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Abstract

Conditional Random Fields (CRFs) are used for diverse
tasks, ranging from image denoising to object recognition.
For images, they are commonly defined as a graph with
nodes corresponding to individual pixels and pairwise links
that connect nodes to their immediate neighbors. Recent
work has shown that fully-connected CRFs, where each
node is connected to every other node, can be solved ef-
ficiently under the restriction that the pairwise term is a
Gaussian kernel over a Euclidean feature space. In this
paper, we generalize the pairwise terms to a non-linear
dissimilarity measure that is not required to be a distance
metric. To this end, we propose a density estimation tech-
nique to derive conditional pairwise potentials in a non-
parametric manner. We then use an efficient embedding
technique to estimate an approximate Euclidean feature
space for these potentials, in which the pairwise term can
still be expressed as a Gaussian kernel. We demonstrate
that the use of non-parametric models for the pairwise in-
teractions, conditioned on the input data, greatly increases
expressive power whilst maintaining efficient inference.

1. Introduction

The discrete label Markov Random Field (MRF) and

Conditional Random Field (CRF) are common models used

throughout Computer Vision [15], in particular for low level

vision tasks: e.g. image denoising, optical flow, binocular

stereo, segmentation, etc. These models are often solved as

a discrete energy minimization task over a graph containing

nodes corresponding to individual pixels. The basic model

consists of the combination of a set of unary terms, defined

for each node individually, and a set of pairwise terms, de-

fined as a function of two nodes that share an edge. A first

order Markov assumption is often used where each node

shares an edge only with its immediate neighbors, e.g. the

graph may be a 2D grid over the pixels with each node con-

nected to its four (or eight) nearest neighbors. This is usu-

ally to keep the inference tractable in either computational

complexity or memory requirements.

The pairwise interactions impose a smoothness cost on

the final labeling. The move from MRF models to CRF

models [12] allows these terms to be conditioned on the in-

put data and thus the terms become dependent on the struc-

ture of the image. Whilst good results have been obtained

using only neighboring pairwise terms, they may only be

used to express a limited range of priors. The need to learn

richer and more expressive prior models from training data

has lead to a demand to solve models that contain higher-

order cliques (potential functions of more than two nodes)

or those which are able to capture the interplay between

nodes that are spaced further apart — non-local pairwise

interactions.

In this paper we consider the latter. We investigate the

addition of non-local pairwise potentials. This corresponds

to increasing the connectivity of the graph by adding edges

between nodes that are not immediate neighbors. During

inference, increasing the number of edges in the graph often

leads to a dramatic scaling in computational resources, both

for algorithms based on graph-cut, move making techniques

and message passing methods, e.g. [3, 7, 8].

To overcome this limitation, recent work has produced

a number of approximate inference techniques making use

of cross bilateral filtering. In particular, the work of

Krähenbühl and Koltun [10] proposed a method for per-

forming inference in a fully-connected pairwise CRF (every

node is connected to every other node) by taking a mean-

field approximation to the original CRF. Here, the message

passing is performed as a Gaussian bilateral filtering pro-

cess under the limitation that the pairwise potentials be ex-

pressed as a weighted sum of Gaussian kernels over a Eu-

clidean feature space. This allows approximate maximum

posterior marginal (MPM) inference to be performed very

efficiently for a multi-label CRF.

The method of [10] directly addresses the issue of in-

creasing graph connectivity since it allows for a fully-

connected CRF. However, thus far, the applications have

been limited by the requirement that the pairwise terms con-

sist of a weighted sum of Gaussian kernels over a Euclidean

feature space. The work of Vineet et al. [16] demonstrated

that the pairwise terms may be extended to include non-zero

mean mixtures of Gaussians, along with an estimation pro-

cedure to fit the model parameters, at the expense of a num-
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ber of extra filtering operations (one per Gaussian mixture)

at each iteration that slows down the inference procedure.

In this work we generalize the pairwise potential from

a simple parametric model to a conditional non-parametric

model that is learnt from training data. Our learning ap-

proach is to approximate directly the conditional joint prob-

ability distributions (from the training data) in a straight for-

ward density estimation process. This probability model

may be expressed as an image specific (evaluated at test

time), sparsely sampled dissimilarity measure. We then use

an efficient embedding technique to estimate a Euclidean

feature space that approximates this measure. The pairwise

terms may then be expressed as Gaussian kernels in this new

feature space and thus the inference procedure of [10] may

proceed unaltered. This allows us to generalize the pairwise

terms to a general, non-linear dissimilarity measure that is
not required to be a distance metric. In particular we show

that the use of non-parametric models for the pairwise inter-

actions greatly increases the expressive power whilst main-

taining the efficient inference of [10].

