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1. Supplementary Material

The next subsections provide more details about our ar-
chitecture and training procedure’s technicalities. Further
quantitative evaluations on fine-grained visual recognition
(FGVR) are presented. Finally, we demonstrate the training
procedure for the Honda Research Institute Driving Dataset.

1.1. Fine-Grained Visual Recognition

Figure 2 in the main paper presents our two-head archi-
tecture. The pre-logit layer x supports the softmax loss.
Similarly, triplet loss utilizes h, where = pool(h). The
network outputs, both logits and embedding, are formulated
as follows.

logits = Wiogis * flat(z) (1)
embedding = Wy, * flat(h). 2)

Orderless pooling, like averaging, reduces h dimension-
ality but loses spatial information. For example, in
DenseNetl61, h € R7*7x2208 while x € R1IX1x2208
Thus, Wemp employs h, instead of x, to improve feature em-
bedding. Figure S1 illustrates how h provides a finer control
level while learning Weyp.

Figure S2 shows a t-SNE visualization for Flowers-102
embedding using 50 random classes, 20 samples per class.
In the main paper, the inferior performance of triplet loss
with hard-mining is associated with convergence to bad lo-
cal minima, i.e., a collapsed model (i.e.f(x) = 0) [7]. To
examine such assumption, we train a DenseNet for 400K
iterations on Stanford Dogs. This large number of itera-
tions increases the chances of a model collapse. Figure S3
presents the performance on the test split after every 50K
iterations. Triplet loss with hard-mining is evaluated with
both soft and hard margin. Soft margin applies the softplus
function In(1+ exp(e)) while hard margin uses a fixed mar-
gin m = 0.2. The triplet loss with hard-mining deteriorates
with soft margin when trained for a large number of itera-
tions. Hard-mining with hard margin is more robust. We
found similar behavior on other datasets like Stanford Cars
and Aircrafts datasets.

Table 5 in the main paper presents a quantitative anal-
ysis for the feature embedding learned by the second head
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Figure S1: Orderless pooling reduces dimensionality but
loses features spatial information.

Figure S2: t-SNE visualization for Flowers-102 embedding
using 50 random classes, 20 samples per class. Best viewed
in color.

in our proposed architecture. Similarly, Table S1 presents
feature embedding quantitative analysis using the architec-
ture penultimate layer, i.e., layer z (Figure 2 in the main
paper). This layer is present in both our proposed two-head
and single-head (vanilla softmax) architecture. Similar to
Table 5, the triplet loss embedding is superior to the softmax
embedding. Triplet loss with hard-mining achieves the best
results on ResNet-50 but degrades on Inception-V4 trained
for 80K iterations. Center loss achieves good results with
DenseNet161 on NABirds but generally fluctuates and suf-



05 1 15 2 25 3 35 4
-10°

Number of iterations
Figure S3: Model collapse study by training DenseNet161
for 400K iterations. Triplet loss with hard-mining evaluated
with soft and hard margins.

fers with Inception-V4. Triplet loss with semi-hard margin
achieves sub-optimal embedding but maintains the highest
stability compared to center and hard-mining approaches.

Figure S4 graphically summarizes Table S1. It provides
a comparative embedding evaluation between the single-
head softmax verses the two-head with semi-hard triplet
loss using recall@ 1 metric. Triplet loss improvements, over
the softmax model, are reported as (A). The Flowers-
102 dataset has the smallest training split with 1020 im-
ages only. With this limited data, the head-two architecture
achieves marginal improvement if any.

Table S2 compares our proposed two-head architecture,
using DenseNet161, with state-of-the-art approaches on the
five FGVR datasets. Our two-head architecture with the
semi-hard triplet loss regularizer achieves competitive re-
sults.

1.2. Autonomous Car Driving

The Honda Research Institute Driving Dataset (HDD)
contains 137 sessions S. Each session .S; represents a nav-
igation task performed by a driver. S is divided into 93, 5,
and 36 sessions for training, validation and testing splits re-
spectively. Three sessions are removed for missing annota-
tions. HDD has four annotation layers to study the drivers’
actions: (1) Goal-oriented, (2) stimulus-driven, (3) cause
and (4) attention. The Goal-oriented layer, utilized in our
experiments , defines drivers’ actions to reach their destina-
tions, e.g., left-turn and intersection passing. Ramanishka
et al. [6] provides further details for the other three annota-
tion layers.

Triplet loss mini-batches require both positive and neg-
ative samples. The FGVR datasets have uniform class dis-
tribution. Thus, training batches’ construction is straight-
forward by sampling random classes and their correspond-
ing images as outlined in the main paper. On the other hand,
HDD suffers class imbalance. A different batch construc-
tion procedure is required.

Algorithm 1 outlines our training procedure. First, Np
mini-batches are constructed, each containing b random ac-
tions. The batches’ embeddings are computed using Np
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Table S1: Detailed feature embedding quantitative anal-
ysis across the five datasets using ResNet-50, Inception-
V4 and DenseNet-161 architectures’ penultimate layer x.
Triplet with hard mining achieves superior embedding with
ResNet-50 trained for 40K iterations. Semi-hard triplet is
competitive and stable with Inception-V4 trained for 80K
iterations. Center loss suffers a high instability.

feed forward passes. The 2D matrix Dy stores the pair-
wise distance between the Np X b actions. All positive



Flowers-102 Aircrafts NABirds Cars Dogs
Method Acc Method Acc Method Acc Method Acc Method Acc
Det.+Seg. [1] 80.66 LRBP [2] 87.30 Branson et al. [9] 35.70 Liu et al. [5] 86.80 Zhang et al. [9] 80.43
Overfeat [8] 86.80 Liu et al. [4] 88.50 Van et al. [3] 75.00 Liu et al. [4] 92.00 Krause et al. [3] 80.60
Softmax 92.56 Softmax 89.13 Softmax 78.69 Softmax 91.64 Softmax 81.58
Two-Head (Semi)  93.65 Two-Head (Semi)  89.64 Two-Head (Semi)  79.57 Two-Head (Semi)  92.36 Two-Head (Semi)  80.89

Table S2: Quantitative evaluation on the five FGVR datasets using DenseNet161. Our two-head architecture with semi-hard
triplet loss regularizer compares favorably with state-of-the-art results.
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Figure S4: Comparative embedding evaluation between
single-head softmax and two-head with semi-hard triplet
loss using the penultimate layer in ResNet-50, Inception-
V4 and DenseNet161 respectively. Triplet loss semi-hard
improvements over the softmax model are reported as (A).

pairs (a, p) and their corresponding semi-hard negatives n
are identified. For a fair comparison with vanilla softmax
approach, only (b//3) random triplets (a, p,n) are utilized
for back-propagation. This process repeats for N training
iterations.

Algorithm 1 HDD training procedure. In our experiments,
b = {33,36} is the mini-batch size, Ng = 3 is the num-
ber of mini-batches, and N = 10K is number of training
iterations.

for all iteration ¢ in N do
Sg =
for all j in N do
Add a random batch, of size b, to S
end for
Compute action embeddings F for Sy
Compute pairwise distance matrix Dy using Fy
Tipi = @
Construct all positive pairs (a, p)
for all (a, p) in positive pairs do
Find nearest semi-hard negative n using D
append (a,p,n) to Ti.;
end for
if len(T%;) > b/ /3 then
Tir; =shuffle(T3,;)[0 : b/ /3]
end if
/I Ty,; contains b actions
Feed-forward T,.;
compute softmax + triplet losses and back-propagate.
end for
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