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1. Quick Overview
Notice that in Fig 5 all Gatys related methods except

Gatys with mean and covariance control have quite low E
compared to the E for cross-layer methods in Fig 6. But
Gatys with mean and covariance control has different sym-
metries to Gatys (because one is controlling both mean and
covariance, rather than just the Gram matrix; the symme-
tries are like those of the cross-layer method). This suggests
it is likely that the symmetry is at least part of the reason
why some methods outperform others.

There are two possible reasons. First, the symmetry re-
sults in poor solutions being easy to find. Second, the sym-
metry causes optimization problems. Both issues appear to
be in play. Figures 5 and 6 together suggest that methods
have considerable variance in performance, which is con-
sistent with poor solutions being easy to find. But the good
performance of GAL (see Fig. 4) suggests that optimization
is an issue, too.

Symmetries can create problems for optimization meth-
ods, because symmetries must be associated with strong
gradient curvature at least some points. GAL uses a stan-
dard optimization trick to simplify the optimization prob-
lem; the success of this trick suggests that optimization of
Gatys’ loss is hard.

1.1. GAL

Gatys’ loss is a function of feature values at each layer.
One usually assumes that the feature values taken at layer
l are a known function of the feature values at layer l − 1.
Here the function is given by the appropriate convolutional
layer, etc. However, we could “cut” the network between
layers, then introduce a constraint requiring that variables
on either side of the cut be equal. We solve this constrained
problem using the augmented lagrangian method (see [4]
for this strategy applied to MRFs).

Write f lk,p for the response of the k’th channel at the p’th
location in the l’th convolutional layer; drop subscripts as
required, and write f l = φl(f l−1.,. ) for the function mapping
layer to layer. GAL cuts the layers only at R41. We have
not tried other cuts. It would be interesting to see what hap-
pened with more cuts, but the optimization problem gets

big quickly. We introduce dummy variables Vk,p, and the
constraint V = φ4(f3.,.). Write λ for lagrange multipliers
corresponding to the constraint, I for the image, and λ(i)

for the i’th estimate of those lagrange multipliers, etc.
The augmented lagrangian is now

L(I, V, λ) =
∑
l 6=4 wlL

l
style(I, Istyle)

+w4L
4
style(V, Istyle)

+Lcontent(V, Icontent)

+Laug(I, V, λ)

where wl is the style weight of each layer, Llstyle is the
style loss for layer l, and Lcontent is the content loss at R41,
and

Laug(I, V, λ) = 1
KP

∑
k,p

(
λl ∗ (Vl − φ4(f3.,.(I)))

+ρ(Vl − φ4(f3.,.(I)))2
)

In the primal step, we first optimize the lagrangian with
respect to I , using fixed V , λ using LBFGS. We then fix I ,
and optimize with respect to V (notice this involves solving
a relatively straightforward linear system). The dual step
then re-estimates the lagrange multipliers as usual:

λ
(i+1)
4 = λ

(i)
4 + ρ(i)(V

(i)
4 − f4(I(i)n )).

Finally, we update ρ by ρ(i+1) = 1.4ρ(i).
Figure 1 and Figure 2 display our 50 style images. Ex-

cept the Universal style transfer, all other methods synthe-
size image from Gaussian noise with LBFGS optimizer.
The content images and style images are resized to same
width of 512 as the input for style transfers.

1.2. Cross-layer with control of mean and covari-
ance (XLCM)

We observe that feature mean difference between Is and
Ic is directly related to the optimization performance of
style transfer, e.g. when the content image have similar
feature mean as style image the transfer image has better
style quality. Therefore we introduce the L2 loss between
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Figure 1: The first group of 50 styles.

Figure 2: The second group of 50 styles.

each feature channel’s mean of In and each feature chan-
nel’s mean of Is to enforce the transfer image has close fea-
ture mean to style image. Here is the loss for mean control.

Lmean =
∑
k

∑
p

f l(In)

P
−
∑
p

f l(Is)

P

2

On the other hand, the covariant control is to replace
cross-layer gram matrix by corresponding cross-layer gram
matrix with each feature subtracted by by its mean. Here is
the new cross-layer loss with covariant control.

Covl,mij (I) =
∑
p

[
f li,p(I)− f̄ li,p(I)

] [
↑ fmj,p(I)− ↑ f̄mj,p(I)

]T
.

2
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Here f̄ li,p(I) is the tensor duplicated in p dimension with
the mean of f li,p(I) over p.