2. Previous Work
As discussed in § 1, our work makes use of the ef-

ficient mean-field inference method of Krähenbühl and

Koltun [10] and is thus related to other inference methods

based on bilateral filtering including work on image denois-

ing [9] and other low-level vision tasks such as stereo and

optical flow [5, 11] and semantic object segmentation [16].

In particular there has been some work on approximating

more complex pairwise terms with [16] learning the param-

eters of a non-zero mean Gaussian mixture model in the

bilateral space and [11] approximating a truncated penalty

function as a mixture of exponentials. In this work we gen-

eralize further by approximating an arbitrary dissimilarity

measure which can be non-parametric and conditioned on

each specific test image, as well as training data, by finding

an embedding into a Euclidean feature space that best ap-

proximates the dissimilarities and automatically minimizes

the dimensionality of the embedded space to match the

complexity of the provided dissimilarities.

The work of [16] also addressed the issue of initializa-

tion when performing inference on a CRF under a mean-

field approximation. Whilst this is not a topic we address

in this work, the insight and suggestions are equally valid

for our method. This topic was also looked at in [18]. The

subsequent work of [17] provides a method for extending

the filter based inference algorithm for models that include

potentials defined over certain types of higher-order cliques.

Again, this extension is not discussed in this work but the

findings are equally applicable and could be used with the

feature spaces presented here.

Recent work has investigated extensions to pairwise

CRFs under alternative inference methods, in particular the

works of Nowozin et al. [13] and Jancsary et al. [6] are

state-of-the-art decision tree based algorithms with tractable

training and inference, especially efficient in the case of [6].

Our approach shares the two key desirable properties of

these works. Firstly, we overcome the limitation of a fixed

neighborhood structure with the fully-connected model and,

secondly, we remove the requirement for the pairwise terms

to have a simple parametric form by allowing arbitrary non-

parametric dissimilarities to encode the pairwise potentials

that may be learnt from training data and also the dissimi-

larities can be conditioned on the input data at test time. We

demonstrate that our approach confers a competitive perfor-

mance with these approaches both in terms of accuracy and

computational efficiency. We would refer the reader to the

references contained in [6, 13] for further details of research

into parameter estimation in CRF models with parametric

pairwise terms.

The work of [14] proposes a scribble-based method for

selecting objects in images based on dense CRFs [10]. Two

standard non-Euclidean distance metrics over patches are

used (χ2 and Earth Mover’s Distance) and an embedding

into a Euclidean feature space is employed to incorporate

them into the dense CRF framework. In contrast, we pro-

pose to generalize away from a data-driven heuristic dissim-

ilarity measure, rather incorporating non-parametric dissim-

ilarities, learnt from training data.

3. Efficient Mean-Field Inference in Fully-
Connected Pairwise CRFs

In the recent work of [10], Krähenbühl and Koltun

described an efficient algorithm to perform inference on

a fully-connected CRF in linear time (in the number of

nodes) by using a mean-field approximation to the original

CRF and pairwise edges with potential functions defined as

Gaussian kernels in some feature space. Let us denote the

set of labels as x = {xi} with a label defined for every

pixel in the set of pixels P , such that i ∈ P , in a given im-

age I. Each label is taken from a label space L such that

xi ∈ L. If we denote the exact CRF distribution as P (x | I)
then the mean-field approximation is given as the distribu-

tion Q(x) that minimizes the KL-divergence KL(Q ||P )
with the constraint that the distribution Q must be decom-

posed as the product of a set of independent marginals

Q(x) =
∏

iQi(xi). The Gibbs energy for this model is

given as

E (x | I) =
∑
i∈P

ψi (xi) +
∑
i,j∈P
i�=j

φij (xi, xj) (1)

where we have P (x | I) = 1
Z(I) exp (−E (x | I)).

