative comparison of the proposed model with existing schemes on real-world hazy images.
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Figure 15. Qualitative comparison of the proposed model with existing schemes on real-world hazy images.
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Figure 16. Qualitative comparison of the proposed model with existing schemes on real-world hazy images.






