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1. Temporal Constraints for Semantic Segmen-
tation


As shown in Figure 1, even though comparing predic-
tions of noisy representations of input images has been
shown as powerful temporal constraints in semi-supervised
learning for image classification problems [9, 11, 1], such
constraints are dangerous for semantic segmentation as they
induce significant prediction error on pixelwise level. In
comparison, our geometric constraints show notably re-
duced prediction noise which significantly improves proba-
bility of convergence for S4-Net.


2. Network Initialization And Training


Initialization. To initialize the network f(.; Θ), we first
train it only based on the LS loss term. This avoids the
problem of converging to a bad local minimum introduced
by the term LG. As it is the case with other consistency-
based models, minimizing LG may fall in a solution where
a single class is predicted for all the image locations. Even
though tuning hyper-parameter λ more carefully might re-
solve this problem, we noticed that using this pre-training
step makes the convergence to a correct model much easier.


When predicting depth maps, the encoder is shared be-
tween the depth network and the segmentation network.
The depth decoder has the same architecture as the segmen-
tation decoder, but they do not share any parameters. To
initialize the networks f(.; Θ) and fd(.; Θd), we train them
using only the supervised loss term LS +LDS . The full loss
term L+ LD is utilized afterwards.


Training Details. At every iteration, we sample a batch
of 4 examples from each of the involved datasets. The input
images are resized to 480×360. For better convergence, we
pre-train the network using only the LS term on SUNRGB-
D training set until convergence on the SUNRGB-D test
set. We use the Adam optimizer [8] with an initial learn-
ing rate of 10−4 and momentum of 0.9 for this step. In
our experiments, we refer to this network as the supervised
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Figure 1: Semi-supervised terms for semantic segmenta-
tion. (a) Simply comparing predictions of noisy represen-
tations of input training images does not exploit the ge-
ometric constraints of the problem. (b) Merging predic-
tions of noise-added inputs induces further errors in pixel-
wise segmentation and does not perform well as a temporal
constraint. (c) and (d) Merging information from different
views is more useful as a temporal constraint and enables
convergence for S4-Net as shown in (e).


baseline. When learning to segment a target scene with our
semi-supervised approach, we fine-tune the network with







Figure 2: Colormap used for visualizing segmentations.
background is not one of the categories but it is used to


visualize regions of images without manual annotations.


initial learning rate of 10−5 until no further improvements
in performance are notable for the target scene. We found
that setting parameter λ to 0.01 balances the loss terms dur-
ing this stage of training. For the geometric consistency
loss term LG, for a given sample e, we randomly sample 4
neighbouring viewpoints with a minimum overlapping re-
gion of 25% relative to the viewpoint of e. Through this,
we achieve a trade-off between stability of the training pro-
cess and the computational costs. In the case of PSPNet, all
loss terms are applied to the auxiliary prediction branch as
well. According to [14], this step improves gradient back-
propagation during training. Furthermore, when applying
S4-Net with PSPNet, due to very high computational costs,
we set the batch size for the dataset U to 3.


3. Evaluation Metrics
For quantitative evaluation, we report common evalua-


tion metrics. For a given image, we compare segmentation
prediction to the corresponding ground truth annotation us-
ing following metrics:


• Pixel accuracy: pix acc =
∑


i
nii


ti
;


• Mean accuracy: mean acc = 1
nc
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;


• Mean IOU: mIOU = 1
nc
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;


• Frequency weighted IOU:
fwIOU = 1∑


i ti


∑
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tinii


ti+
∑


j nji−nii
,


where nij is the number of pixels of class i predicted as
class j, nc the number of classes, and ti the number of pix-
els that belong to class i. Results are then averaged accross
the given dataset to measure the performance.


4. Failure Cases
As demonstrated in Figure 3, we observe that S4-Net


fails when the estimated camera poses are inaccurate for
the registered scene. Hence, the performance of S4-Net is
tightly related to the performance of underlying scene reg-
istration pipeline.


Supervised S4-Net Man. annot.


Figure 3: Failure case of S4-Net due to noisy geometric
constraints caused by high level of reflectivity in scene0011.
Even the manual annotations are inaccurate which indicates
high error for camera poses across the scene.
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Figure 4: Even though comparisons with ground truth anno-
tations might indicate wrong segmentation predictions, our
segmentation predictions are often visually very appealing.
In (a), S4-Net wrongly predicts window that is actually oc-
cluded by a transparent curtain. In (b), both the supervised
baseline and S4-Net confuse the night stand with a table.
In (c), S4-Net predicts a sofa where the manual annotation
suggests a chair and the actual definition of the category for
this object would be a ’single seater sofa’. As this category
is not one of the given categories for the task, we find both
of these alternatives equally correct.


