Boosting Standard Classification Architectures Through a Ranking Regularizer

Supplementary material

Ahmed Taha! Yi-Ting Chen?

1. Supplementary Material

The next subsections provide more details about our ar-
chitecture and training procedure’s technicalities. Further
quantitative evaluations on fine-grained visual recognition
(FGVR) are presented. Finally, we demonstrate the training
procedure for the Honda Research Institute Driving Dataset.

1.1. Fine-Grained Visual Recognition

Figure 2 in the main paper presents our two-head archi-
tecture. The pre-logit layer x supports the softmax loss.
Similarly, triplet loss utilizes h, where = pool(h). The
network outputs, both logits and embedding, are formulated
as follows.

logits = Wiogis * flat(z) (1)
embedding = Wy, * flat(h). 2)

Orderless pooling, like averaging, reduces h dimension-
ality but loses spatial information. For example, in
DenseNetl61, h € R7*7x2208 while x € R1IX1x2208
Thus, Wemp employs h, instead of x, to improve feature em-
bedding. Figure S1 illustrates how h provides a finer control
level while learning Weyp.

Figure S2 shows a t-SNE visualization for Flowers-102
embedding using 50 random classes, 20 samples per class.
In the main paper, the inferior performance of triplet loss
with hard-mining is associated with convergence to bad lo-
cal minima, i.e., a collapsed model (i.e.f(x) = 0) [7]. To
examine such assumption, we train a DenseNet for 400K
iterations on Stanford Dogs. This large number of itera-
tions increases the chances of a model collapse. Figure S3
presents the performance on the test split after every 50K
iterations. Triplet loss with hard-mining is evaluated with
both soft and hard margin. Soft margin applies the softplus
function In(1+ exp(e)) while hard margin uses a fixed mar-
gin m = 0.2. The triplet loss with hard-mining deteriorates
with soft margin when trained for a large number of itera-
tions. Hard-mining with hard margin is more robust. We
found similar behavior on other datasets like Stanford Cars
and Aircrafts datasets.

Table 5 in the main paper presents a quantitative anal-
ysis for the feature embedding learned by the second head

Teruhisa Misu?
'University of Maryland, College Park

Abhinav Shrivastava®’ Larry Davis'
2Honda Research Institute, USA

Figure S1: Orderless pooling reduces dimensionality but
loses features spatial information.

Figure S2: t-SNE visualization for Flowers-102 embedding
using 50 random classes, 20 samples per class. Best viewed
in color.

in our proposed architecture. Similarly, Table S1 presents
feature embedding quantitative analysis using the architec-
ture penultimate layer, i.e., layer z (Figure 2 in the main
paper). This layer is present in both our proposed two-head
and single-head (vanilla softmax) architecture. Similar to
Table 5, the triplet loss embedding is superior to the softmax
embedding. Triplet loss with hard-mining achieves the best
results on ResNet-50 but degrades on Inception-V4 trained
for 80K iterations. Center loss achieves good results with
DenseNet161 on NABirds but generally fluctuates and suf-

05 1 15 2 25 3 35 4
-10°

Number of iterations
Figure S3: Model collapse study by training DenseNet161
for 400K iterations. Triplet loss with hard-mining evaluated
with soft and hard margins.

fers with Inception-V4. Triplet loss with semi-hard margin
achieves sub-optimal embedding but maintains the highest
stability compared to center and hard-mining approaches.

Figure S4 graphically summarizes Table S1. It provides
a comparative embedding evaluation between the single-
head softmax verses the two-head with semi-hard triplet
loss using recall@ 1 metric. Triplet loss improvements, over
the softmax model, are reported as (A). The Flowers-
102 dataset has the smallest training split with 1020 im-
ages only. With this limited data, the head-two architecture
achieves marginal improvement if any.

Table S2 compares our proposed two-head architecture,
using DenseNet161, with state-of-the-art approaches on the
five FGVR datasets. Our two-head architecture with the
semi-hard triplet loss regularizer achieves competitive re-
sults.

1.2. Autonomous Car Driving

The Honda Research Institute Driving Dataset (HDD)
contains 137 sessions S. Each session .S; represents a nav-
igation task performed by a driver. S is divided into 93, 5,
and 36 sessions for training, validation and testing splits re-
spectively. Three sessions are removed for missing annota-
tions. HDD has four annotation layers to study the drivers’
actions: (1) Goal-oriented, (2) stimulus-driven, (3) cause
and (4) attention. The Goal-oriented layer, utilized in our
experiments , defines drivers’ actions to reach their destina-
tions, e.g., left-turn and intersection passing. Ramanishka
et al. [6] provides further details for the other three annota-
tion layers.

