
Boosting Standard Classification Architectures Through a Ranking Regularizer
Supplementary material

Ahmed Taha1 Yi-Ting Chen2 Teruhisa Misu2 Abhinav Shrivastava1 Larry Davis1
1University of Maryland, College Park 2Honda Research Institute, USA

1. Supplementary Material
The next subsections provide more details about our ar-

chitecture and training procedure’s technicalities. Further
quantitative evaluations on fine-grained visual recognition
(FGVR) are presented. Finally, we demonstrate the training
procedure for the Honda Research Institute Driving Dataset.

1.1. Fine-Grained Visual Recognition

Figure 2 in the main paper presents our two-head archi-
tecture. The pre-logit layer x supports the softmax loss.
Similarly, triplet loss utilizes h, where x = pool(h). The
network outputs, both logits and embedding, are formulated
as follows.

logits = Wlogits ∗ flat(x) (1)
embedding = Wemb ∗ flat(h). (2)

Orderless pooling, like averaging, reduces h dimension-
ality but loses spatial information. For example, in
DenseNet161, h ∈ R7×7×2208 while x ∈ R1×1×2208.
Thus, Wemb employs h, instead of x, to improve feature em-
bedding. Figure S1 illustrates how h provides a finer control
level while learning Wemb.

Figure S2 shows a t-SNE visualization for Flowers-102
embedding using 50 random classes, 20 samples per class.
In the main paper, the inferior performance of triplet loss
with hard-mining is associated with convergence to bad lo-
cal minima, i.e., a collapsed model (i.e.f(x) = 0) [7]. To
examine such assumption, we train a DenseNet for 400K
iterations on Stanford Dogs. This large number of itera-
tions increases the chances of a model collapse. Figure S3
presents the performance on the test split after every 50K
iterations. Triplet loss with hard-mining is evaluated with
both soft and hard margin. Soft margin applies the softplus
function ln(1+exp(•)) while hard margin uses a fixed mar-
gin m = 0.2. The triplet loss with hard-mining deteriorates
with soft margin when trained for a large number of itera-
tions. Hard-mining with hard margin is more robust. We
found similar behavior on other datasets like Stanford Cars
and Aircrafts datasets.

Table 5 in the main paper presents a quantitative anal-
ysis for the feature embedding learned by the second head

pool(h) = x

Figure S1: Orderless pooling reduces dimensionality but
loses features spatial information.

Figure S2: t-SNE visualization for Flowers-102 embedding
using 50 random classes, 20 samples per class. Best viewed
in color.

in our proposed architecture. Similarly, Table S1 presents
feature embedding quantitative analysis using the architec-
ture penultimate layer, i.e., layer x (Figure 2 in the main
paper). This layer is present in both our proposed two-head
and single-head (vanilla softmax) architecture. Similar to
Table 5, the triplet loss embedding is superior to the softmax
embedding. Triplet loss with hard-mining achieves the best
results on ResNet-50 but degrades on Inception-V4 trained
for 80K iterations. Center loss achieves good results with
DenseNet161 on NABirds but generally fluctuates and suf-

0.5 1 1.5 2 2.5 3 3.5 4

·105

70

75

80

Number of iterations

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Soft-margin
Hard-margin

Figure S3: Model collapse study by training DenseNet161
for 400K iterations. Triplet loss with hard-mining evaluated
with soft and hard margins.

fers with Inception-V4. Triplet loss with semi-hard margin
achieves sub-optimal embedding but maintains the highest
stability compared to center and hard-mining approaches.

Figure S4 graphically summarizes Table S1. It provides
a comparative embedding evaluation between the single-
head softmax verses the two-head with semi-hard triplet
loss using recall@1 metric. Triplet loss improvements, over
the softmax model, are reported as (4). The Flowers-
102 dataset has the smallest training split with 1020 im-
ages only. With this limited data, the head-two architecture
achieves marginal improvement if any.

Table S2 compares our proposed two-head architecture,
using DenseNet161, with state-of-the-art approaches on the
five FGVR datasets. Our two-head architecture with the
semi-hard triplet loss regularizer achieves competitive re-
sults.

1.2. Autonomous Car Driving

The Honda Research Institute Driving Dataset (HDD)
contains 137 sessions S. Each session Si represents a nav-
igation task performed by a driver. S is divided into 93, 5,
and 36 sessions for training, validation and testing splits re-
spectively. Three sessions are removed for missing annota-
tions. HDD has four annotation layers to study the drivers’
actions: (1) Goal-oriented, (2) stimulus-driven, (3) cause
and (4) attention. The Goal-oriented layer, utilized in our
experiments , defines drivers’ actions to reach their destina-
tions, e.g., left-turn and intersection passing. Ramanishka
et al. [6] provides further details for the other three annota-
tion layers.

