
Seeking the strongest rigid detector

Rodrigo Benenson∗†‡ Markus Mathias∗† Tinne Tuytelaars† Luc Van Gool†
† ESAT-PSI-VISICS/IBBT, ‡Max Planck Institut für Informatik

Katholieke Universiteit Leuven, Belgium Saarbrücken, Germany
firstname.lastname@esat.kuleuven.be benenson@mpi-inf.mpg.de

Abstract

The current state of the art solutions for object detection
describe each class by a set of models trained on discovered
sub-classes (so called “components”), with each model it-
self composed of collections of interrelated parts (deform-
able models). These detectors build upon the now classic
Histogram of Oriented Gradients+linear SVM combo.

In this paper we revisit some of the core assumptions
in HOG+SVM and show that by properly designing the fea-
ture pooling, feature selection, preprocessing, and training
methods, it is possible to reach top quality, at least for ped-
estrian detections, using a single rigid component.

We provide experiments for a large design space, that
give insights into the design of classifiers, as well as relev-
ant information for practitioners. Our best detector is fully
feed-forward, has a single unified architecture, uses only
histograms of oriented gradients and colour information in
monocular static images, and improves over 23 other meth-
ods on the INRIA, ETH and Caltech-USA datasets, reducing
the average miss-rate over HOG+SVM by more than 30%.

1. Introduction
Many of the current top performing methods for object

detection are variants of the deformable part models work

of Felzenszwalb et al. [7]. Through components and parts,

these models are built upon sets of non-deformable, weaker,

classifiers. These rigid classifiers are built using the now

classic HOG+SVM (histogram of oriented gradients, plus lin-

ear support vector machine) detector, introduced by Dalal

and Triggs [3].

Fast and high quality detection enables a vast range of

applications, which has motivated a large amount of re-

search on the topic. In this paper we focus on pedestrian

detection, since it is a challenging class of great practical

interest. We believe that most of the results and conclu-

sions obtained here do apply to other classes as well. For

∗Indicates equal contribution

10−2 10−1 100

0.05

0.1

0.2

0.3

0.4

0.5

0.6
0.7
0.8
0.9

1

false positives per image

m
is

s
ra

te

HOG (45.18 %)

Strong baseline (18.21%)
+Better feature pool (17.87%)
+Multi−scales (15.55%)

Previous best, VeryFast (15.40 %)

+Better normalization (13.06%)

Figure 1: Progress obtained from each section of the paper.

From an already strong baseline up to our final detector, on

the INRIA dataset. See also figure 7a.

pedestrian detection HOG+SVM, although not state-of-the-

art anymore, is still surprisingly competitive [6].

In this paper we propose to revisit this low-level rigid de-

tector. By reconsidering some of its assumptions and design

choices, we show that it is possible to have significant qual-

ity improvements, reaching state of the art quality on par

with flexible part models, while still using only HOG + col-

our information, in a single rigid model.

In the spirit of the original work on HOG+SVM [3], we

provide a new extensive set of ~40 experiments, revisiting

the design space of classifiers based on oriented gradient

histograms. We provide results per image (instead of per

window [3, 5]), and perform evaluations on large datasets.

Our final single component rigid classifier reaches record

results on INRIA, ETH and Caltech-USA datasets, provid-

ing an average miss-rate reduction of more than 30% over

HOG+SVM.
Our work is based on the integral channel features de-

tector family, introduced by Dollár et al. [5], an extension

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.470

3664

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.470

3664

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.470

3666

Figure 2: In traditional HOG the histograms are computed

over cells in a regular pattern (left side), while we learn in a

discriminative fashion an irregular pattern (right side).

of HOG+SVM. Before detailing how our detector works, we

give an appetizer by highlighting how our approach differs

from HOG+SVM [3] and how it relates/contrasts to more re-

cent work.

Irregular cells The HOG classifier builds its descriptor

by computing histograms over regular square cells of fixed

size. In our detector, similar to [5, 9, 16], the set of rectan-

gular cells is selected during learning (see figure 2). Section

4 shows evidence of the benefit of irregular cells. Learning

the set of rectangles is significantly better than using a hand-

designed pattern.

