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1. Training Details
To start our adversarial domain-invariant learning

(ADIN), we initialize fE , fI and fN with pretrained weights.
We first jointly pretrain the feature extractor fE and identity
classifier fI , and pretrain fN by fixing fE . In ADIN we
alternative between optimizing two sub-problems:

min
fE ,fN

Ladv(fN (fE(X))), min
fE ,fI

LI(fI(fE(X)), YI). (1)

In each alternating round, we optimize the first objective
until the validation error of identity classification reducing
below a pre-set thresholdI−target. We then switch to op-
timizing the second objective, meanwhile monitoring the
resulting changes on the identity classification validation
error (since fE is updated): if it drops below another pre-set
thresholdI−trigger, we will switch back to the first object
and start the next round of alternations.

Besides, to meet the “hidden constraint” and avoid too
weak fN during training, we will periodically replace the
current weights in fI and fN with random weights, and
re-train them on fE(X) by:

min
fN

LN (fN (fE(X)), YI),min
fI

LI(fI(fE(X)), YI). (2)

with fE being unaffected and fixed. We then re-start al-
ternations from the new “pre-trained” initialization. This
empirical trick is found to strengthen the generalization of
fE , potentially because it gets rid of some trivial local min-
ima. The training procedure is summarized in Algorithm
1.

2. Network Structure of Dual-branch Back-
bone

For our dual-branch backbone, the first four blocks share
the same design as in ResNet50. After the forth block, the
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Figure 1: Overview of the dual-branch backbone.

network was split into a global and a local branch. In the
global branch, the feature passes a global average-pooling
and then is fed into the classifier. In the local branch, feature
is horizontally partitioned into two equal parts, where each
part adopts a separate global average-pooling layer and clas-
sifier. During inference the outputs from two branches are
concatenated together as the final feature for image retrieval.

3. Additional Experiment Results
3.1. Ablation study of the adversarial loss Ladv

Table 1 displays a full step-by-step comparison for dif-
ferent adversarial loss Ladv, together with state-of-the-art
ReID models and domain adaptation methods. We use the
direct transfer performance from DukeMTMC-ReID (source
domain) to Market1501 (target domain) as the indicator.

Compared with the baseline and Reverse Gradient, our
proposed calibrated negative loss (CaNE) contributes to both
stable adversarial training (robustness against gradient van-
ishing/explosion and classifier’s loss magnitude), and CaNE



Algorithm 1 The training strategy of ADIN
1: Given pre-trained feature extractor fE , identity classifier fI and nuisances classifier fN
2: valI , valN ← identity classifier validation accuracy, nuisances classifier validation accuracy.
3: for number of training epoches do
4: if valI < thresholdI−trigger then . Avoid weak identity recognition performance
5: while valI ≤ thresholdI−target do
6: for number of batches do
7: Sample minibatch of m examples {X1, ..., Xm}
8: Jointly update the fE and the fI by descending its stochastic gradient with loss LI

9: end for
10: valI ← identity classifier validation accuracy.
11: end while
12: else if valN > thresholdN then . Suppress nuisance discriminator performance
13: Feed all training examples {X1, ..., Xn} into the model
14: Jointly update fE and fN by descending its gradient with the adversarial loss Ladv

15: else . Further boost identity recognition performance
16: for number of batches do
17: Sample minibatch of m examples {X1, ..., Xm}
18: Jointly update fE and fI by descending its stochastic gradient with loss LI

19: end for
20: end if
21: Re-initialize fI , fN . Empirically restart fI fN every iteration to avoid overfitting extracted features
22: Train fI , fN by descending its stochastic gradient with classification loss LI , fN correspondingly
23: valI , valN ← identity classifier validation accuracy, nuisances classifier validation accuracy.
24: end for

Table 1: Ablation study of adversarial loss: single-dataset per-
formance on DukeMTMC-ReID [1, 2] and direct transfer of
DukeMTMC-ReID → Market1501 [3]. * indicates method us-
ing images from both source and target domain.