Triplet loss mini-batches require both positive and neg-
ative samples. The FGVR datasets have uniform class dis-
tribution. Thus, training batches’ construction is straight-
forward by sampling random classes and their correspond-
ing images as outlined in the main paper. On the other hand,
HDD suffers class imbalance. A different batch construc-
tion procedure is required.

Algorithm 1 outlines our training procedure. First, NB

mini-batches are constructed, each containing b random ac-
tions. The batches’ embeddings are computed using NB

NMI R@1 R@4 R@8 R@16

Cars - ResNet

Vanilla 0.791 77.88 91.17 94.65 96.9
CNTR 0.756 77.98 91.12 94.58 96.78
SEMI 0.823 81.41 92.79 95.91 97.74
HARD 0.853 85.31 94.30 96.82 98.07

Flowers - ResNet

Vanilla 0.800 88.76 95.51 97.27 98.49
CNTR 0.807 88.79 95.58 97.32 98.49
SEMI 0.818 89.48 95.82 97.37 98.37
HARD 0.742 90.78 95.56 96.93 97.98

Dogs - ResNet

Vanilla 0.587 51.62 74.22 83.02 89.76
CNTR 0.526 48.74 71.90 80.92 87.81
SEMI 0.621 54.18 76.39 84.50 91.10
HARD 0.684 60.37 80.34 87.33 92.26

Aircrafts - ResNet

Vanilla 0.756 73.42 87.88 92.26 94.90
CNTR 0.677 70.84 85.84 90.79 93.91
SEMI 0.792 77.26 89.65 93.07 95.29
HARD 0.829 84.01 91.63 94.21 95.65

NABirds - ResNet

Vanilla 0.669 50.70 71.20 79.48 85.80
CNTR 0.623 47.40 68.18 76.56 83.33
SEMI 0.657 50.05 70.83 78.84 85.52
HARD 0.723 55.85 75.81 83.26 88.67

Cars - Inc-V4

Vanilla 0.660 72.47 86.77 90.55 93.55
CNTR 0.496 61.55 79.09 85.09 89.69
SEMI 0.788 81.46 92.14 94.64 96.37
HARD 0.566 63.70 82.04 87.54 91.42

Flowers - Inc-V4

Vanilla 0.778 90.54 96.21 97.63 98.70
CNTR 0.707 85.62 93.74 95.95 97.56
SEMI 0.801 89.58 95.23 96.91 97.84
HARD 0.731 92.68 96.21 97.27 98.32

Dogs - Inc-V4

Vanilla 0.421 41.11 62.97 72.59 81.13
CNTR 0.453 57.13 68.32 72.35 76.90
SEMI 0.609 55.03 76.50 84.44 90.23
HARD 0.330 33.89 54.28 65.06 74.98

Aircrafts - Inc-V4

Vanilla 0.680 69.79 85.18 89.23 91.93
CNTR 0.546 61.60 79.75 85.33 89.53
SEMI 0.751 78.13 89.20 91.78 94.27
HARD 0.831 86.26 91.87 93.49 94.72

NABirds - Inc-V4

Vanilla 0.546 41.03 60.11 68.88 76.71
CNTR 0.438 24.30 40.43 49.38 58.78
SEMI 0.638 52.42 72.38 79.57 85.60
HARD 0.433 23.68 38.95 47.48 57.10

Cars - Dense

Vanilla 0.813 85.08 94.49 96.84 98.22
CNTR 0.787 87.39 93.17 94.64 95.97
SEMI 0.875 88.57 96.08 97.66 98.71
HARD 0.892 89.44 96.38 97.86 98.76

Flowers - Dense

Vanilla 0.838 95.28 98.23 98.94 99.38
CNTR 0.812 95.87 98.16 98.75 99.22
SEMI 0.864 95.40 98.39 99.09 99.46
HARD 0.865 95.79 98.50 99.14 99.50

Dogs - Dense

Vanilla 0.544 57.06 78.72 85.98 91.84
CNTR 0.720 70.96 84.00 88.19 91.96
SEMI 0.728 68.55 87.04 92.18 95.83
HARD 0.756 70.63 87.80 92.95 96.22

Aircrafts - Dense

Vanilla 0.768 79.06 91.66 94.66 96.49
CNTR 0.792 86.20 91.63 93.16 94.48
SEMI 0.853 84.49 94.15 95.68 96.97
HARD 0.856 85.51 93.70 95.83 96.94

NABirds - Dense

Vanilla 0.606 53.91 73.08 80.70 86.44
CNTR 0.818 75.28 86.88 90.85 93.69
SEMI 0.677 61.82 80.70 87.07 91.62
HARD 0.674 61.64 80.21 86.77 91.37

Table S1: Detailed feature embedding quantitative anal-
ysis across the five datasets using ResNet-50, Inception-
V4 and DenseNet-161 architectures’ penultimate layer x.
Triplet with hard mining achieves superior embedding with
ResNet-50 trained for 40K iterations. Semi-hard triplet is
competitive and stable with Inception-V4 trained for 80K
iterations. Center loss suffers a high instability.

