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Abstract

We propose a detection and segmentation algorithm for
the purposes of fine-grained recognition. The algorithm
first detects low-level regions that could potentially belong
to the object and then performs a full-object segmentation
through propagation. Apart from segmenting the object, we
can also ‘zoom in’ on the object, i.e. center it, normalize it
for scale, and thus discount the effects of the background.
We then show that combining this with a state-of-the-art
classification algorithm leads to significant improvements
in performance especially for datasets which are consid-
ered particularly hard for recognition, e.g. birds species.

The proposed algorithm is much more efficient than
other known methods in similar scenarios [4, 21]. Our
method is also simpler and we apply it here to different
classes of objects, e.g. birds, flowers, cats and dogs.

We tested the algorithm on a number of benchmark
datasets for fine-grained categorization. It outperforms
all the known state-of-the-art methods on these datasets,
sometimes by as much as 11%. It improves the perfor-
mance of our baseline algorithm by 3-4%, consistently on
all datasets. We also observed more than a 4% improvement
in the recognition performance on a challenging large-
scale flower dataset, containing 578 species of flowers and
250,000 images.

1. Introduction
This paper addresses the problem of classifying objects

that belong to the same basic level category, e.g. species of

birds, flowers, etc. This task is often referred to as fine-

grained recognition [8, 26] and requires expert, domain-

specific knowledge, which very few people generally have.

Therefore, developing automated recognition systems for

such tasks is of much benefit to non-experts.

The main challenge of fine-grained classification is un-

doubtedly the very fine differences between species. How-

ever, an automatic system will encounter additional chal-

lenges. For example, images are taken in natural settings

with rich and challenging backgrounds, where the back-

ground features may become prominent and serve as dis-

tractors to the recognition algorithm. While the background

may be useful, e.g. the leaves of the flowers provide infor-

mative context, for other super-categories, e.g. birds who

are mobile, different classes often share the same back-

ground, so segmenting out the background will be benefi-

cial. Segmentation is also helpful to extract the contours of

the object of interest, which can provide good features for

recognition. Another benefit of a detection and segmenta-

tion algorithm is that it can localize the object, which will be

beneficial, especially if the object is not in the center of the

image or is of size, different from the other objects’ sizes.

In this paper we propose an efficient object detection and

segmentation algorithm which is effectively used to localize

the object and normalize it for scale (Figure 1). Our method

segments the possible object of interest before trying to rec-

ognize it, is much faster than previous counterparts, is ap-

plicable to a variety of different super-categories, e.g. birds,

flowers, and cats and dogs, and improves the recognition

performance for fine-grained classification tasks.

Our approach is based on identifying regions, specific

of the categories of interest, at the time of detection. Here

the idea is to create feature-based rudimentary detections

for the super-class of objects, e.g. birds. These detections

are good indicators of the presence of the object and can

help point to the possible location of the object. We further

apply a Laplacian-based propagation [28] which segments

the full object based on low level cues. The key here is

that the propagation process is guided by the initially de-

tected regions, but at the same time is capable of preserv-

ing object boundaries and thus effectively segments the full

object. Furthermore, the obtained segmentation is used to

localize the object, normalize it for scale and discount the

effects of the background. This is quite beneficial for the

final recognition, as shown in our experiments.

The key contributions of this paper are:

- We propose a region-guided detection and segmenta-

tion of the object. Apart from providing the object con-

tours, it is beneficial because we can then re-normalize all
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Figure 1. The main idea of this paper is to detect potential object regions and then do a full-object segmentation. This allows the subsequent

classification algorithm to ’zoom in’ on the object, i.e. re-normalize it to be in the center and take up the whole image. This is particularly

beneficial when the object takes a small area of the image, is not in the center, or when the background is shared among different classes (as

is the trees background for birds or indoors environment for cats and dogs). The figure shows segmentations produced by our algorithm.

objects to be in the center and take up the whole image, and

thus make it comparable to other objects. We combine the

feature extracted from the segmented image with a state-

of-the-art recognition algorithm and obtain an efficient and

reliable recognition pipeline which leads to large improve-

ments in performance.

- We use Laplacian propagation [28] but solve it with

fast convergence, which contributes to significant decrease

of the run-time for segmentation: 2.5s compared to more

than 30s of previous methods [3, 20]. This is of huge impor-

tance since segmentation can now be run as part of standard

recognition pipelines. Furthermore, the proposed method is

simpler and is applicable to variety of datasets, unlike pre-

vious works, with the exception of [3], whose methods are

designed for specific set of categories e.g. either flowers, or

birds, or cats and dogs [8, 17, 20].