Triplet loss mini-batches require both positive and neg-
ative samples. The FGVR datasets have uniform class dis-
tribution. Thus, training batches’ construction is straight-
forward by sampling random classes and their correspond-
ing images as outlined in the main paper. On the other hand,
HDD suffers class imbalance. A different batch construc-
tion procedure is required.

Algorithm 1 outlines our training procedure. First, Np
mini-batches are constructed, each containing b random ac-
tions. The batches’ embeddings are computed using Np

by

g 80 7
=

Q

B

§ [Cln —@— Soft-margin

B —m®— Hard-margin

k= 70 - -
z

= | | | | | | |

@)

Vanilla ~ 0.791 77.88 91.17 94.65 96.9
CNTR 0.756 7798 91.12 94.58 96.78
SEMI 0.823 8141 9279 9591 97.74
HARD 0.853 8531 9430 96.82 98.07
Vanilla ~ 0.800 88.76 95.51 97.27 98.49
CNTR 0.807 88.79 9558 97.32 98.49
SEMI 0818 8948 9582 97.37 98.37
HARD 0742 90.78 9556 96.93 97.98
Vanilla 0587 51.62 7422 83.02 89.76

Cars - ResNet

Flowers - ResNet

Dogs - ResNet

Aircrafts - ResNet

Vanilla 0.669 50.70 71.20 79.48 85.80
CNTR 0.623 4740 68.18 76.56 83.33
SEMI 0.657 50.05 70.83 78.84 85.52
HARD 0.723 5585 75.81 83.26 88.67

Vanilla ~ 0.660 7247 86.77 90.55 93.55

NABirds - ResNet

Cars - Inc-V4

Vanilla ~ 0.778 90.54 96.21 97.63 98.70
CNTR 0.707 85.62 9374 95.95 97.56
SEMI 0.801 89.58 9523 9691 97.84
HARD 0.731 92.68 96.21 97.27 98.32
Vanilla 0421 41.11 6297 7259 81.13
CNTR 0.453 5713 6832 7235 76.90
SEMI 0.609 55.03 7650 84.44 90.23
HARD 0330 3389 5428 65.06 74.98
Vanilla ~ 0.680 69.79 85.18 89.23 91.93
CNTR 0.546 61.60 79.75 85.33 89.53
SEMI 0.751 78.13 89.20 91.78 94.27
HARD 0.831 8626 91.87 93.49 94.72
Vanilla ~ 0.546 41.03 60.11 68.88 76.71
CNTR 0.438 2430 4043 4938 58.78
SEMI 0.638 5242 7238 79.57 85.60
HARD 0433 2368 3895 4748 57.10

Vanilla ~ 0.813 85.08 9449 96.84 98.22
CNTR 0.787 8739 93.17 94.64 95.97
SEMI 0.875 88.57 96.08 97.66 98.71
HARD 0.892 89.44 96.38 97.86 98.76
Vanilla 0.838 9528 98.23 98.94 99.38
CNTR 0.812 9587 98.16 98.75 99.22
SEMI 0.864 9540 9839 99.09 99.46
HARD 0.865 9579 98.50 99.14 99.50
Vanilla ~ 0.544 57.06 78.72 8598 91.84

Flowers - Inc-V4

Dogs - Inc-V4

Aircrafts - Inc-V4

NABirds - Inc-V4

Cars - Dense

Flowers - Dense

Dogs - Dense

Aircrafts - Dense

Vanilla ~ 0.606 5391 73.08 80.70 86.44
CNTR 0.818 7528 86.88 90.85 93.69
SEMI 0.677 61.82 80.70 87.07 91.62
HARD 0.674 61.64 80.21 86.77 91.37

NABirds - Dense

Table S1: Detailed feature embedding quantitative anal-
ysis across the five datasets using ResNet-50, Inception-
V4 and DenseNet-161 architectures’ penultimate layer x.
Triplet with hard mining achieves superior embedding with
ResNet-50 trained for 40K iterations. Semi-hard triplet is
competitive and stable with Inception-V4 trained for 80K
iterations. Center loss suffers a high instability.

feed forward passes. The 2D matrix Dy stores the pair-
wise distance between the Np X b actions. All positive