Furthermore, the categories colormap in Figure 2 clearly
reveals many object categories that might be interchange-
able with each other. We show in Figure 4 that S4-Net
sometimes predicts these ’alternative’ categories instead of
the ones proposed in manual annotations.


5. Quantitative Results for Individual Scenes
from ScanNet


Table 1 presents details on all of the ScanNet scans that
were used for the experiments. Table 2 presents quantitative
experiments on the individual scenes from ScanNet. We
observe that S4-Net consistently outperforms its supervised
baseline for all of the scenes.
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Figure 5: When warping the source view in (a) to the target view (d), we notice that occlusions can lead to association of
incorrect correspondences between two views as encircled in (b). When learning to predict depth with LINT term, this results
in errors caused by intensity differences of incorrect correspondences. We resolve this by masking out correspondences with
inconsistent segmentation predictions as shown in (c).


ScanNet “Scan 1” “Scan 2”
Scene #Samples #Samples


scene0000 5578 5920
scene0006 2161 2155
scene0009 980 920
scene0011 2374 2759
scene0022 1896 1339
scene0030 2498 1648


Table 1: Number of samples for the utilized scans from
ScanNet.


6. Segmentation Mask for Learning Depth Pre-
diction


We observe that the LINT loss term is very sensitive to
occlusions in the scene. Even though existing works utiliz-
ing this term for monocular depth estimation achieve good
results [15, 5, 13, 10, 12, 6], the baseline between the two
camera views is very small. This reduces the negative influ-
ence of occlusions between the views and, hence, the net-
work still learns quality depth estimations. As the baseline
between the two views increases, occlusions in the scene
might have more negative influence on the geometric con-
straints as we show in Figure 5b. Hence, in order to deal
with occlusions in the image, we apply the LINT term only
to the target image pixels where predicted segmentations
are consistent with each other and further away from seg-
mentation borders. In Figure 5c we show that such mask
successfully masks out the affected regions of the warped
image.


7. Evaluation of Depth Predictions
In Table 3 and Figure 6 we demonstrate that fine-tuning


S4-Net with depth predictions for the target scene also im-
proves depth estimations across the scene. Although ap-
plying a smoothness loss term would further improve our
depth estimations [4, 15, 5, 13, 10, 12, 6], the quality of the
learned predictions is good enough for enforcing geometric
constraints on semantic segmentation.







“Scan 1” (ScanNet) “Scan 2” (ScanNet)
pix acc mean acc mIOU fwIOU pix acc mean acc mIOU fwIOU


DeepLabV3+ network architecture
Supervised baseline
scene0000 (Apartment) 0.67 0.505 0.398 0.591 0.709 0.536 0.435 0.643
scene0006 (Hotel room) 0.751 0.629 0.54 0.683 0.723 0.617 0.511 0.653
scene0009 (Bathroom) 0.896 0.811 0.73 0.855 0.908 0.851 0.75 0.86
scene0011 (Kitchen) 0.675 0.532 0.407 0.575 0.716 0.555 0.442 0.622
scene0022 (Lounge) 0.872 0.751 0.657 0.81 0.829 0.697 0.585 0.74
scene0030 (Study room) 0.726 0.574 0.467 0.638 0.744 0.647 0.539 0.662
Average 0.765 0.634 0.533 0.692 0.772 0.651 0.544 0.697
S4-Net
scene0000 (Apartment) 0.726 0.565 0.465 0.642 0.752 0.579 0.486 0.68
scene0006 (Hotel room) 0.816 0.725 0.647 0.767 0.782 0.679 0.599 0.73
scene0009 (Bathroom) 0.907 0.88 0.785 0.873 0.927 0.909 0.813 0.889
scene0011 (Kitchen) 0.701 0.553 0.431 0.595 0.741 0.582 0.47 0.643
scene0022 (Lounge) 0.896 0.805 0.708 0.833 0.831 0.724 0.608 0.745
scene0030 (Study room) 0.77 0.596 0.505 0.689 0.787 0.674 0.58 0.708
Average 0.803 0.687 0.59 0.733 0.803 0.691 0.593 0.732
S4-Net with Depth Predictions
scene0000 (Apartment) 0.713 0.538 0.438 0.63 0.746 0.563 0.471 0.677
scene0006 (Hotel room) 0.803 0.715 0.636 0.754 0.779 0.674 0.595 0.728
scene0009 (Bathroom) 0.932 0.89 0.804 0.902 0.956 0.924 0.848 0.925
scene0011 (Kitchen) 0.659 0.545 0.414 0.542 0.699 0.564 0.443 0.585
scene0022 (Lounge) 0.9 0.791 0.701 0.842 0.825 0.704 0.59 0.738
scene0030 (Study room) 0.759 0.593 0.493 0.674 0.775 0.674 0.569 0.695
Average 0.794 0.679 0.581 0.724 0.797 0.684 0.586 0.725


