Detecting Changes in 3D Structure of a Scene from Multi-view Images Captured by a Vehicle-Mounted Camera
Ken Sakurada, Takayuki Okatani, Koichiro Deguchi; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 137-144
Abstract
This paper proposes a method for detecting temporal changes of the three-dimensional structure of an outdoor scene from its multi-view images captured at two separate times. For the images, we consider those captured by a camera mounted on a vehicle running in a city street. The method estimates scene structures probabilistically, not deterministically, and based on their estimates, it evaluates the probability of structural changes in the scene, where the inputs are the similarity of the local image patches among the multi-view images. The aim of the probabilistic treatment is to maximize the accuracy of change detection, behind which there is our conjecture that although it is difficult to estimate the scene structures deterministically, it should be easier to detect their changes. The proposed method is compared with the methods that use multi-view stereo (MVS) to reconstruct the scene structures of the two time points and then differentiate them to detect changes. The experimental results show that the proposed method outperforms such MVS-based methods.
Related Material
[pdf]
[
bibtex]
@InProceedings{Sakurada_2013_CVPR,
author = {Sakurada, Ken and Okatani, Takayuki and Deguchi, Koichiro},
title = {Detecting Changes in 3D Structure of a Scene from Multi-view Images Captured by a Vehicle-Mounted Camera},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2013}
}