We conducted experiments on the well established fine-

grained classification datasets: Oxford flower dataset, con-

taining 102 species of flowers [17], the Oxford cats and

dogs dataset, containing 37 species of cats and dogs [20],

and the Caltech-UCSD-200 birds dataset, containing 200

species of birds [26]. These datasets are very challenging,

especially the latter one, as the birds can be encountered in

different resolutions with a lot of possible background and

object texture variability. The Oxford Cat and Dog dataset

additionally contains many pose variations and deforma-

tions of the objects of interest. The proposed algorithm out-

performed the best known methods in the literature for all

three datasets and improves the performance of our baseline

algorithm by 3-4%.

Furthermore, our team has collected a large-scale flower

dataset which contains 578 different species of flowers and

about 250,000 images (Figure 2). This dataset is the largest

fine-grained dataset to date. Apart from the significantly

larger scale of this dataset, the recognition task is very chal-

lenging, because the images exhibit considerable intra-class

variabilities, inter-class similarities, scale variations, etc

(Figure 2). We tested the proposed algorithm on this 578-

class dataset and observed 4.41% improvement in recogni-

tion performance compared to the baseline algorithm.

2. Previous work

Fine-grained recognition is a topic of large practical im-

portance and many recent works have addressed such tasks

including recognition of flowers [17], birds [2, 8, 26], cats

and dogs [19, 20], tree-leaves [15].

Segmentation has played an important role in object

recognition with many algorithms available [1, 4, 21]. In

another body of works, called co-segmentation [3, 13], bet-

ter models are trained by exploiting shared appearance fea-

tures in images containing the same class of objects. These

approaches are either too slow or are targeted for segmenta-

tion during training.

Recent works have proposed object segmentation for the

purposes of better classification. In [5, 19] the authors pro-

pose to detect some specific part of the object, e.g. a cat’s

head, and then segment the object by extrapolating from the

textures and colors observed. Another work, again on cat

and dog categorization [20], proposes to do segmentation

prior to recognition. This work used the famous GrabCut

algorithm [21] whose running time is slow for online appli-

cations. Our work falls most closely in this category.

Segmentation has also been popular as an initial step for

object detection [10] or scene interpretation [11]. Those

methods typically work with small coherent regions on the

image (called super-pixels) and feed the low-level segmen-

tations to object detection pipelines [10]. Although those

methods have provided many insights and useful tools for

recognition [10], they have stopped short of providing effi-

cient algorithms for full-object segmentation for either ob-

ject recognition or detection.
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Figure 2. Example images from each class of the large-scale 578

flower dataset.

Other related work, although not doing segmentation per

se, has proposed to first localize the potential object region

and utilize this information during recognition [14, 22, 23].

3. Object detection and segmentation
This section describes how to detect and segment the ob-

ject, or objects, in an image. As a first step, a set of rudimen-

tary region-based detection of parts of the object are done

(Section 3.1). Then, using those regions as initialization,

the Laplacian propagation method, presented in Section 3.2,

is applied. Finally, the segmented image (which contains

the detected and segmented object, possibly cropped and

resized) and input image are processed through the feature

extraction and classification pipeline (Section 4) and the fi-

nal classification is obtained.

3.1. Detecting object-specific regions

We start our method with an initial search for regions

possibly belonging to an object from the super-class. For

simplicity we use the super-pixel segmentation method by

Felzenszwalb and Huttenlocher [9] to over-segment the im-

age into small coherent regions. Each super-pixel region

is described by the following set of feature descriptors [3]:

average color (R,G,B) of all the pixels within the region,

global pooling of all HOG features [6] in the region, after

encoding them by the LLC method [25], shape mask of the

region obtained by normalizing the region’s area bounding

box to 6x6 pixels, and size and boundary features as in [3].

We use here the encoded HOG features, instead of SIFT

features of [3], because we believe they have better general-

ization capabilities and because in our classification method

(Section 4) these features are already precomputed in the

image and can be reused.

