
Supplementary Material of Model-Agnostic Metric for Zero-Shot Learning

Jiayi Shen1, Haochen Wang1, Anran Zhang1, Qiang Qiu2, Xiantong Zhen3, Xianbin Cao1,4,5∗

1School of Electronic and Information Engineering, Beihang University, Beijing, China
2Duke University, Durham, NC, USA

3Inception Institute of Artificial Intelligence, Abu Dhabi, UAE
4Key Laboratory of Advanced Technology of Near Space Information System (Beihang University),

Ministry of Industry and Information Technology of China, Beijing, China
5Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China

shenjiayi@buaa.edu.cn, haochen.hobot@gmail.com, zhanganran@buaa.edu.cn,

qiang.qiu@duke.edu, zhenxt@gmail.com, xbcao@buaa.edu.cn

1. Proof of Proposition 1
Proof. According to the marginal probability density of the
component bi in Theorem 1, we get the variation is

Var [bi] = κD ·
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Due to the symmetry of bi value range, the integral item can

be equivalent to 2
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2, according to the recurrence property of Gamma

function Γ (x+ 1) = xΓ (x), Equation (1) can be reformu-
lated as:
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Equation (2) shows that the variance of any component
bi of the normalized embedded semantic vector decreases
as the dimensionality increases on the unit sphere.

2. Proof of Proposition 2
Proof. Euclidean distance between the normalized pro-
jected visual feature a and the normalized embedded se-
mantic vector bi(i = 1, 2) can be viewed as the chord
length of them on the unit sphere, which is given by

‖a− bi‖2 = ‖a‖2 + ‖bi‖2 − 2aTbi.
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a and bi are points on the unit sphere and the norms of them
are equal to 1. The distance can be rewritten by

‖a− bi‖2 = 2(1− aTbi),

and its expected value is

EX

[
‖a− bi‖2

]
= 2(1− EX [a]

T
bi) = 2(1− εa∗Tbi).

Substituting the expectations of the distance in the
Proposition 2, we get

∆ = 2ε(cos (a∗,b1)− cos (a∗,b2)) = 2εγσ. (3)

Due to the normalized embedded semantic vector b fol-
lows a uniform distribution, there is no difference between
a∗ and â = (..., 0, 1, 0, ...) to the whole normalized em-
bedded semantic vectors while calculating the variance of
cos(a∗,b). Meanwhile, Proposition 1 proves that the vari-
ance of the component bi is 1

D . From that, we can get the
variance σ2 of cos (a∗,b) is

σ2 = VarS [cos(a∗,b)] = VarS [cos(â,b)]

= VarS
[
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]
= VarS [bi] =

1

D
.

(4)

From (3) and (4), we obtain ∆ = 2εγ√
D

.

3. Extend Experiments

Table 1: Accuracy(%) of our proposed method with original
visual features (No PCA) and PCA-projected features.

Dataset AWA1 AWA2 SUN CUB aPY
No PCA (D=2048) 70.7 65.5 60.7 52.1 37.7

PCA (D=2048) 72.7 72.0 62.6 59.6 47.3



Table 2: Accuracy(%) of our proposed method on AWA2
with different dimensional metric space by MLP and PCA.

Dim. 64 128 256 512 1024 2048 2560 3072 4096
MLP 46.6 56.1 60.3 61.7 65.1 66.0 65.1 64.6 64.3
PCA 65.5 67.1 68.8 69.4 70.3 72.0 70.4 68.1 67.7

Performance of our method using original features and
learning low dimensional features using MLP are shown in
Table 1&2, respectively.

Table 1 shows that PCA(D=2048)-based visual features
have better performance consistently on five benchmarks
than original(D=2048) visual feature. This is due to the
PCA’s statistical benefits. PCA decorrelates the dimensions
of visual features such that embedded semantic vectors can
predict these dimensions independently rather than jointly
for the better discriminative ability.

Table 2 shows that the PCA-based method outperforms
the MLP-based method on different-dimensional embed-
ding space by a large margin. Compared with the non-
parametric strategy (PCA), the MLP with parameters needs
more training times and is more prone to over-fitting [5].
Thus, in our paper, we choose PCA as the dimensional re-
duction strategy.