2. Quantization of transferred images under
user study regression models

Recall in Section 4 of original text we regress base E
and C statistic to user preference. We obtain one best E-
model from E-test user preference, and one best C-model
from that of C-test. These two models assign E and C scores
for each transferred image (Sec. 4.1 of original text). Thus,
we gather a scatter plot of all transferred images, and we
quantize this scatter plot into a 3-by-3 grid, each cell has
roughly same number of images. From this grid we gener-
ate a visualization of EC space (Fig.1 in original text).

This quantization shows similar trends with Figure 4-6 in
the original text. Table 1 shows the Top 5 methods ranking
for all quantiles. In quantile of high C-score, high E-score,
GAL is the top method. XM dominates both (middle C,
middle E) and (high C, middle E), and Universal dominates
both (middle C, low E) and (high C, low E). Other high
E quantiles are dominated by cross-layer related methods.
The worst quantile(low C-score,Low E-score) has Gatys ag-
gressive as the most popular.

This difference in symmetry groups is important. Risser
argues that the symmetries of gram matrices in Gatys’
method could lead to unstable reconstructions; they con-
trol this effect using feature histograms. What causes the
effect is that the symmetry rescales features while shift-
ing the mean. For the cross-layer loss, the symmetry can-
not rescale, and cannot shift the mean. In turn, the insta-
bility identified in that paper does not apply to the cross-
layer gram matrix and our results could not be improved by
adopting a histogram loss.

Write xi, (resp yi for the feature vector at the i’th loca-
tion (of N in total) in the first (resp second) layer. Write
X T = [x1, . . . ,xN ], etc.

Symmetries of the first layer: Now assume that the first
layer has been normalized to zero mean and unit covari-
ance. There is no loss of generality, because the whiten-
ing transform can be written into the expression for the
group. Write G(W) = (1/N)WTW for the operator that
forms the within layer gram matrix. We have G(X ) = I.
Now consider an affine action on layer 1, mapping X1 to
X ∗1 = X1A+1bT ; then for this to be a symmetry, we must
have G(X ∗1 ) = AAT + bbT = I. In turn, the symmetry
group can be constructed by: choose b which does not have
unit length; factor N(I − bbT ) to obtain A(b) (for exam-
ple, by using a cholesky transformation); then any element
of the group is a pair

(
b,A(b)U

)
where U is orthonormal.

Note that factoring will fail for b a unit vector, whence the
restriction.

The second layer: We will assume that the map be-

tween layers of features is linear. This assumption is not
true in practice, but major differences between symmetries
observed under these conditions likely result in differences
when the map is linear. We can analyze for two cases: first,
all units in the map observe only one input feature vector
(i.e. 1x1 convolutions; the point sample case); second, spa-
tial homogeneity in the layers.

The point sample case: Assume that every unit in the
map observes only one input feature from the previous layer
(1x1 convolutions). We have Y = XM + 1nT , because
the map between layers is linear. Now consider the effect
on the second layer. We have G(Y) = MMT + nnT .
Choose some symmetry group element for the first layer,
(b,A). The gram matrix for the second layer becomes
G(Y∗), where Y∗ = (XA + 1bT )MT + 1nT . Recalling
that AAT + bbT = I and X T1 = 0, we have

G(Y∗) =MMT + nnT + nbTMT +MbnT

so that G(X ∗2 ) = G(X2) ifMb = 0. This is relatively easy
to achieve with b 6= 0.

Spatial homogeneity: Now assume the map between
layers has convolutions with maximum support r×r. Write
u for an index that runs over the whole feature map, and
ψ(xu) for a stacking operator that scans the convolutional
support in fixed order and stacks the resulting features. For
example, given a 3x3 convolution and indexing in 2D, we
might have

ψ(x22) =


x11

x12

. . .
x33


In this case, there is someM, n so that yu =Mψ(xu)+

n. We ignore the effects of edges to simplify notation
(though this argument may go through if edges are taken
into account). Then there is someM, n so we can write

G(Y) = (1/N)
∑
u

Mψ(xu)ψ(xu)TMT + nnT

Now assume further that layer 1 has the following (quite
restrictive) spatial homogeneity property: for pairs of fea-
ture vectors within the layer xi,j , xi+δ,j+δ with | δ |≤
r (ie within a convolution window of one another), we
have E

[
xi,jxi+δ,j+δ

]
= I. This assumption is consistent

with image autocorrelation functions (which fall off fairly
slowly), but is still strong. Write φ for an operator that
stacks r × r copies of its argument as appropriate, so

φ(I) =

 I . . . I
. . . . . . . . .
I . . . I

 .