Using the features above, we train a classification model

to decide if a region belongs to a super-class (e.g. all flow-

ers) or the background. Using ground truth segmentation of

training images, we consider super-pixel regions with large

overlap with the foreground and background ground truth

areas, as positive and negative examples, respectively. Then

a linear SVM classifier [7] is trained. When no ground truth

is available, we start from an approximate segmentation and

iteratively improve the segmentation by applying the trained

model. That is, each model is used to segment the train-

ing images anew; the newly segmented images are used as

‘ground truth’ for building an improved model, and so on.

This procedure is standard in other segmentation works [3].

The birds and cats and dogs dataset have ground truth seg-

mentation provided, so we built a single model. For the

Oxford 102 flowers dataset we used the segmentation im-

ages in [17] as seed an improved it iteratively. The training

of the model is done offline.

An advantage of this model is that it is general and can be

trained on different types of datasets and is not specialized

to characteristics of one super-class. As shown later in our

experiments, we have the same algorithms for both training

of the model and detection for flowers, birds, cats and dogs.

3.2. Full-object segmentation

3.2.1 Setup

Let Ij denote the j-th pixel in an image and fj denotes its

feature representation. The goal of the segmentation task

is to find the label Xj for each pixel Ij , where Xj = 1
when the pixel belongs to the object and Xj = 0, otherwise.

For the optimization we relax the requirement on Xj and

allow them to be real-valued. We form the affinity matrix

W , using the feature representations fi of each pixel.

Wij = exp

(
−|fi − fj |2

2σ2

)
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The terms Wij are nonzero for only neighbouring pixels,

e.g. in our case we use the 8-connected component neigh-

borhood for each pixel. Additionally, we set Wii = 0. Here

we set fi to be the (R,G,B) color values of the pixel, mostly

motivated by speed of computation, but other choices are

possible too.

The goal is to minimize the cost function C(X) with

respect to all pixel labels X:

C(X) =

N∑
i,j=1

Wij

∣∣∣∣∣
Xi√
Dii

− Xj√
Djj

∣∣∣∣∣
2

+
N∑
i=1

λ |Xi − Yi|2

where Dii =
∑N

j=1 Wij and Y are the desired labels for

some (or all) the pixels. Those label constraints can be

very useful to impose prior knowledge of what is an object

and background (we use the SVM margins produced by the

model from Section 3.1). This is a standard Laplacian la-

bel propagation formulation [28], and the equation above is

often written in an equivalent and more convenient form:

C(X) = XT (I − S)X + λ|X − Y |2 (1)

where S is set to S = D−1/2WD−1/2.

3.2.2 Optimization

The optimization problem in Equation 1 can be solved iter-

atively as in [28]. Alternatively, it can be solved as a linear

system of equations, which is the approach we chose. After

differentiation of Equation 1 we obtain an optimal solution

for X , which we solve as a system of linear equations:

(I − (1− α)S)X = αY, α =
λ

1 + λ

In our implementation we use the Conjugate Gradient

method, with preconditioning, and achieve very fast con-

vergence.

Since the diffusion properties of the foreground and

background of different images (and datasets) may vary, we

consider separate segmentations for the detected foreground

only-areas and background-only areas, respectively. This is

done since the segmentation with respect to one of them

could be good but not with respect to the other and combin-

ing the results of foreground and background segmentations

produces more coherent segmentation and takes advantage

of their complementary functions. Denoting Yfg = Y when

Y > 0 and 0 otherwise, and Ybg = −Y when Y < 0 and 0,

otherwise, we solve:

Xfg = α(I−(1−α)S)−1Yfg, Xbg = α(I−(1−α)S)−1Ybg

In practice those two segmentations are done simultane-

ously, by applying the following normalization on the labels
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Figure 3. The region detection and segmentation algorithm. Top:

Input image and the initial regions which are classified with high

score to belong to either a flower or the background. Bottom: La-

bel propagation on this image and the final segmentation result.

Yfg, Ybg prior to the optimization as follows:

Xsegm = α(I − (1− α)S)−1

(
Yfg

||Yfg||2 −
Ybg

||Ybg||2

)
(2)

This makes the algorithm faster since it avoids separate op-

timizations. At the same time, it gives equivalent results

to the individual foreground and background segmentations

which are more stable. To obtain the final segmentation

Xsegm is thresholded at 0.