Feature pre-processing Low level details have an im-

portant impact on the final quality. Which kind of low

level transformation/normalization is used varies signific-

antly amongst methods. Some use no normalization [2],

some use local normalization [1, 3, 8]. In HOG+SVM [3] the

importance of using local normalization at multiple scales is

emphasized. In section 5 we show the effect of such factors

in our setup. We discover that global normalization can be

surprisingly effective.

Feature channels The integral channel features frame-

work [5] (see section 2) enables the use of multiple kinds

of “channels” (low level pixel-wise features). We constrain

ourselves to using only HOG and LUV colour channels, be-

cause these are still close to the original HOG+SVM work,

and at the same time were validated as best performing [5].

Non-linear classifier The HOG+Linear SVM obtains its

score via a linear combination of the constructed feature

vector. The classifier is non-linear with respect to the in-

put image due to the HOG features and their normalization.

In our case the classifier is non-linear due to the use of de-

cision trees as weak learners over HOG features. Multiple

kinds of non-linearities on top of HOG have been explored

in the past, including neural network sigmoid functions (and

variants) [14], as well as different kinds of stumps and de-

cision trees [5, 10]. In section 6 we evaluate the impact of

such choices.

Multi-scale model Using multiple scales has been shown

to improve quality [12], and also speed [2]. In [12] both

low and high-resolution models are used to evaluate a single

candidate window. Similarly, all components of [7] are

evaluated for each candidate window. Instead, following

[2], we evaluate a single model per candidate window. Us-

ing multi-scale models has a significant positive effect on

our final model. See section 9.

Learning algorithm We use boosting instead of linear

SVM. It has been previously shown how different boost-

ing approaches give different results [5, 17]. We revisit the

question in section 7.

Speed Although HOG+SVM is not particularly slow, the

specific normalization mechanism used, and the use of high

dimensional vectors hinder speed. Our approach is com-

patible with the VeryFast approach [2] (where pixels are

processed only once at the original image scale), and with

the sophisticated cross-talk cascades [4] for fast evaluation.

Single rigid template In this paper we focus on the lower

level of more sophisticated part and component-based clas-

sifiers. Just as in the original HOG+SVM we use a single

rigid template per candidate detection window. For detec-

tion we only use a single static colour image. We do not use

motion, stereo, or geometric priors in the scene.

1.1. Contributions

• We perform a detailed investigation of the different

factors affecting the integral channel features detect-

ors family. We provide context and contrast our work

with the “mainstream” HOG+Linear/NonLinear SVM

classifiers.

• Dollár et al. did ~80 experiments exploring the design

space of the channel features detector [5, and ad-

dendum]. We add here another ~40 complementary

ones, and provide additional guidelines for practition-

ers. In our experiments we evaluate false positives

per image (FPPI), while Dollár’s are done per window

(FPPW), which is flawed, as argued in [6].

• We push the state-of-art forward with new record

quality, using a single rigid template detector using

HOG+colour only. We obtain top performance on IN-

RIA, ETH and Caltech-USA, improving over 23 other

methods including non-linear SVMs, more sophistic-

ated features, geometric priors, motion information,

deformable models, or deeper architectures.

Sections 2 and 3 describe our base classifier and the eval-

uation setup. Sections 4, 5, 6, 7, 8 explore different aspects

affecting its quality. In section 9 we use the learned les-

sons to build our final strong classifier. We conclude and

delineate future work in section 10.

2. Integral channel features classifier
Our starting point is the Integral Channel Features de-

tector [5]. In a sense, it can be seen as a combination of

366536653667

the classic Viola and Jones work (VJ) [16] with Dalal and

Triggs’ (HOG+SVM) [3].
Given an input image, a set of gradient and colour

“channels” are computed (pixel-wise transforms). As for

HOG+SVM, quantized oriented gradients are extracted. Then
low level features are built by summing over rectangular

regions. Like VJ these rectangular regions are then selec-

ted and assembled in a set of weak classifiers using boost-

ing. The final strong classifier is a linear combination of the

weak classifiers. Without further specifications, the Integral

Channel Features detector describes a family of detectors.

ChnFtrs detector Typically VJ provides low quality

(see figure 7) because it is applied directly over the im-

age intensity channels. Dollár et al. showed that by ap-

plying a similar approach over oriented gradients, the qual-

ity improves drastically. Amongst the different designs ex-

plored, they propose to select the so called ChnFtrs de-

tector [5]. HOG and LUV channels are computed (10 chan-

nels in total), and 30 000 random rectangles are used as fea-

ture pool. The features are assembled into a linear combin-

ation of 2 000 level-2 decision trees (containing 3 stumps),

using Adaboost.