feed forward passes. The 2D matrix Dφ stores the pair-
wise distance between the NB × b actions. All positive

Flowers-102
Method Acc
Det.+Seg. [1] 80.66
Overfeat [8] 86.80
Softmax 92.56
Two-Head (Semi) 93.65

Aircrafts
Method Acc
LRBP [2] 87.30
Liu et al. [4] 88.50
Softmax 89.13
Two-Head (Semi) 89.64

NABirds
Method Acc
Branson et al. [9] 35.70
Van et al. [3] 75.00
Softmax 78.69
Two-Head (Semi) 79.57

Cars
Method Acc
Liu et al. [5] 86.80
Liu et al. [4] 92.00
Softmax 91.64
Two-Head (Semi) 92.36

Dogs
Method Acc
Zhang et al. [9] 80.43
Krause et al. [3] 80.60
Softmax 81.58
Two-Head (Semi) 80.89

Table S2: Quantitative evaluation on the five FGVR datasets using DenseNet161. Our two-head architecture with semi-hard
triplet loss regularizer compares favorably with state-of-the-art results.

Cars Flowers Dogs Aircrafts NABirds

60

80

(4 3.53)

(4 0.72)

(4 2.56)

(4 3.84)

(4 -0.65)

R
ec

al
l@

1

ResNet-50 Evaluation

Vanilla Semi-hard

Cars Flowers Dogs Aircrafts NABirds

40

60

80
(4 8.99)

(4 -0.96)

(4 13.92)

(4 8.34)

(4 11.39)R
ec

al
l@

1

Inception-V4 Evaluation

Vanilla Semi-hard

Cars Flowers Dogs Aircrafts NABirds

60

80

100

(4 3.49)

(4 0.12)

(4 11.49)

(4 5.43)

(4 7.91)

R
ec

al
l@

1

DenseNet161 Evaluation

Vanilla Semi-hard

Figure S4: Comparative embedding evaluation between
single-head softmax and two-head with semi-hard triplet
loss using the penultimate layer in ResNet-50, Inception-
V4 and DenseNet161 respectively. Triplet loss semi-hard
improvements over the softmax model are reported as (4).

pairs (a, p) and their corresponding semi-hard negatives n
are identified. For a fair comparison with vanilla softmax
approach, only (b//3) random triplets (a, p, n) are utilized
for back-propagation. This process repeats for N training
iterations.

Algorithm 1 HDD training procedure. In our experiments,
b = {33, 36} is the mini-batch size, NB = 3 is the num-
ber of mini-batches, and N = 10K is number of training
iterations.

for all iteration i in N do
Sφ = Φ
for all j in NB do

Add a random batch, of size b, to Sφ
end for
Compute action embeddings Eφ for Sφ
Compute pairwise distance matrix Dφ using Eφ
Ttri = Φ
Construct all positive pairs (a, p)
for all (a, p) in positive pairs do

Find nearest semi-hard negative n using Dφ

append (a, p, n) to Ttri
end for
if len(Ttri) > b//3 then
Ttri =shuffle(Ttri)[0 : b//3]

end if
// Ttri contains b actions
Feed-forward Ttri
compute softmax + triplet losses and back-propagate.

end for

References

[1] A. Angelova and S. Zhu. Efficient object detection and seg-
mentation for fine-grained recognition. In CVPR, 2013. 3

[2] S. Kong and C. Fowlkes. Low-rank bilinear pooling for fine-
grained classification. In CVPR. IEEE, 2017. 3

[3] J. Krause, B. Sapp, A. Howard, H. Zhou, A. Toshev, T. Duerig,
J. Philbin, and L. Fei-Fei. The unreasonable effectiveness of
noisy data for fine-grained recognition. In ECCV. Springer,
2016. 3

[4] T.-Y. Lin and S. Maji. Improved bilinear pooling with cnns.
arXiv preprint arXiv:1707.06772, 2017. 3

[5] M. Liu, C. Yu, H. Ling, and J. Lei. Hierarchical joint
cnn-based models for fine-grained cars recognition. In In-
ternational Conference on Cloud Computing and Security.
Springer, 2016. 3

[6] V. Ramanishka, Y.-T. Chen, T. Misu, and K. Saenko. Toward
driving scene understanding: A dataset for learning driver be-
havior and causal reasoning. In CVPR, 2018. 2

[7] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-
fied embedding for face recognition and clustering. In CVPR,
2015. 1

[8] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson.
Cnn features off-the-shelf: an astounding baseline for recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, 2014. 3

[9] Y. Zhang, X.-S. Wei, J. Wu, J. Cai, J. Lu, V.-A. Nguyen, and
M. N. Do. Weakly supervised fine-grained categorization with
part-based image representation. IEEE Transactions on Image
Processing, 2016. 3