Figure 3 visualizes the results of the label propagation

algorithm and the final segmentation. The top right image

shows the score of each super-pixel region (here we use the

classification margin). The bottom right image shows the

solution of the Laplacian propagation, given the initial re-

gions (i.e. the solution to Equation 2). Note that not all of

the object regions have high scores initially. This is also

true for the background regions. After the Laplacian propa-

gation, a stronger separation between foreground and back-

ground is obtained. Figure 4 shows example segmented im-

ages. Note that not all segmentations are successful, espe-

cially for birds. However, as seen later in the experiments,

even partial segmentations are helpful and our method of-

fers improvement in performance.

4. Fine-grained recognition with segmentation
This section describes how we use the segmented image

in the final fine-grained recognition task. For simplicity, we

first describe the baseline algorithm.

Baseline. We apply a feature extraction and classifica-

tion pipeline which is an implementation of the algorithm

in Lin et al. [16]. In our feature extraction pipeline we first

extract HOG [6] features at 4 different scales, then those

features are encoded in 8K dimensional global feature dic-

tionary using the LLC method [25]. After that, a global max

812812812814814



Figure 4. Example segmented images from the datasets tested in this paper. Although not necessarily perfect, these segmentations are

sufficient to remove most of the background. Examples of failed segmentations are shown in the bottom row: only a portion of the

background is removed, this is typical of flowers since they take larger areas of the image; parts of the object are missing, e.g. for birds’

heads or tails, especially if they are of different colors; finally, some segmentations may completely fail (rightmost pair of images).

pooling of the encoded features in the image is done, as well

as, max poolings in a 3x3 grid of the image. Our classifica-

tion pipeline uses the 1-vs-all strategy of linear SVM classi-

fication and we used the Liblinear SVM implementation [7].

For the very large 578-flowers dataset, we used a Stochastic

Gradient Descent algorithm, since Liblinear cannot load the

whole data into memory.

The segmented image is processed through the same fea-

ture extraction pipeline as the original image, that is, new

features are extracted for the segmented image. We then

combine the two sets of extracted features, by concatenat-

ing their feature representations. One thing to note here is

that, because of our decision to apply HOG type features

and pooling to the segmented image, the segmentation helps

with both providing shape of the contour of the object to be

recognized, as well as, ignoring features in the background

that can be distractors. On the other hand, by keeping both

sets of features from the original and the segmented image,

we can avoid losing precision due to mis-segmentation, and

can also include the background for cases for which it may

provide useful context (e.g. the leaves and stems of some

flowers may be useful for recognition).

In our experiments we found that it is sufficient to keep

a global pooling of the segmented image, in addition to the

full set of poolings for the original image. We note here

that we re-extract features from the segmented image (with

their new HOG, encodings etc) and since much ‘cleaner’ lo-

cal features are extracted at the boundary, they provide very

useful signal, although pooled globally. We believe this is

crucial for the improvements we achieved. We cropped the

image to the segmented region (+20 pixels margin), so as

to account for scale variability. The latter is very benefi-

cial since these datasets have variabilities in scale and one

of the purposes of our segmentation is to be able to localize

the object and normalize for its scale. No cropping is done

for the two flower datasets, since the flowers are assumed to

take most of the image area (even for small ‘cluster’ flow-

ers). We did not do cropping for the experiment which uses

ground truth bounding box information (for birds).

In terms of computation, our algorithm performs much

better compared to competitors [3, 19]. The segmentation

takes about 2.5 seconds, and our baseline algorithm runs

within 1-2 seconds. We note that the segmentation pro-

cedure is much faster than previously known segmentation

methods, which take at least 30 seconds [4, 21]. Further-

more, our segmentation run-time allows it to be run as a part

of standard recognition pipelines at test time, which had not

been possible before, and is a significant advantage.
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5. Experiments
In this section we show experimental results of our pro-

posed algorithm on a number of fine-grained recognition

benchmarks: Oxford 102 flowers [17], Caltech-UCSD 200

birds [2, 26], and the recent Oxford Cats and Dogs [20]

datasets. In each case we report the performance of our

baseline classification algorithm, the best known bench-

mark results achieved on this dataset, and our proposed al-

gorithm in the same settings. We compare to our baseline

algorithm, because it measures how much the proposed seg-

mentation has contributed to the improvement in classifica-

tion performance. In addition, we measure our performance

on the large-scale 578-category flower dataset.

5.1. Oxford 102 flower species dataset

Oxford 102 flowers dataset is a well-known dataset for

fine-grained recognition proposed by Nilsback and Zisser-

man [17]. The dataset contains 102 species of flowers and

a total of 8189 images, each category containing between

40 and 200 images. It has well established protocols for

training and testing, which we adopt in this paper too.