DukeMTMC-ReID DukeMTMC-ReID→Market1501

top1 top5 top10 mAP top1 top5 top10 mAP

Spatial-Attention[4] 83.6 91.8 94.3 70.1 49.8 67.4 73.8 24.2
PCB[5] 84.2 91.7 93.4 69.7 53.9 70.5 76.8 26.5
RPP[5] 84.1 92.5 94.3 71.3 53.1 71.3 76.6 25.7

MGN[6] 55.5 70.2 76.8 35.1 48.7 66.9 73.7 25.1

CycleGAN [7] * - - - - 48.1 66.2 72.7 20.7
SPGAN [7] * - - - - 58.1 76.0 82.7 26.9

HHL [8] * - - - - 62.2 78.8 84.0 31.4

ResNet50 (baseline) 76.6 88.0 91.5 58.1 46.8 63.5 70.3 19.0
ResNet50 + Reverse Gradient Unable to converge

ResNet50 + NE 76.7 87.9 91.2 57.5 48.8 66.2 72.7 20.4
ResNet50 + CaNE 74.8 86.0 89.1 54.9 51.7 68.6 76.0 22.1

Dual-branch 82.1 91.3 93.0 66.8 54.8 71.7 77.6 25.9
Dual-branch + Reverse Gradient Unable to converge

Dual-branch + NE 81.8 90.8 93.3 66.4 55.9 72.5 78.6 26.5
Dual-branch + CaNE 80.7 90.0 91.9 63.8 57.2 73.0 80.0 27.4

is also attentive adversarial effects w.r.t. different nuisances
frequencies (attention to sampling imbalance in nuisances),
outperforming the negative entropy (NE) loss. Our ADIN
framework with CaNE loss not only improve the general-
izability of basic backbones like ResNet50, but also boosts
more powerful ones like Dual-branch, indicating that ADIN
is a general effective adversarial learning framework towards
generalizability. Impressively, the Dual-branch backbone
equipped with ADIN and CaNE outperforms even domain
adaptation methods (HHL [8], SPGAN [7]), where extra
target source images and fine-tuning/retraining are required
but not in our case. We observed that the ADIN causes a bit
decrease in single-dataset accuracy. This is because models

with our adversarial training no longer overfitting current
small-scale dataset.

3.2. Single-dataset and Direct Transfer Perfor-
mance without Retraining or Adaption

Here we include the full detailed results. We evaluate
three direct transfer cases, two on person ReID: MSMT17
→ DukeMTMC-ReID, MSMT-17 → Market1501; and one
on vehicle ReID: VeRi-776 [10] → VehicleID[11]. As com-
parison baselines, we train the same dual-branch backbones
(without any adversarial learning) on the source datasets,
and test their direct transfer performance too. We further
compare with existing strong competitors: one person ReID,
a CycleGAN baseline as adopted by [7] for learning an
unsupervised data-level domain mapping, two state-of-the-
art domain adaptation methods SPGAN [7] and HHL [8],
the latter reporting the current best transfer results between
DukeMTMC-ReID and Market1501; on vehicle ReID the
DAVR [13] which reported the current best transfer results
from VeRi-776 [10] to VehicleID [11]. Note that Cycle-
GAN, SPGAN and HHL all need to use (unlabeled) tar-
get domain data and perform extra (re-)training for the
source domain models: the comparisons are thus apparently
to our competitors’ advantage.

As can be seen from Tables 2 and 3, while baselines
without adversarial learning fail to transfer well as expected,
ADIN demonstrates highly impressive results on all three
transfer cases. In particular, by training on MSMT17 and



Table 2: Single-dataset performance on MSMT17 [9] and direct transfer of MSMT17→ DukeMTMC-ReID and MSMT17→Market1501.
* indicates method using images from both source and target domain.

MSMT17 MSMT17→ DukeMTMC-ReID MSMT17→Market1501

top1 top5 top10 mAP top1 top5 top10 mAP top1 top5 top10 mAP

Spatial-Attention[4] 68.7 81.5 85.7 41.8 52.2 68.1 74.1 32.9 49.7 68.9 75.5 25.1
PCB[5] 68.6 81.3 85.8 41.8 54.4 69.6 75.4 34.6 52.7 71.3 77.5 26.7
RPP[5] 73.1 84.5 88.1 46.4 56.7 71.4 76.8 36.7 50.2 70.7 77.5 26.3

MGN[6] 71.7 83.3 87.1 45.7 55.5 70.2 76.8 35.1 48.7 66.9 73.7 25.1

CycleGAN [7] * - - - - 48.1 66.2 72.7 20.7 38.5 54.6 60.8 19.9
SPGAN [7] * - - - - 58.1 76.0 82.7 26.9 46.9 62.6 68.5 26.4