Training is done in 3 stages. The first stage randomly

samples 5 000 negative samples, the second and third stages

use bootstrapping to add 5 000 additional hard negatives

each.

The learned strong-classifier is applied at test time as a slid-

ing window over the image. To make things faster (with no

significant impact on quality), the coordinates of the feature

pool and of the candidate detection windows can be quant-

ized by a factor 4 (so called “shrinking factor”). To obtain

the final detections, a non-standard greedy non-maximal

suppression method is used (greedy*). For more details

please consult [5, and its addendum].

VeryFast detector One peculiarity of the VJ approach,

is that the detector runs directly on the input image, without

the need to resize the image nor recompute features (and

integral images) multiple times at different scales. The

VeryFast detector proposed by Benenson et al. [2]

achieves this too, while at the same time improving on the

quality of the ChnFtrs. By learning models at multiple

canonical scales, this detector better exploits the informa-

tion available in the image, leading to better detection. Our

final detector will use this strategy too.

The starting point for our work is the open source release

of the VeryFast detector [2]. To enable our experimental

analysis, we have improved the already multi-threaded and

GPU enabled training code to accelerate it by a factor of 3.

Our strong baseline The training of ChnFtrs includes

a randomness factor in the selection of candidate features.

To avoid this source of variability we build a determin-

istic baseline named SquaresChnFtrs, where the fea-

ture pool is composed of all the squares that fit inside the

model window. Everything else is identical to ChnFtrs.
Our baseline already beats a dozen of others approaches

(see section 9). This baseline is kept as a reference in all

our experiments (using a deep blue colour).

Despite their good results the ChnFtrs and VeryFast
detectors still leave a large number of free design paramet-

ers, such as: how to select the rectangular features? how

many of them to use? how should these features be normal-

ized? which kind of weak classifier to use? which training

method? which training data? We attempt to answer all

these questions in the next sections.

3. Experimental setup

For evaluation we use the Caltech pedestrian detection

benchmark, version 3.0.1. This benchmark provides soft-

ware for evaluation and comparison of a dozen of state of

the art methods over multiple datasets. This software takes

care of the delicate issues arising when evaluating detection

algorithms [6]. We use for evaluation the INRIA (diverse

scenes,∼ 500 annotated pedestrians), ETH (sidewalks, 12k
pedestrians), and Caltech-USA dataset (car view, 1k pedes-

trians). Thanks to direct correspondence with the authors

we also include results for the competitive EBLearn [14],

VeryFast [2], and MLS [10] methods.

All our models are trained using the INRIA pedestrians

dataset [3]. The evaluations of the experiments are done

per image (not per window) [6]. We use the INRIA test set

as validation set. ETH is only used for the experiments of

section 5, all other results on ETH (in the supplementary

material) were done after fixing the parameters. Caltech-

USA was used solely for the final evaluation.

For evaluation we use the corrected INRIA annotations

provided by [14], which include additional “ignore” win-

dows, to avoid penalizing methods that detect very small

pedestrians (we saw no change in the trends when changing

annotations). The mean miss-rates reported in the legend

of each figure (e.g. figure 3) are based on 200 samples of

the curve (in the range 0 to 1 FPPI, evenly spaced in log-

space), instead of only 9 as used in the original benchmark

(the average is thus more precise).

For all implementation details, we follow as precisely as

possible the methodology described in [2, 5]. Unless spe-

cified otherwise, we use models of size 64 × 128 pixels,

named “scale 1”, although the final classifier in section 9

uses different models for each scale.

It should be noted that we took particular care of hand-

ling the sources of randomness. All experiments are done

using the same set of random seeds, to make the curves

comparable.

366636663668

10−2 10−1 100

0.05

0.1

0.2

0.3

0.4

0.5

0.6
0.7
0.8
0.9

1

HOG (45.18 %)

INRIA
Scale 1 models

false positives per image

m
is

s
ra

te

SquaresChnFtrs 8x8 (21.00%)
RandomSymmetric 30k (20.90 ±2.5%)
Random 30k (20.29 ±2.4%)
RandomSymmetric++ (19.31%)
Random++ (19.07%)
SquaresChnFtrs All (18.21%)
AllFeatures (17.87%)

(a) Here all models use a model window of size 64× 128 pixels.