A lot of methods have been tested on this dataset [3, 12,

17, 18], including some segmentation-based [3, 17]. Some

of the segmentation methods are designed to be very spe-

cific to the appearance of flowers [17] (with the assumption

that a single flower is in the center of the image and takes

most of the image), while others [3] are more general and

can also be applied to other types of datasets. Our approach,

too, does not make assumptions about the set of categories

for classification or the initial location or size of the objects

in the image.

The performance of our approach on this dataset (see Ta-

ble 1) is 80.66%, which outperforms all previous known

methods in the literature (some by as much as 4 to 8%) [3,

12, 17, 18]. One important thing to note is that the improve-

ment of our algorithm over our baseline is about 4%, and

the only difference between the two is the addition of the

proposed segmentation algorithm and the features extracted

from the segmented image.

5.2. Caltech-UCSD 200 birds species dataset

Caltech-UCSD-200 Birds dataset [26] is a very challeng-

ing dataset containing 200 species of birds. Apart from very

fine-differences between different species of birds, what

makes the recognition hard in this dataset is the variety of

poses, large variability in scales, and also very rich back-

grounds in which the birds often blend in. The best classifi-

cation performance achieved on this data is 16.2% classifi-

cation rate by [3]. Even when using ground truth bounding

boxes, provided as annotations with the dataset [26], the re-

ported results have been around 19% [26, 27] and most re-

cently 24.3% [3], but the latter result additionally uses crude

ground truth segmentation of each bird.

Method Accuracy (in %)

Our baseline (no segmentation) 76.7

Nilsback and Zisserman [17] 72.8

Ito and Cubota [12] 74.8

Nilsback and Zisserman [18] 76.3

Chai, Bicos method [3] 79.4

Chai, BicosMT method [3] 80.0

Ours 80.66
Ours: improvement over our baseline +3.94

Table 1. Classification performance on Oxford 102 flower dataset.

The proposed algorithm improves the performance both

with and without using ground truth bounding boxes (see

Tables 2 and 3). Our algorithm achieves 30.17% classifica-

tion performance compared to 19.2 [27] in the same setting,

which in an improvement of 11% over the best known base-

lines in this scenario. Another interesting observation is that

our algorithm achieves a performance of 27.60% when ap-

plying segmentation alone (i.e. without combining it with

the baseline algorithm). This is by itself an impressive im-

provement over the other known algorithms for this dataset

(even when not taking advantage of our baseline perfor-

mance). When considering the benefits of the segmenta-

tion, we noticed that examples which have more cluttered

backgrounds are helped most by the segmentation.

Most importantly, our algorithm shows improvement

over all known prior approaches, when no ground truth

bounding boxes are used. In this case we observed 17.5%

classification rate compared to previous 15.7% and 16.2%,

Our baseline algorithm here achieves only 14.4% which

in on par with the performance of SPM-type methods in

this scenario. Another thing to notice here is that the im-

provement over our baseline, when no bounding boxes in-

formation is known, is larger than the improvement with

bounding boxes. This improvement is consistent across the

other datasets tested in this paper, which do not have bound-

ing box information. We attribute this to the fact that the

bounding boxes have perfect object localization and scal-

ing, and to large extent have background elimination ca-

pabilities. This underlines the importance of our proposed

automatic detection and segmentation of the object, which

then allows to ‘zoom in’ on the object, especially for large-

scale datasets for which providing bounding boxes or other

ground truth information will be infeasible.

5.3. Oxford Cats and Dogs dataset

Oxford Cats and Dogs [20] is a new dataset for

fine-grained classification which contains 6033 images of

37 breeds of cats and dogs. Parkhi et al, who col-

lected the dataset, showed impressive performance on this

dataset [20]. They apply segmentation at test time, as is

done here, but their algorithm is based on Grabcut [21],

814814814816816



Method Accuracy (in %)

Our baseline (no segmentation) 14.4

Chai, Bicos segmentation [3] 15.7

Chai, BicosMT segmentation [3] 16.2

Ours 17.5
Ours, improvement over our baseline +3.1

Table 2. Classification performance on Caltech-UCSD 200 birds

dataset with automatic segmentation. Please refer to Table 3 for

comparison to other baselines which additionally use ground truth

bounding box information.