HHL [8] * - - - - 62.2 78.8 84.0 31.4 46.9 61.0 66.7 27.2

ResNet50 (baseline) 63.2 76.7 81.6 31.9 49.7 65.7 71.0 28.2 47.7 64.3 71.5 21.2
ResNet50 + CaNE 62.7 76.5 81.0 30.8 52.6 67.9 73.2 30.4 50.1 66.4 73.5 22.5

Dual-branch 73.5 84.3 88.1 45.1 59.5 73.5 78.8 38.4 57.8 73.9 80.6 29.4
Dual-branch + CaNE 73.3 84.5 87.8 43.0 60.7 74.7 79.5 39.1 59.1 75.4 81.7 30.3

Table 3: Direct transfer performance between VeRi-776 [10] and VehicleID[11]. * indicates method using images from both source and
target domain.

Method Test size = 800 Test size = 1600 Test size = 2400 Test size = 3200

top1 top5 top10 mAP top1 top5 top10 mAP top1 top5 top10 mAP top1 top5 top10 mAP

RAM[12] 34.0 53.7 61.9 43.3 30.5 49.5 56.4 39.5 26.6 43.1 51.1 34.8 24.5 40.3 48.2 32.4
Spatial-Attention[4] 42.4 61.1 69.3 51.5 39.5 57.2 64.2 47.9 36.0 52.7 60.2 44.2 33.7 49.6 56.9 41.6
PCB[5] 43.7 63.1 70.8 53.0 41.3 58.8 65.2 49.7 37.5 53.9 61.5 45.6 35.4 51.4 58.3 43.2
RPP[5] 44.5 63.1 70.1 53.2 40.6 58.4 65.2 49.1 37.0 54.1 61.8 45.3 35.0 51.1 58.4 42.9
MGN[6] 44.6 70.5 79.7 56.5 39.9 62.4 72.3 50.6 36.2 58.1 68.0 46.6 32.7 53.1 63.0 42.7

DAVR[13]* 49.5 68.7 – 54.0 45.2 64.0 – 49.7 40.7 59.0 – 45.2 38.7 55.9 – 42.9

ResNet50 (baseline) 44.7 62.5 69.0 48.9 42.3 58.5 64.5 46.2 38.1 54.8 61.7 42.1 36.1 52.2 58.9 39.9
ResNet50 + CaNE 46.0 63.6 69.9 50.2 43.3 59.7 65.6 47.2 38.8 56.0 63.1 42.9 37.0 53.4 60.0 40.9
Dual-branch 51.2 70.3 77.8 55.7 47.3 65.3 72.2 51.6 44.2 62.1 69.7 48.4 41.2 57.9 64.9 45.3
Dual-branch + CaNE 52.9 72.1 79.4 57.4 48.7 67.3 74.0 53.1 45.0 64.0 71.3 49.5 42.1 59.5 66.6 46.3

Table 4: Single-dataset performance on VeRi-776 [10].
VeRI-776 � VeRi-776

top1 top5 top10 mAP

MAA[14] 88.0 94.6 - 58.1
QD-DLF[15] 88.5 94.5 - 61.8

RAM[12] 88.6 94.0 - 61.5
GAN+LSRO[16] 87.7 93.9 - 58.2

BS[17] 90.2 96.4 - 67.6
Spatial-Attention[4] 93.4 96.8 98.2 70.5

PCB[5] 92.4 96.7 98.3 69.4
RPP[5] 93.5 96.9 97.9 69.7

MGN[6] 94.9 97.0 97.5 78.7

ResNet50 (baseline) 91.1 95.5 97.3 60.2
ResNet50 + CaNE 90.7 95.41 96.9 59.5

Dual-branch (baseline) 95.0 97.9 98.9 73.5
Dual-branch + CaNE 93.1 96.5 97.9 69.4

directly transferring, ADIN not only surpasses the direct
transfer results from other methods but also outperforms
state-of-the-art ReID domain adaption models (HHL [8],
SPGAN[7], DAVR [13]) , while costing literally no hassle
such as (re-)training.

However, in contrast to our ADIN, we find other (single-
dataset) top-performers generalize very poorly to unseen
domains, indicating the misaligned goal between overfitting
small-scale single dataset and generalizing to large-scale
unseen scenarios in real life. We believe the effective di-
rect transfer is the right choice for evaluating and promoting
larger-scale ReID practice, and hope our proposals and ar-

guments could invoke more discussions in the community.
Again, we observed that the ADIN causes a bit decrease in
single-dataset accuracy, since models with our adversarial
training no longer overfitting current small-scale dataset.
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