10−2 10−1 100

0.05

0.1

0.2

0.3

0.4

0.5
0.6
0.7
0.8
0.9

1

HOG, scale 1 (45.18 %)%))

false positives per image

m
is

s
ra

te

Random 30k (21.38 ±2.5%)
RandomSymmetric 30k (21.29 ±3.3%)
SquaresChnFtrs 8x8 (20.75%)
SquaresChnFtrs 30k (20.08 ±3.0%)
SquaresChnFtrs++ (19.87%)
Random++ (19.38%)
RandomSymmetric++ (18.90%)
SquaresChnFtrs All (17.87%)

INRIA
Scale 2 models

(b) Here all models (but HOG) use a window of size 128× 256 pixels.

Figure 3: Detector quality on INRIA using different feature pool settings. Lower average miss-rate is better. All curves

available in the supplementary material.

4. Which feature pool?
The feature pool (set of rectangles) used to construct the

weak learners is one of the key design choices during the

training of ChnFtrs. It is known that having a proper fea-
ture pool impacts quality [9]. A priori, there is no particular

reason to believe that the regular pattern used by HOG+SVM
is optimal. On the other hand, simply using random features

is bound to lead to sub-optimal results.

Using too many features puts a heavy memory load dur-

ing training time, usually reaching the machine limits. Us-

ing too few features will impoverish the capacity of the

classifier, and lead to bad quality at test time. Unfortu-

nately, the space of rectangles inside a 64 × 128 pixels

model is very large (even when using a shrinking factor of

4). Even worse, when training a multi-scales detector (such

as VeryFast), models of twice and four times the size

need to be trained, making the set of all possible rectangles

explode in size.

Experiments at scale 1 We first perform a set of experi-

ments at scale 1 – see figure 3a. Some curves are omitted

for clarity. All curves of all experiments on both INRIA and

ETH can be found in the supplementary material.

Random 30k: As a baseline we train 10 models using

30 000 random rectangles, measure the average perform-

ance, and the max-min envelope.

RandomSymmetric 30k: We hypothesise that the de-

tector might benefit from comparing the same feature across

different channels, or in the same channel using reflection

symmetry across the vertical axis. We generate 150 random
rectangles on a single channel, mirror them and copy these

300 features in all 10 channels. We train 10 such models.

SquaresChnFtrs-8x8: Instead of using random rect-

angles, we imitate HOG+SVM by using only squares of

8× 8 pixels, positioned regularly each 4 pixels. Everything
else is just as in ChnFtrs. Please note that this experiment

has the same symmetry as RandomSymmetric. In this

setup only 5 120 features are considered.

SquaresChnFtrs All: This is the strong baseline de-

scribed in section 2. We sample squares of all sizes, posi-

tioned regularly each 4 pixels. A similar pattern was sug-

gested in [10]. In this setup 38 400 features are considered.

AllFeatures: Using 90 Gbyte, 16 cores, on a GPU en-

abled server, we were able to run an experiment using all

rectangles for a 64×128 pixels model (with shrinking factor

4). In this setup 718 080 features are considered.

Random++: The model learned in Random 30k depends

on the random seed used. To reduce the randomness effect

and build a stronger classifier, we aggregate features selec-

ted by Adaboost in 10 runs of Random 30k (at scale 1

many of them are repeated). This new bootstrapped feature

pool is then employed to initialize an 11th training, named

“++”.
*++: Similar method as Random++ applied to the corres-

ponding set of random models.

Experiments at scale 2 Since the problem of finding

good features is more acute at larger scales, we think it

is relevant to also present experiments when computing

AllFeatures is not an option anymore. At scale 2 the

model to learn has twice the size of scale 1. See figure 3b.

SquaresChnFtrs 30k: Like SquaresChnFtrs

366736673669

10−2 10−1 100

0.1

0.2

0.3

0.4

0.5

0.6
0.7
0.8
0.9

1

ETH

false positives per image

m
is

s
ra

te

HOG (65.03 %)
LocalNormalization (55.64%)
NoNormalization (55.55%)
GreyWorld (49.57%)
GlobalNormalization (47.44%)

Figure 4: Detector quality when using different feature nor-

malization schemes.

