Determining Motion Directly from Normal Flows Upon the Use of a Spherical Eye Platform
Tak-Wai Hui, Ronald Chung; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 2267-2274
Abstract
We address the problem of recovering camera motion from video data, which does not require the establishment of feature correspondences or computation of optical flows but from normal flows directly. We have designed an imaging system that has a wide field of view by fixating a number of cameras together to form an approximate spherical eye. With a substantially widened visual field, we discover that estimating the directions of translation and rotation components of the motion separately are possible and particularly efficient. In addition, the inherent ambiguities between translation and rotation also disappear. Magnitude of rotation is recovered subsequently. Experimental results on synthetic and real image data are provided. The results show that not only the accuracy of motion estimation is comparable to those of the state-of-the-art methods that require explicit feature correspondences or optical flows, but also a faster computation time.
Related Material
[pdf]
[
bibtex]
@InProceedings{Hui_2013_CVPR,
author = {Hui, Tak-Wai and Chung, Ronald},
title = {Determining Motion Directly from Normal Flows Upon the Use of a Spherical Eye Platform},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2013}
}