In [10] the authors demonstrate that the distribution Q
can be recovered by an iterative update equation that corre-

sponds to a message passing algorithm on the graph. The
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number of edges in a fully-connected CRF dictates that tra-

ditional message passing algorithms would be intractable in

computational time and resources. However, if the pairwise

terms in the Gibbs energy are expressed as

φij (xi, xj) = μ(xi, xj)

M∑
m=1

wm km

(
f
(m)
i , f

(m)
j

)
(2)

where μ(·, ·) is a constant symmetric label compatibility

function and

km

(
f
(m)
i , f

(m)
j

)
=

exp

(
−1

2

[
f
(m)
i − f

(m)
j

]T
Λm

[
f
(m)
i − f

(m)
j

])
(3)

is a Gaussian kernel with precision Λm in some feature

space f
(m)
i ∈ F (m), for the mth kernel, then the message

passing step consists of a low pass filtering operation under

a Gaussian kernel for which efficient approximations exist,

e.g. [1]. This allows each update iteration to be completed

in linear time with respect to the number of nodes rather

than quadratic time which would be required for traditional

message passing. We refer the reader to [10] for further

details. Throughout this paper we use the Potts model1

μ(xi, xj) = [xi �= xj ] for the compatibility function, M
denotes the number of kernels used, and we use Λm = I ,

the identity matrix, since the feature space can always be

transformed under an arbitrary covariance.

Updating all the messages in a single step removes the

convergence guarantees that are normally associate with

mean-field approximations. However, the authors of [10]

observe good convergence properties experimentally and

we found convergence would usually occur in fewer than

20 iterations. After running the algorithm for a fixed num-

ber of iterations, to get into a stable fixed state of the mean

field, we extract the Maximum Posterior Marginal (MPM)

solution by selecting the label that maximizes the associated

factor xi = argmaxl∈LQi(xi = l). We also note that the

fixed point of the mean field update equations is dependent

on initialization and not a globally optimal solution.

4. Non-Parametric Pairwise Potentials
In order to allow for more expressive pairwise potentials

we would like to relax the restriction on Gaussian paramet-

ric models, [10, 11, 16] and allow for more complex, non-

parametric models that may be learnt from training data and

conditioned on the input.

In this section we describe how we overcome the limita-

tion that the pairwise potentials be expresses as a Gaussian

kernel, as in (3). We do this in three stages. Firstly, we

present our desired pairwise potentials as density estimates

1Here we use [xi �= xj ] as an inequality indicator function.

of the conditional pairwise probability (learnt from training

data, conditioned on a test image). We then express these

probabilities as a dissimilarity measure between nodes in

the CRF. Finally, we use an efficient approximate embed-

ding technique to find a set of feature spaces that encode the

dissimilarity measure as the Euclidean distance and thus the

desired pairwise potential under a Gaussian kernel in this

space.

4.1. Pairwise Conditional Probabilities

The pairwise potentials in a CRF encode conditional

probabilities between pairs of nodes. Our approach is to

estimate these probabilities directly from a set of training

data T . We make this conditional for each node at test time

by first looking at the local area (an image patch si) around

a particular node i in the test image I and then finding sim-

ilar patches in the training images. For each label l in the

label space L, we want to estimate the conditional probabil-

ity P (xj = l | xi = l, I, T ) for the nodes j around node i,
i.e. the conditional local density distribution of the label l.

Density Estimation: Any density estimation or regression

technique could be used to approximate these conditional

probabilities; in particular, we make use of a non-parametric

approach by referring to the training data directly and per-

forming a kernel based density estimate. We take the mean

of the indicator images for the label l from the training im-

ages that contain a patch similar to si. By indicator image

we mean a binary image equal to one for every pixel be-

longing to class l and zero elsewhere. In practice this corre-

sponds to extracting much larger patches from the training

indicator images for class l, that are centered on patches

similar to si, and finding the mean.

We place a prior that dictates the range over which we

are able to infer useful information in the pairwise potential

by applying a Gaussian window of size σw in pixel distance

gwin(i, j) = exp
(
−‖ui − uj‖22

/ (
2σ2

w

))
, (4)

where ui and uj are the pixel coordinates of nodes i and j.
This is equivalent to using a Gaussian kernel to perform the

density estimation.

This procedure identifies local correlations in the train-

ing data that will then be encouraged to occur in the output

by means of the pairwise potentials. For example, if a par-

ticular image patch always has label l above it in the train-

ing data then the indicator images will always be set to one

above this patch. Thus, the mean of all the training indica-

tor images, centered on the patch, will be close to one. This

indicates that the pairwise term should have strong connec-

tions to the pixels above for class l.
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4.2. Probabilities to Feature Spaces

We now have a method for determining the non-local

pairwise potentials around node i for image I. In order to

be able to use these potentials to perform the efficient in-

ference discussed in § 3 we must be able to express them

in the form of (2); more specifically, the Gaussian kernel

of (3). This corresponds to finding a set of feature vectors

(i.e. an embedding in a feature space) where the distance

between the feature vectors of each node under the Gaus-

sian kernel is equal to the conditional probability densities.