All but only a subset of 30 000 random features is con-

sidered.

Analysis We observe in figure 3 that although Random
30k seems like a reasonable choice at scale 1, it becomes

increasingly worse with increasing scales. As expected,

using AllFeatures is the best choice when possible,

SquaresChnFtrs All being a close second best. When

neither of these two are tractable, Random++ provides the

best choice (see also supplementary material). The “++”
variants seem to systematically improve over the mean of

their random pool. Notice that the “++” approaches trade-
off exploding growth in memory usage, with an increase in

training time (but low memory needs).

Note that all the curves are significantly better than

HOG+SVM, and that SquaresChnFtrs-8x8 is not par-

ticularly effective. In the supplementary material we

provide additional plots showing statistics on the selected

features for AllFeatures.

Conclusion Having a good coverage of the feature

space seems directly related to the quality of the final

detector. Depending on your available computing resources

we recommend AllFeatures>SquaresChnFtrs
All>Random++.

5. Which feature normalization?
In the re-implementation of the ChnFtrs detector done

by Benenson et al. [2] no illumination normalization is

used. In [5, addendum] it was shown that normalizing the

gradient magnitude by considering a small neighbourhood

(4 × 4 pixels) provides a small improvement. In [3] it is

argued that representing the same value with multiple nor-

malizations is a key element for quality. Since our baseline

detector is based solely on thresholds, injecting some in-

variance to illumination changes seems reasonable.

Experiments All experiments are done on top of the

SquaresChnFtrs classifier (see section 2). The IN-

10−2 10−1 100

0.05

0.1

0.2

0.3
0.4

0.6
0.8

1

HOG (45.18 %)

INRIA

false positives per image

m
is

s
ra

te

MLS (23.49 %)
SingleStump (22.34%)
ThreeStumps (19.14%)
Level2DecisionTree (18.21%)

Figure 5: Which weak classifier to use?

RIA dataset was captured using consumer cameras, which

perform on-board colour and illumination adjustment. Thus

this dataset seems rather well behaved illumination-wise

compared to datasets that are acquired with a mobile setup.

Therefore, we choose to report experiments on ETH, where

the effect of normalization is more pronounced. The corres-

ponding INRIA curves are in the supplementary material.

NoNormalization: alias for SquaresChnFtrs, as
described in section 2.

GlobalNormalization: As a sanity check, we con-

sider first doing a global image normalization, before com-

puting the channels. We use the “automatic colour equaliz-

ation” algorithm (ACE) which provides better results than

a simple GreyWorld equalization [13].

LocalNormalization: For local normalization we

look for a more principled approach than the proposal of

[5, addendum]. We follow the normalization employed by

[1, equation 19], where the gradient orientation features are

normalized by the gradient magnitude in the same area.

Our attempts to implement Dollár et al.’s normalization

produced results worse than LocalNormalization.

Analysis As expected, normalization improves over using

no normalization. Surprisingly even a simple global nor-

malization such as GreyWorld already provides an im-

portant gain. In our setup, standard normalization schemes

are puzzlingly ineffective. In other experiments we have

validated that global normalization improves detections

even when using only monochromatic images.

Conclusion Simple global normalization such as

GreyWorld are very effective and should not be disreg-

arded. The slower ACE algorithm [13] is even better.

6. Which weak classifier?
Boosting methods construct and compound weak clas-

sifiers. Choosing the kind of weak classifier and its weak

learner, are an important design decision.

Experiments
SingleStump: we train SquaresChnFtrs, using

366836683670

10−2 10−1 100

0.05

0.1

0.2

0.3
0.4

0.6
0.8

1

INRIA

false positives per image

m
is

s
ra

te

HOG (45.18 %)
Vadaboost 2k (19.04%)
Vadaboost 8k (18.59%)
Adaboost 8k (18.41%)
Adaboost 2k (18.21%)

Figure 6: Which training method to use?

6 000 stumps (same number of stumps as in the baseline).

Stumps are the simplest weak classifiers. In [5] only a single

point of the FPPW evaluation is given and no FPPI curve is

presented.

Level2DecisionTree: alias for SquaresChnFtrs,
as described in section 2. Each tree contains three stumps.