Flowers-102 Aircrafts NABirds Cars Dogs
Method Acc Method Acc Method Acc Method Acc Method Acc
Det.+Seg. [1] 80.66 LRBP [2] 87.30 Branson et al. [9] 35.70 Liu et al. [5] 86.80 Zhang et al. [9] 80.43
Overfeat [8] 86.80 Liu et al. [4] 88.50 Van et al. [3] 75.00 Liu et al. [4] 92.00 Krause et al. [3] 80.60
Softmax 92.56 Softmax 89.13 Softmax 78.69 Softmax 91.64 Softmax 81.58
Two-Head (Semi) 93.65 Two-Head (Semi) 89.64 Two-Head (Semi) 79.57 Two-Head (Semi) 92.36 Two-Head (Semi) 80.89

Table S2: Quantitative evaluation on the five FGVR datasets using DenseNet161. Our two-head architecture with semi-hard
triplet loss regularizer compares favorably with state-of-the-art results.

ResNet-50 Evaluation

(A 0.72) ‘ ‘ ‘
- [vanilla [Semi-hard
(A 3.53)
80 |- (A 3.84) -
g
=
3
(=2
60 (A 2.56) |
ﬁ (A -0.65)
Cars Flowers Dogs Aircrafts NABirds
Inception-V4 Evaluation
I T T T
A -0.96
(£20.96) ’IZI Vanilla [Semi-hard ‘
(A 8.99)
sol (A 8.34) |
@ -
=
g 60 |- A 13.92) 8
& (& 13. (A 1139)
Cars Flowers Dogs Aircrafts NABirds
DenseNet161 Evaluation
1007 (A 0.12) ‘ :]
— [Vanilla B Semi-hard ‘
(A 3.49)
| (A 5.43)
® 80 [1
g (A 11.49)
a2
(A 7.91)
60 |- H n
Cars Flowers Dogs Aircrafts NABirds

Figure S4: Comparative embedding evaluation between
single-head softmax and two-head with semi-hard triplet
loss using the penultimate layer in ResNet-50, Inception-
V4 and DenseNet161 respectively. Triplet loss semi-hard
improvements over the softmax model are reported as (A).

pairs (a, p) and their corresponding semi-hard negatives n
are identified. For a fair comparison with vanilla softmax
approach, only (b//3) random triplets (a, p,n) are utilized
for back-propagation. This process repeats for N training
iterations.

Algorithm 1 HDD training procedure. In our experiments,
b = {33,36} is the mini-batch size, Ng = 3 is the num-
ber of mini-batches, and N = 10K is number of training
iterations.

for all iteration ¢ in N do
Sg =
for all j in N do
Add a random batch, of size b, to S
end for
Compute action embeddings F for Sy
Compute pairwise distance matrix Dy using Fy
Tipi = @
Construct all positive pairs (a, p)
for all (a, p) in positive pairs do
Find nearest semi-hard negative n using D
append (a,p,n) to Ti.;
end for
if len(T%;) > b/ /3 then
Tir; =shuffle(T3,;)[0 : b/ /3]
end if
/I Ty,; contains b actions
Feed-forward T,.;
compute softmax + triplet losses and back-propagate.
end for

References

[1] A. Angelova and S. Zhu. Efficient object detection and seg-
mentation for fine-grained recognition. In CVPR, 2013. 3

[2] S. Kong and C. Fowlkes. Low-rank bilinear pooling for fine-
grained classification. In CVPR. IEEE, 2017. 3

[3] J.Krause, B. Sapp, A. Howard, H. Zhou, A. Toshev, T. Duerig,
J. Philbin, and L. Fei-Fei. The unreasonable effectiveness of
noisy data for fine-grained recognition. In ECCV. Springer,
2016. 3

[4] T.-Y. Lin and S. Maji. Improved bilinear pooling with cnns.
arXiv preprint arXiv:1707.06772, 2017. 3

[5] M. Liu, C. Yu, H. Ling, and J. Lei. Hierarchical joint
cnn-based models for fine-grained cars recognition. In In-
ternational Conference on Cloud Computing and Security.
Springer, 2016. 3

[6] V.Ramanishka, Y.-T. Chen, T. Misu, and K. Saenko. Toward
driving scene understanding: A dataset for learning driver be-
havior and causal reasoning. In CVPR, 2018. 2

(7]

(8]

(9]

F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-
fied embedding for face recognition and clustering. In CVPR,
2015. 1

A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson.
Cnn features off-the-shelf: an astounding baseline for recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, 2014. 3

Y. Zhang, X.-S. Wei, J. Wu, J. Cai, J. Lu, V.-A. Nguyen, and
M. N. Do. Weakly supervised fine-grained categorization with
part-based image representation. /EEE Transactions on Image
Processing, 2016. 3