We can achieve this, in a similar fashion to [14], by creating

an appropriate dissimilarity measure, based on the condi-

tional probabilities, and finding an embedding such that the

Euclidean distance in the embedded space matches this dis-

similarity measure.

Dissimilarity Measure: If we denote the dissimilarity mea-

sure as d (i, j, I, T ) then we may express our pairwise term

as having the form

φij (xi, xj) = [xi �= xj ] exp (− d (i, j, I, T )) . (5)

Let us consider the training data for a single label l ∈ L.

We let

exp (− dl (i, j, I, T )) =
gwin(i, j)P (xj = l | xi = l, I, T ) (6)

⇒ dl (i, j, I, T ) =

− log
[
gwin(i, j)P (xj = l | xi = l, I, T )

]
(7)

where this distance between landmark location i and vary-

ing j, under label l, is the conditional distribution of the

label l given the training data T the test image I.

Feature Space Embedding: The dissimilarity measures

obtained for each label may now be embedding into a fea-

ture space F (l) to provide a of feature vector {f (l)i } for each

node i and label l such that

∥∥∥ f (l)i − f
(l)
j

∥∥∥2

2
≈ dl (i, j, I, T ) ∀ i, j . (8)

The set of embedded vectors may then be used as a fea-

ture space in (3) to perform inference using the filtering ap-

proach. Thus we have generalized the constraints on the

pairwise potentials to the requirement that they be expressed

as (5) where the functions dl (i, j, I, T ) are dissimilarity

measures which must satisfy dl (i, i, I, T ) = 0. Whilst it

is not a strict requirement that dl(·, ·) be a distance func-

tion, we note that when the distance function is embedded

in the form (5) the resulting approximate distance will be

symmetric and therefore a symmetric distance will always

be used to perform inference.

4.3. Approximate Euclidean Embedding

We make use of the Landmark version of the Multidi-

mensional Scaling (MDS) algorithm [4] to compute the fea-

ture vectors {f (l)i } from the dissimilarity measures as an

embedding in p-dimensional Euclidean spaceRp.

The landmark variant (LMDS) has the advantage over

classical MDS of removing the need to store a complete

pairwise dissimilarity matrix D
(l)
ij = dl (i, j, I, T ) that

would have a storage complexity of O(N2), where N =
|P| is the number of pixels in the test image I. Instead, the

Nyström approximation ofD
(l)
ij is used and allows us, under

reasonable sampling conditions, to provide only a subset of

the dissimilarity matrix.

For a p-dimensional embedding, LMDS required the

complete set of dissimilarities between p+1 points, known

as the landmarks. In practice, due to potential degeneracies,

the number of landmark points needs to be c > p+1 to en-

sure that they span the p-dimensional space. The remaining

points have their positions triangulated from these landmark

points, requiring the dissimilarities between the landmarks

and the other points.

The required dimensionality of the space (p) can be de-

termined by analysis of the the eigenvalues computed dur-

ing the LMDS embedding. Further details of MDS, LMDS

and the eigenvalues are provided in the supplemental mate-

rial.

Random Sampling: The use of LMDS means that

we don’t have to estimate dl (i, j, I, T ), and hence

P (xj = l | xi = l, I, T ), for all nodes i. Instead we pick

sampling locations C (c = |C| points uniformly distributed

over the test image) and estimate P (xj = l | xi = l, I, T ),
and the corresponding dissimilarities, for i ∈ C and all j.

Illustration: Figure 1 provides an illustrative example from

the case of a binary label set |L| = 2, with the labels as fore-

ground text and background, used on the task of shape com-

pletion in our experiments in § 5. We are provided with a

binary shape pattern and an occlusion mask and wish to in-

fer the labels of the occluded pixels as foreground or back-

ground. In addition to the masked test image we are also

provided with a training database of images containing sim-

ilar statistical properties to our test data.

Consider a single sample location for the foreground la-

bel (orange); we want to compute the dissimilarity to all

other pixels. We look at the local patch (conditional region)

around the pixel, and find all the patches in our training

database that match with a low hamming distance. The dis-

similarities to the pixels in the wider region, determined by

the window size σw, around our input patch should have

the same label distribution as the regions around the train-

ing patches. Therefore, we take the mean of the set of larger
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Figure 1: Random sampling to build the distance matrix. The

local neighborhood of a random sample is used to condition a

lookup into the training data to provide a non-parametric estimate

of the potential dissimilarity measure to the wider image.

patches from the training indicator images, for the appropri-

ate label, as our conditional probability. We then multiply

by the Gaussian window function and take the negative log

to obtain the required dissimilarity (7).