Method (with ground truth boxes) Accuracy (in %)

Our baseline (no segmentation) 29.06

Branson et al [2] 19.00

Yao et al. [27] 19.20

Chai et al. [3] 23.30

Ours, segmentation only, see text 27.60

Ours 30.17
Ours, improvement over our baseline +1.11

Table 3. Classification performance on Caltech-UCSD 200 birds

dataset, when ground truth bounding boxes are used (the result

in [3] uses crude ground truth segmentation masks in addition to

bounding boxes).

which is slow. Also, the methods proposed in [20] are spe-

cific to recognizing cat and dog breeds and utilize head and

body layout information.

We compared our performance on this dataset with the

prespecified protocol proposed in the paper (Table 4). For

this dataset too, we see that our general method outperforms

the best category-specific one from [20] and is far better

than their more general approach (denoted as ‘image info

only’) or a bag of words-based method. Note that [20] also

reported classification when using cat and dog head annota-

tions or ground truth segmentation during testing, whereas

here our experiments do not use such information.

5.4. Large-scale 578 flower species dataset

This dataset consists of 578 species of flowers and con-

tains about 250,000 images and is the largest and most chal-

lenging such dataset we are aware of. The goal of develop-

ing this data is to build a recognition application which can

recognize and/or provide top K suggestions (e.g., for K=5,

10, etc.) for an input flower image, and be available for

general use.

We tested our baseline algorithm vs the proposed

segmentation-based algorithm on this data, see Table 5.

The improvement provided by our segmentation method is

4.41% for the top 1 returned result. Figure 5 shows the

recognition performance for top K, where K = 1, . . . , 10.

As seen, we obtain improvements across all of them, with

Method Accuracy (in %)

Our baseline (no segmentation) 50.79

VLFeat [24] + Bag of words [20] 38.45

Parkhi et al. (image info only) [20] 39.64

Parkhi et al. [20] 54.05

Ours 54.30
Ours, improvement over our baseline +3.51

Table 4. Classification performance on Oxford Cats and Dogs

dataset.

Method Accuracy (in %)

Our baseline (no segmentation) 52.35

Ours 56.76
Ours, improvement over our baseline +4.41

Table 5. Classification performance on the large-scale 578 flowers

dataset for the top returned result.

top 1 having an improvement of about 4.41%, top 5 of about

2.7% and top 10 of about 2%.

Note that this large-scale data has no segmentation

ground truth or bounding box information (since it contains

250,000+ images and obtaining those would be prohibitive

or at least very expensive). Thus, here the advantage that an

automatic segmentation algorithm can give in terms of im-

proving the final classification performance is really impor-

tant. Another interesting fact is that here we have used the

same initial region detection model that was trained on the

Oxford 102 flowers dataset, which contains fewer species

of flowers (102 instead of 578). This was motivated again

by the lack of good ground truth for such a large volume of

data. Naturally, the performance of the segmentation algo-

rithm can be further improved after adapting the segmenta-

tion model to this specific dataset.

Discussion. As seen by the improvements over the base-

line, our segmentation algorithm gives advantage in recog-

nition performance. This is true even if the segmentation

may be imperfect for some examples. This shows that seg-

menting out the object of interest during testing is of crucial

importance for an automatic algorithms and that it is worth-

while exploring even better segmentation algorithms.

6. Conclusions and future work

We propose an algorithm which combines region-based

detection of the object of interest and full-object segmen-

tation through propagation. The segmentation is applied at

test time and is shown to be very useful for improving the

classification performance on four challenging datasets.

We tested our approach on the most contemporary and

challenging datasets for fine-grained recognition improved

the performances on all of them. We further tested with
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Figure 5. Classification performance on the large-scale 578 flowers

dataset for top K = 1, . . . , 10 retrieved results.

578-category flower dataset which is the largest collection

of flower species we are aware of. The improvements in per-

formance over the baseline are about 3-4%, which is con-

sistent across all the experiments. Our algorithm is much

faster than previously used segmentation algorithms in sim-

ilar scenarios, e.g. [4, 21]. It is also applicable to a variety of

types of categories, as shown in this paper on birds, flowers,

and cats and dogs.

Our future work will consider improvements to the fea-

ture model, e.g. represent it as a mixture of submodels, each

one responsible for a subset of classes that are very similar

to each other but different as a group from the rest.
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