ThreeStumps: In modern parallel machines, having two

parallel threads selecting different sides of a level-2 de-

cision tree has a cost similar to evaluating both sides. In-

spired by the work on ferns [11], we transform the level-2

decision tree in a three bits vector, and use it to index a table

with 23 entries. With a similar computational cost, we ob-

tain a (slightly) more discriminative weak classifier.

Analysis The results in figure 5 seem to indicate that

Level2DecisionTree are a sweet spot for Adaboost.

Using slightly more discriminative weak classifiers seems

not to improve quality.

The MLS method [10] explored constructing boosted clas-

sifiers on top of HOG cells, using different arrangements.

On the INRIA test set, our approach performs significantly

better.

Conclusion Without changing the learning method,

Level2DecisionTree seems to be the adequate choice

for this architecture.

7. Which training method?
Since the introduction of Adaboost, the boosting prin-

ciple has been instantiated in a myriad of variants, each

of them claiming to be superior to the others. In the con-

text of image classification it is unclear which method is

best in practice. The experiments in [5], comparing Ad-

aboost, Realboost, and LogitBoost, showed insignificant

quality differences.

Experiments
Adaboost: alias for SquaresChnFtrs, as described in
section 2.

VadaBoost: A regularized Adaboost variant that minim-

izes not only the margin average, but also its variance [15].

The variants 2k/8k indicate the number of weak learners

used in each case.

Analysis The results of figure 6 show that none of the

considered training methods is significantly better than our

baseline. Making the classifier longer seems not to improve

the quality either.

Conclusion It seems that changing features and weak

classifiers (e.g. figures 3a and 5) matters more than which

greedy boosting is used. The baseline Adaboost 2k still

is the best choice.

8. Which training set?
It is well-known that the data used to train an algorithm

is just as important as the algorithm itself [18]. The IN-

RIA dataset has been regularly used for training pedestrian

detectors [6, table 2], despite being quite small by today’s

standards. During the bootstrapping stages of learning, we

observe that the baseline fails to find the desired amount of

false positives (5 000 per round), pointing out the need for a
richer set of negative images.

Experiments
InriaOnly: alias for SquaresChnFtrs, as described
in section 2.

SmallJitter: augmentation of positive samples via mir-

roring, scaling, or jittering are a common practice when

training neural networks. In our setup with shrinking factor

4, displacements of less than ±2 pixels should appear as

new “perfectly centred” samples. This is the level of jitter

we test, using 9 random samples per training pedestrian.

PedestriansNegatives: we have observed that false

positives occur frequently on the legs of large pedestrians.

To mitigate this effect we propose to augment the negative

set using crops of pedestrians with low overlap (based on

the greedy* overlap criterion and threshold). We add 9

negative samples per each positive sample.

Analysis The result figure is available in the supplement-

ary material. It indicates that PedestriansNegatives
has no significant effect and that SmallJitter slightly

worsens the quality (−2% on INRIA). It seems that the ori-

ginal annotations already contain enough natural jitter and

adding more only hurts performance.

Conclusion The vanilla INRIA training data seems to

hold as a good choice for top performance.

9. The Roerei detector
Given the lessons learned from the previous sections, we

proceed to build our final strong classifier. We name it the

Roerei detector (Dutch for “scrambled eggs”, pronounced

[rurEi]), in allusion to the fact that, in contrast to the or-

derly pattern used in HOG+SVM, our learned detector has

366936693671

10−3 10−2 10−1 100 101

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
ra

te 81.08% Shapelet
79.81% PoseInv
72.05% VJ
57.70% FtrMine
45.18% HOG
43.53% LatSvm−V1
41.16% HikSvm
38.69% Pls
37.25% HogLbp
35.40% MultiFtr
30.91% FeatSynth
23.93% MultiFtr+CSS
23.49% MLS
20.53% FPDW
20.44% ChnFtrs
19.55% LatSvm−V2
18.92% EBLearn
18.26% CrossTalk
18.21% Ours-SquaresChnFtrs
15.40% VeryFast
13.06% Ours-Roerei