This process is then repeated until sufficient samples

have been gathered to proceed with the embedding using

LMDS. We then perform the same operation for the back-

ground label, for example taking the sample shown in blue

in Fig. 1. This provides us with a set of feature spaces F (l)

which we use with a Potts model in (2), with M = |L|, to

filter each label in its own feature space. Figure 3 shows

some actual examples of the raw probability estimates from

one of our experiments.

Final Model: Our final model is given by

E (x | I) =
∑
i∈P

ψi (xi) + β −

w
∑
i,j∈P
i �=j

∑
l∈L

[
xi = l,

xj = l

]
exp

⎛
⎜⎝−

∥∥∥ f (l)i − f
(l)
j

∥∥∥2

2

2σ2
f

⎞
⎟⎠ , (9)

where we have used [xi �= xj ] = 1 − [xi = xj ] and β is a

constant that may be neglected. Please see the supplemen-

tary material for further algorithmic details.

5. Experiments
Since our contribution is in the use of pairwise poten-

tials, a direct and unbiased evaluation of our work is best

obtained by removing the dependence of the results on any

unary terms in the CRF. We demonstrate the effectiveness

of our approach by performing in-painting on binary im-

ages. Here, we have a task where no unary is applicable

in the occluded region and we must use expressive pairwise

potentials to learn the wider neighborhood statistics that en-

code the shape distributions. The task we perform was pro-

posed by Nowozin et al. [13] and used in [6]; we follow the

procedure the authors describe within these papers and the

supplementary materials. We used 3 × 3 pixel patches as

the conditional region for all tests.

Method Accuracy

Random Forest [13] 67.74 %

MRF (1 level DTF) [13] 75.18 %

Gaussian MRF (1 level RTF) [6] 74.19 %

Decision Tree Field [13] 76.01 %

Regression Tree Field [6] 77.55 %

Our Result (σw = 7 pixels) 82.04 %

Table 1: Quantitative comparison of test results for the KAIST
Hanja2 database with small occlusions. We provide results for

the accuracy (as the percentage of pixels correctly labeled) for fill-

ing in the masked regions on unseen test images after training on

a separate training set. We adopt the same methodology as [13, 6]

splitting the input data in a 2:1 training to test ratio with the di-

mensions of the masked regions drawn from [5 . . . 20] pixels.

Input Truth RF MRF GMRF DTF RTF Ours

Figure 2: A qualitative comparison for the KAIST Hanja2
database with large occlusions. We fill in the grey region from

the first column using the following algorithms: (RF) A baseline

Random Forest. (MRF) A DTF with a depth of 1 (local neigh-

bors). (GMRF) A Gaussian MRF, an RTF with a depth of 1. (DTF)

The Decision Tree Field [13]. (RTF) Regression Tree Field [6].

(Ours) The result of our algorithm. The results in the central

columns are taken from [13] and [6].

The KAIST Hanja2 Database: In this experiment we

make use of the KAIST Hanja2 database: a collection of

handwritten Chinese characters. The dataset displays a rich

degree of shapes and variation with some characters re-

peated often and others with only single examples. We ran-

domly split the database into 300 images used for training

and 150 for testing. We occlude a centered rectangular re-

gion of each of the test images in two different tasks, the

locations of the occlusions are obtained as detailed in [13].

The first task considers small occlusions with the mask di-

mensions drawn uniformly from the range [5 . . . 20] pixels,

and, the second task considers large occlusions with dimen-

sions from [20 . . . 40] pixels. The unary term is clamped to

the ground truth outside the occluded region and to an unin-

formative uniform distribution within the occluded region.

Table 1 gives the quantitative results for the small oc-
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Figure 3: A sample of the dissimilarity measures used for a
KAIST Hanja2 example. We show some random sample loca-

tions for foreground (red) and background (blue) 3 × 3 patches

used as landmarks for the embedding. For each of the landmark

patches we find similar patches in the training data and then es-

timate the density of the appropriate class (foreground or back-

ground) centered on the patch. Two samples of the density esti-

mates are shown for each class; the colormap is black to white

with increasing density. The raw probability values are shown; we

apply a Gaussian window and take the negative log to obtain the

dissimilarity samples for embedding.

clusion task (evaluated as the percentage of pixels correctly

labeled). It provides comparisons with the Decision Tree

Field [13] and Regression Tree Field [6] methods, both of

which are considered state-of-the-art, and shows that our

method confers a favorable performance. We also note the

marked improvement of all the methods making use of in-

creased neighborhood ranges in their potential functions;

the low connectivity of the RF, MRF and and GMRF meth-

ods is indicative of this short coming.