PSPNet network architecture
Supervised baseline
scene0000 (Apartment) 0.618 0.453 0.346 0.534 0.664 0.486 0.38 0.592
scene0006 (Hotel room) 0.683 0.586 0.472 0.6 0.67 0.58 0.458 0.588
scene0009 (Bathroom) 0.888 0.81 0.705 0.832 0.904 0.814 0.725 0.847
scene0011 (Kitchen) 0.635 0.488 0.362 0.531 0.66 0.498 0.386 0.565
scene0022 (Lounge) 0.849 0.724 0.618 0.777 0.821 0.685 0.569 0.726
scene0030 (Study room) 0.686 0.522 0.414 0.591 0.703 0.599 0.478 0.609
Average 0.727 0.597 0.486 0.644 0.737 0.61 0.499 0.654
S4-Net
scene0000 (Apartment) 0.716 0.523 0.42 0.63 0.731 0.541 0.445 0.66
scene0006 (Hotel room) 0.76 0.679 0.565 0.686 0.722 0.629 0.511 0.644
scene0009 (Bathroom) 0.91 0.872 0.748 0.863 0.934 0.879 0.792 0.888
scene0011 (Kitchen) 0.68 0.523 0.4 0.567 0.722 0.552 0.44 0.617
scene0022 (Lounge) 0.897 0.767 0.668 0.832 0.817 0.694 0.569 0.726
scene0030 (Study room) 0.724 0.526 0.433 0.627 0.752 0.617 0.519 0.66
Average 0.781 0.648 0.539 0.701 0.78 0.652 0.546 0.699


Table 2: Quantitative evaluation on the target scenes from ScanNet. The table shows results calculated per individual scene
and average performance over all of the target scenes. The numbers for individual scenes indicate that S4-Net consistently
outperforms the supervised baseline for all of the scenes.







“Scan 2” (ScanNet)
Lower is better Higher is better


Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253


DeepLabV3+ network architecture
Supervised baseline
scene0000 (Apartment) 0.296 0.192 0.524 0.271 0.449 0.918 0.99
scene0006 (Hotel room) 0.358 0.28 0.609 0.321 0.374 0.857 0.962
scene0009 (Bathroom) 0.329 0.204 0.532 0.293 0.257 0.958 0.993
scene0011 (Kitchen) 0.319 0.322 0.711 0.303 0.444 0.9 0.967
scene0022 (Lounge) 0.324 0.37 0.723 0.297 0.441 0.932 0.975
scene0030 (Study Room) 0.298 0.187 0.574 0.274 0.357 0.963 0.994
Average 0.321 0.259 0.612 0.293 0.387 0.921 0.98
S4-Net with Depth Predictions
scene0000 (Apartment) 0.115 0.048 0.269 0.131 0.885 0.988 0.998
scene0006 (Hotel room) 0.122 0.09 0.452 0.174 0.886 0.958 0.975
scene0009 (Bathroom) 0.121 0.053 0.271 0.133 0.923 0.993 0.996
scene0011 (Kitchen) 0.168 0.159 0.553 0.219 0.804 0.938 0.975
scene0022 (Lounge) 0.179 0.199 0.535 0.195 0.823 0.97 0.982
scene0030 (Study Room) 0.134 0.057 0.341 0.151 0.897 0.99 0.999
Average 0.14 0.101 0.404 0.167 0.87 0.973 0.987


“Scan 2” (“Room”)
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253


DeepLabV3+ network architecture
Supervised baseline 0.419 0.263 0.584 0.358 0.153 0.839 0.99
S4-Net with Depth Predictions 0.337 0.183 0.495 0.298 0.307 0.925 0.993


Table 3: Quantitative evaluation for depth predictions on the target scenes. Results indicate improvements in the depth domain
for S4-Net with depth predictions. Hence, we obtain quality geometric constraints for learning semantic segmentation.
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Figure 6: Qualitative evaluation of our depth predictions on unseen images of the target scenes from ScanNet for the
DeepLabV3+ network architecture. After applying S4-Net with depth predictions to the target scenes, we observe improve-
ments also in the depth domain.
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