(a) INRIA results

10−3 10−2 10−1 100 101
.10

.20

.30

.40

.50

.64

.80

1

92.90% PoseInv
91.64% Shapelet
90.41% VJ
77.28% LatSvm−V1
72.96% HikSvm
65.03% HOG

false positives per image

m
is

s
ra

te 61.46% MultiFtr+CSS
60.67% FPDW
60.56% MultiFtr+Motion
60.27% MultiFtr
58.22% ChnFtrs
55.68% HogLbp
55.65% Pls
55.55% Ours−SquaresChnFtrs
55.39% VeryFast
52.49% CrossTalk
51.39% LatSvm−V2
50.82% EBLearn
49.90% MLS
43.90% Ours−Roerei

(b) ETH results

10−3 10−2 10−1 100 101
.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
ra

te

94.46% VJ
91.34% Shapelet
86.67% PoseInv
79.02% LatSvm−V1
76.02% EBLearn
73.21% FtrMine
72.58% HikSvm
67.12% HOG
66.54% MultiFtr
66.16% HogLbp
61.54% LatSvm−V2
60.91% Pls
59.32% MLS
58.78% MultiFtr+CSS
58.49% FeatSynth
55.33% FPDW
54.67% ChnFtrs
51.29% CrossTalk
48.63% MultiFtr+Motion
47.51% MultiResC
46.13% Ours−Roerei

(c) Caltech-USA test set results

Figure 7: Comparison of different methods on different

datasets. See also figure 1 and table 1.

Detector aspect Average miss-rate

INRIA ETH

Strong baseline (§2) 18.21% 55.55%
+ AllFeatures (§4) 17.87% 55.50%
+ Multi-scales (§2) 15.55% 53.17%
+ GlobalNormalization (§5) 13.06% 43.90%
= Roerei detector 13.06% 43.90%
HOG+SVM 45.18% 65.03%
Previous best, VeryFast/MLS 15.40% 49.90%

Table 1: How does quality improve at each stage?

“scrambled cells” of different dimensions and positions (see

figure 2).

In table 1 we show the results obtained at each stage of

improvement (see figure 1). Note that our baseline already

beats 18 methods on INRIA, and 13 on ETH; including the

original ChnFtrs detector. Improving the feature pool, us-

ing multi-scales (training models for scales 1, 2, 4 and 8),
and using global normalization, leads us to our top perform-

ing Roerei detector. For scale 1 we use AllFeatures,
for scale 2 SquaresChnFtrs All, and for the last two
scales RandomSymmetric++.

The results of figure 7 correspond to a fixed model evalu-

ated on the different datasets. We use 55 scales in all cases,

and only change the search range amongst each dataset to

reflect the different sizes of pedestrians on each scenario.

Our final detector shows a significant improvement over

the previous best methods on these datasets, having an

homogeneous (single stage) architecture, and evaluating a

single rigid model for each candidate window. On INRIA

we reach 96% recall at 10 FPPI. On Caltech-USA we im-

prove over MultiResC [12] which also uses multi-scale

models (but evaluates multiple models per window), and

uses deformable parts, a weak geometric prior of the ground

plane, and was trained over the Caltech training data using

a sophisticated latent-SVM.

Training time As discussed in section 4, training with the

best feature pool puts pressure on the memory usage. Train-

ing all 4 models for each scale increases the training time.

The training time corresponds to 2.5 days on a GPU en-

abled, multi-core, large RAM work-station.

Test time speed Since in this paper we focus on qual-

ity, we use the multi-scale model without the speeding-up

approximation used by VeryFast [2], obtaining thus the

quality improvement but not all the speed benefits. The ACE
global normalization is rather slow (5 seconds per frame),

but the GreyWorld normalization is much faster (can be

computed in less than 10 milliseconds) and provides sim-

ilar benefits. All other proposals only affect training time.

Using the soft-cascade employed in [2] or the cross-talk cas-

cade of [4], the Roerei detector should run comfortably in

367036703672

the range 5− 20 Hz. Without soft-cascade and after global

normalization, the detections currently run at about 1 Hz.

Note for practitioners If there is one thing we have

learned in our quest for high quality detections, it is how

much low level details matter. We have observed up to

10% average miss-rate differences depending on how bor-

der conditions are handled, how exactly the features are

computed, how the training data is cropped, and other sim-

ilar implementation details.