Then G(Y) = Mφ(I)MT + nnT . If there is
some affine action on layer 1, we have G(Y∗) =

3
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(low C-score, high E-score)
Cross-layer,aggressive:24.06%,
XLCM:20.92%,
XLC:11.92%,
XL:11.30%,
GatysCM:9.21%

(middle C-score, high E-score)
XLC:14.56%,
Cross-layer,aggressive:13.60%,
XLCM:13.41%,
XL:13.22%,
GAL:10.15%

(high C-score, high E-score)
GAL:25.56%,
XM:15.04%,
XL:10.53%,
GatysL:8.52%,
GatysCM:6.77%

(low C-score, middle E-score)
GatysCM:15.29%,
GatysC:12.86%,
Cross-layer, aggressive:11.65%,
GatysL:11.65%,
XLCM:8.50%

(middle C-score, middle E-score)
XM:11.69%,
GatysM:11.49%,
GatysL:10.69%,
GatysH:10.08%,
GatysC:8.87%

(high C-score, middle E-score)
XM:15.45%,
GatysH:14.02%,
Gatys:13.41%,
GAL:13.01%,
GatysM:11.18%

(low C-score, low E-score)
Gatys aggressive:23.97%,
GatysC:12.57%,
XLC:10.02%,
GatysCM:8.84%,
GatysM:7.47%

(middle C-score, low E-score)
Universal:12.83%,
GatysH:10.73%,
Gatys aggressive:10.47%,
GatysM:10.21%,
Gatys:9.69%

(high C-score, low E-score)
Universal:45.28%,
Gatys:15.75%,
GatysH:7.87%,
GatysM:6.69%,
GatysL:4.53%

GatysH – Gatys, with histogram loss
GatysL – Gatys, with layerwise style weights
GatysM – Gatys, with mean control
GatysC – Gatys, with covariance control
GatysCM – Gatys, with mean and covariance control
XL – Cross-layer
XM – Cross-layer, multiplicative
XLC – Cross-layer, with control of covariance
XLCM – Cross-layer, with control of mean and covariance
GAL – Gatys, augmented Lagrangian method
Universal – Universal Style Transfer

Table 1: Top 5 methods ranking for each quantile under regression scores coordinate generated by selected E-model and
C-model. Each transferred image has five E-statistic and one C-statistic, they are used to regress user preference in E-test and
C-test (Sec. 4.1 in original text). Selected E and C models regress scores (higher is better) for each transferred image. We
divide the scatter into 3-by-3 quantiles, and show method distribution for each quantile.

M
(
ψ(A)φ(I)ψ(AT ) + ψ(b)ψ(bT )

)
MT + nnT , where

we have overloaded ψ in the natural way. Now ifMψ(b) =
0 and AAT + bbT = I, G(Y∗) = G(Y).

The cross-layer gram matrix: Symmetries of the cross-
layer gram matrix are very different. Write G(X ,Y) =
(1/N)X TY for the cross layer gram matrix.

Cross-layer, point sample case: Here (recalling
X T1 = 0)we have G(X ,Y) = MT . Now choose some
symmetry group element for the first layer, (A,b). The
cross-layer gram matrix becomes

G(X ∗,Y∗) = (1/N)(AX T + b1T )
[
(XAT + 1bT )MT + 1nT

]
= MT + bnT

(recalling that AAT + bbT = I and X T1 = 0). But this

means that the symmetry requires b = 0; in turn, we must
have AAT = I.

Cross-layer, homogeneous case: We have

G(X ,Y) = (1/N)
∑
u

xu

[
ψ(xu)TMT + nT

]
=MT .

Now choose some symmetry group element for the first
layer, (A,b). The cross-layer gram matrix becomes

G(X ∗,Y∗) = (1/N)
∑
u

{
(Axu + b)

+

[(
ψ(xu)Tψ(AT ) + ψ(b)

)
MT + nT

]}
= MT + bnT
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(recalling the spatial homogeneity assumption, that
AAT + bbT = I and X T1 1 = 0). But this means that the
symmetry requires b = 0; in turn, we must haveAAT = I.

3. Construction of Affine Maps for Symmetry
Groups

This difference in symmetry groups is important. Risser
argues that the symmetries of gram matrices in Gatys’
method could lead to unstable reconstructions; they con-
trol this effect using feature histograms. What causes the
effect is that the symmetry rescales features while shift-
ing the mean. For the cross-layer loss, the symmetry can-
not rescale, and cannot shift the mean. In turn, the insta-
bility identified in that paper does not apply to the cross-
layer gram matrix and our results could not be improved by
adopting a histogram loss.

Write xi, (resp yi for the feature vector at the i’th loca-
tion (of N in total) in the first (resp second) layer. Write
X T = [x1, . . . ,xN ], etc.

