
A. Supplementary Material

A.1. Comparison to ALDA [5]

Although joint training with importance sampling is one
way to extend the ALDA [5] method (as compared in Sec-
tion 4.3 in the main paper), here we consider the original al-
gorithm of online ALDA (O-ALDA) on digit classification.
We first extract the features from our domain adversarial
model and train a perceptron classifier uφ, a source clas-
sifier wsrc, and a domain separator wds separately. There
are two main differences: 1) this algorithm is performed in
an online version, i.e., selecting one sample at a time then
updating the classifier, and 2) if the selected image is sim-
ilar to the source domain (determined by wds), we use the
pseudo-label from wsrc without cost, and hence the number
of selected images maybe be larger than the actual budget.
The results are shown in Table A1, and our method outper-
forms O-ALDA by 10-15%.

Method
Number of Labeled Target

0 100 200 300 500 1000
AADA (Ours) 76.5 94.1 95.1 95.6 96.9 97.5
O-ALDA [5] 76.5 79.0 81.4 82.7 84.1 87.7

Table A1. Comparison of AADA and O-ALDA [5] on digit clas-
sification (SVHN → MNIST).

A.2. More Object Detection Results

Here we show the results on object detection after more
sample selection rounds, which is an extension of Table 1 in
the main paper. We perform 9 rounds in total with b ={10,
10, 10, 20, 50, 100, 100, 200, 500} for each round. We
plot the x-axis in log scale for a better illustration in Fig-
ure A1. Our AADA improves over other baselines, includ-
ing other sampling strategies with adversarial training and
random sampling with different training schemes when up
to 1000 labeled targets are available.

A.3. Comparison of Training Schemes on Office

In this section, we compare the results of adversar-
ial training with different training schemes on the Office
dataset [4] in Figure A2, as an extension of Section 5.1 in
the main paper. With a random selection, adversarial train-
ing is better than other baselines including fine-tuning, joint
training, and train on target data only. When using impor-
tance weight for sampling, adversarial training outperforms
fine-tuning baseline. In addition, sampling with the pro-
posed importance weight improves the performance over
random selection when either adversarial training or fine-
tuning is used. Overall, our adversarial training with impor-
tance weight (AADA) performs the best compared to other
combinations of training schemes and sampling strategies.
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Figure A1. Object detection result (KITTI → Cityscapes) after 9
rounds. The x-axis is shown in log scale. The left-most points
represent the initial round where no labeled target is available. Our
AADA outperforms all other baselines when up to 1000 labeled
targets are available.
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Figure A2. Comparing different training schemes on the Office
dataset (D → A). Adversarial training with importance weight
for sampling (AADA) outperforms other baselines with different
training schemes.

A.4. Comparison of Training Schemes on VisDA

As described in Section 5.3 in the main paper, VisDA [2,
3] is a special case where the target domain is closer to im-
ages from ImageNet which is used for pre-training, and thus
we utilize the fine-tuning strategy. In Figure A3, we further
provide results of using adversarial training when few la-
beled targets Lt are available. To show more fine-grained
results, we sample 10 images per round, i.e., b = 10, and
perform 10 rounds of selection. In an unsupervised do-
main adaptation setting, i.e., no labeled target is available
Lt = ∅, using adversarial training on (Ls, Ut) improves the
test accuracy on the target domain from 57.0% to 62.5%,
compared to the model trained only on labeled source Ls
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Figure A3. Comparing different training schemes on the VisDA
dataset. Using adversarial training, the accuracy does not improve
when more labeled targets are added since the target domain in
VisDA is closer to ImageNet images for pre-training. However,
the accuracy improves when we use fine-tuning, in which using
importance weight for sampling is better than random sampling.

without adaptation. However, after adding labeled targets,
the accuracy of the model using adversarial training de-
creases, as shown in blue and red curves in Figure A3, re-
gardless of which sampling strategy is used. On the other
hand, the accuracy of the model using fine-tuning increases
when the number of labeled target increases, showing that
VisDA is more suitable for fine-tuning due to its dataset
property. Nevertheless, fine-tuning with our proposed im-
portance weight still performs better than random sampling.

A.5. Effect of Source Data Number

We investigate the effectiveness of our method when
the labeled source data is also limited. We use a subset
{5,20,50}% of the source data, and compare results using
adversarial training. We select 50 labeled targets per round
and perform 10 rounds in total. As shown in Figure A4, us-
ing importance weight improves over random sampling in
all the cases, especially on a smaller subset.

A.6. Results on Digits Classification with CDAN [1]

Our AADA framework can be applied to any domain
adaptation model with a domain classifier and adversar-
ial training. Here we integrate CDAN [1] model in our
AADA framework and experiment on digit classification
(SVHN→MNIST). We use the implementation provided
by the authors and follow their training procedure, which
yields 87.8% accuracy when there is no labeled target. We
select 10 labeled targets in each round, and the performance
saturates after 50 rounds. We compare different sampling
methods in Table A2. Our proposed importance weight per-
forms favorably against other methods.
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Figure A4. Results on SVHN → MNIST with a subset of labeled
source data. Using importance weight for sampling is better than
random selection, and the improvement is even higher when we
have less labeled source data for training.

Sampling Number of Rounds
5 10 15 20 30 50

Imp. weight 92.1 94.2 94.7 95.2 95.5 95.8
BvSB 92.0 94.2 94.8 95.0 95.2 95.9

Entropy 91.1 93.1 94.5 94.6 95.0 95.6
Random 89.9 92.9 94.3 94.7 95.2 95.5

Table A2. Results on SVHN → MNIST. We use CDAN [1]
for training and compare different sampling approaches. In each
round, we select 10 target samples to label.
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