Link to deep networks In figure 7 it can be noted

that our method outperforms the deep convolutional neural

network EBLearn [14]. Already our strong baseline

SquaresChnFtrs obtains better results. Despite usual

claims on “hand-designed features”, we believe that the

design space of convolutional networks is not smaller than

that of the integral channel features classifiers. It should

be noted however that both approaches are quite similar

in spirit. Deep networks alternate linear and non-linear

operators, ending with a simple classifier at the top layer.

Roughly, our architecture first applies linear operators (ori-

ented gradient filters convolutions and sum over rectangles),

followed by non-linear look-up tables (decision trees). The

final layer is a simple linear combination. Due to the sim-

ilarity between these architectures, we believe that some of

the observations in this paper can be used in the context of

deep learning.

10. Conclusion
Throughout the paper we have revisited the design of a

low level, rigid, HOG+colour detector. We have provided

extensive experiments and identified the aspects that im-

prove quality over our strong baseline (feature pool, nor-

malization, use of multi-scale model). On the INRIA, ETH

and Caltech-USA datasets, our new Roerei detector im-

proves over methods using non-linear SVMs, more sophist-

icated features, geometric priors, motion information, de-

formable models, or deeper architectures. We think that

combining these ideas will provide even further improve-

ments.

The experiments show that overall we have moved a long

way from the classic HOG+SVM. We hope that some of the

practices presented here will serve future generation classi-

fiers.

Acknowledgement Work partly supported by the Toyota

Motor Corporation, and the ERC grant COGNIMUND. We

thank P. Dollár and R. Appel for the insightful discussions,

and S. Aihara for his colorcorrect python package.

References
[1] K. Ali, F. Fleuret, D. Hasler, and P. Fua. A real-time

deformable detector. PAMI, 2011. 2, 5

[2] R. Benenson, M. Mathias, R. Timofte, and L. Van

Gool. Pedestrian detection at 100 frames per second.

In CVPR, 2012. 2, 3, 5, 7

[3] N. Dalal and B. Triggs. Histograms of oriented gradi-

ents for human detection. In CVPR, 2005. 1, 2, 3,

5

[4] P. Dollár, R. Appel, and W. Kienzle. Crosstalk cas-

cades for frame-rate pedestrian detection. In ECCV,
2012. 2, 7

[5] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral

channel features. In BMVC, 2009. 1, 2, 3, 5, 6

[6] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Ped-

estrian detection: An evaluation of the state of the art.

TPAMI, 2011. 1, 2, 3, 6

[7] P. Felzenszwalb, R. Girshick, D. McAllester, and

D. Ramanan. Object detection with discriminatively

trained part-based models. PAMI, 2010. 1, 2

[8] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and

Y. LeCun. What is the best multi-stage architecture

for object recognition? In ICCV, 2009. 2

[9] Y. Jia, C. Huang, and T. Darrell. Beyond spatial pyr-

amids: Receptive field learning for pooled image fea-

tures. In CVPR, 2012. 2, 4

[10] W. Nam, B. Han, and J. Han. Improving object local-

ization using macrofeature layout selection. In ICCV,
Visual Surveillance Workshop, 2011. 2, 3, 4, 6

[11] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua. Fast

keypoint recognition using random ferns. PAMI, 2010.
6

[12] D. Park, D. Ramanan, and C. Fowlkes. Multiresolu-

tion models for object detection. In ECCV, 2010. 2,

7

[13] A. Rizzi, C. Gatta, and D. Marini. A new algorithm for

unsupervised global and local color correction. Pat-
tern Recognition Letters, 2003. 5

[14] P. Sermanet, K. Kavukcuoglu, and Y. LeCun. Traffic

signs and pedestrians vision with multi-scale convo-

lutional networks. In Snowbird Machine Learning
Workshop, 2011. 2, 3, 8

[15] P. Shivaswamy and T. Jebara. Variance penalizing Ad-

aBoost. In NIPS, 2011. 6

[16] P. Viola andM. Jones. Robust real-time face detection.

In IJCV, 2004. 2, 3

[17] C. Wojek, S. Walk, and B. Schiele. Multi-cue onboard

pedestrian detection. In CVPR, 2009. 2

[18] X. Zhu, C. Vondrick, D. Ramanan, and C. Fowlkes.

Do we need more training data or better models for

object detection? In BMVC, 2012. 6

367136713673