Symmetries of the first layer: Now assume that the first
layer has been normalized to zero mean and unit covari-
ance. There is no loss of generality, because the whiten-
ing transform can be written into the expression for the
group. Write G(W) = (1/N)WTW for the operator that
forms the within layer gram matrix. We have G(X ) = I.
Now consider an affine action on layer 1, mapping X1 to
X ∗1 = X1A+1bT ; then for this to be a symmetry, we must
have G(X ∗1 ) = AAT + bbT = I. In turn, the symmetry
group can be constructed by: choose b which does not have
unit length; factor N(I − bbT ) to obtain A(b) (for exam-
ple, by using a cholesky transformation); then any element
of the group is a pair

(
b,A(b)U

)
where U is orthonormal.

Note that factoring will fail for b a unit vector, whence the
restriction.

The second layer: We will assume that the map be-
tween layers of features is linear. This assumption is not
true in practice, but major differences between symmetries
observed under these conditions likely result in differences
when the map is linear. We can analyze for two cases: first,
all units in the map observe only one input feature vector
(i.e. 1x1 convolutions; the point sample case); second, spa-
tial homogeneity in the layers.

The point sample case: Assume that every unit in the
map observes only one input feature from the previous layer
(1x1 convolutions). We have Y = XM + 1nT , because
the map between layers is linear. Now consider the effect
on the second layer. We have G(Y) = MMT + nnT .
Choose some symmetry group element for the first layer,
(b,A). The gram matrix for the second layer becomes
G(Y∗), where Y∗ = (XA + 1bT )MT + 1nT . Recalling
that AAT + bbT = I and X T1 = 0, we have

G(Y∗) =MMT + nnT + nbTMT +MbnT

so that G(X ∗2 ) = G(X2) ifMb = 0. This is relatively easy
to achieve with b 6= 0.

Spatial homogeneity: Now assume the map between
layers has convolutions with maximum support r×r. Write
u for an index that runs over the whole feature map, and
ψ(xu) for a stacking operator that scans the convolutional
support in fixed order and stacks the resulting features. For
example, given a 3x3 convolution and indexing in 2D, we
might have

ψ(x22) =


x11

x12

. . .
x33


In this case, there is someM, n so that yu =Mψ(xu)+

n. We ignore the effects of edges to simplify notation
(though this argument may go through if edges are taken
into account). Then there is someM, n so we can write

G(Y) = (1/N)
∑
u

Mψ(xu)ψ(xu)TMT + nnT

Now assume further that layer 1 has the following (quite
restrictive) spatial homogeneity property: for pairs of fea-
ture vectors within the layer xi,j , xi+δ,j+δ with | δ |≤
r (ie within a convolution window of one another), we
have E

[
xi,jxi+δ,j+δ

]
= I. This assumption is consistent

with image autocorrelation functions (which fall off fairly
slowly), but is still strong. Write φ for an operator that
stacks r × r copies of its argument as appropriate, so

φ(I) =

 I . . . I
. . . . . . . . .
I . . . I

 .

Then G(Y) = Mφ(I)MT + nnT . If there is
some affine action on layer 1, we have G(Y∗) =
M
(
ψ(A)φ(I)ψ(AT ) + ψ(b)ψ(bT )

)
MT + nnT , where

we have overloaded ψ in the natural way. Now ifMψ(b) =
0 and AAT + bbT = I, G(Y∗) = G(Y).

The cross-layer gram matrix: Symmetries of the cross-
layer gram matrix are very different. Write G(X ,Y) =
(1/N)X TY for the cross layer gram matrix.

Cross-layer, point sample case: Here (recalling
X T1 = 0)we have G(X ,Y) = MT . Now choose some
symmetry group element for the first layer, (A,b). The
cross-layer gram matrix becomes

G(X ∗,Y∗) = (1/N)(AX T + b1T )
[
(XAT + 1bT )MT + 1nT

]
= MT + bnT

(recalling that AAT + bbT = I and X T1 = 0). But this
means that the symmetry requires b = 0; in turn, we must
have AAT = I.
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Cross-layer, homogeneous case: We have

G(X ,Y) = (1/N)
∑
u

xu

[
ψ(xu)TMT + nT

]
=MT .

Now choose some symmetry group element for the first
layer, (A,b). The cross-layer gram matrix becomes

G(X ∗,Y∗) = (1/N)
∑
u

{
(Axu + b)

+

[(
ψ(xu)Tψ(AT ) + ψ(b)

)
MT + nT

]}
= MT + bnT

(recalling the spatial homogeneity assumption, that
AAT + bbT = I and X T1 1 = 0). But this means that the
symmetry requires b = 0; in turn, we must haveAAT = I.

6