Figure 2 provides the qualitative output for the large oc-

clusion test cases, again showing comparisons to the state-

of-the-art methods. Without any higher level inference (i.e.

attempting to classify the characters) it is a very challenging

problem to correctly recover the original character. Instead,

filling in plausible structure is indicative of good perfor-

mance showing that the model has captured the underlying

statistics of the training data and exploited the conditional

dependence on the input. We believe that our results are

reasonable for the nature of the characters even though they

may not accurately reconstruct the ground truth.

In Fig. 3 we provide an example of the conditional, non-

parametric pairwise potentials used for the KAIST Hanja2

database. The dissimilarity measures for the foreground and

background classes are observed to vary based upon the lo-

cal region around the sampling locations and we can see the

structure, learnt from the training data, that is promoted by

the potentials.

The Weizmann Horse Database [2]: In this dataset we

perform the same task but using silhouettes of horses from

Input Ours Truth Image [10] [14]

Figure 4: A sample of test results for completing silhouettes
from the Weizmann horse database [2]. We used 219 train-

ing images and 109 test images selected at random. We occluded

with the ‘large occlusion box’ parameters (from the Hanja2 evalu-

ation [13]) with the dimensions of the masked regions drawn from

[20 . . . 40] pixels. Methods [10] and [14] require the color images

which are not used by our method.

the Weizmann horse database [2]. We use the large occlu-

sion parameters from the KAIST test and allow the occlu-

sion box to move around in the test images. Figure 4 shows

a random selection of results ranked in decreasing accuracy

from top to bottom. Table 2 details the overall accuracy.

We compared our non-parametric model to the cross bi-

lateral model of [10] and an input-agnostic dissimilarity

used by [14]. The results obtained for [10] and [14] require

the original color image in order to calculate the pairwise

terms; our method makes no use of the color images during

training or testing. These value is included for compara-

tive purposes but the specific task is different since it is no

longer simply binary inpainting, rather guided inpainting.

The goal of [14] is robustness to inaccurate training. Con-

sequently, the resulting images for shape completion, Fig. 4,

do not consider the truth data to be reliable outside the mask

region, however, we compute the accuracy only within the

masked region.

Our result is shown to afford comparable accuracy to the
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Method Accuracy

Potts Model 60.17 %

Cross Bilateral (Parametric) Model [10] 84.10 % *

χ2 Patch Distance Model [14] 89.87 % *

Our Result 89.78 %

Table 2: Quantitative comparison for the Weizmann Horse
dataset. The Potts model provides a baseline as a generic smooth

result. Both methods in italics (marked with an asterisk), the cross

bilateral model (gaussian kernel in color space) of [10] and the χ2

patch dissimilarity model of [14], needed the original color im-

age to evaluate the pairwise terms over the occluded regions. This

color image was not provided to our method during training or test-

ing. For all methods a window size of σw = 13 pixels was used,

the additional parameters for [10] were set to the values specified

by the authors.

methods of [10] and [14] without the need for the specific

color image to guide the CRF, making use of the shape train-

ing data instead. The Potts model serves as a baseline for

a simple smoothness prior. All results were obtained with

a window size of σw = 13 pixels; the increase over the

σw = 7 pixels for the Chinese characters is indicative of the

differing scales of the foreground objects.

6. Discussion

Timing: We compute the embedding using 80 landmark

samples and 10 dimensions in around 1s. As in previous

work, the inference is efficient, with 20 iterations in a sec-

ond. Both of these timings are on the horse examples. The

KAIST tests are slightly quicker. This could be improved

with parallel implementations, in particular the GPU may

help with filtering. The data lookup for the non-parametric,

conditional potentials is less predictable. In our examples,

the training data could be held in memory and accessed

quickly (around 2 seconds) using a kd-tree. Our efficiency

is comparable to the RTF [6], and superior to the DTF [13],

and our training process is simpler and more efficient.

Short- and Long-Range Interactions: In our experiments

we used the model of (9) with uninformative unary terms

over the occluded region. Figure 5 shows the relation-

ship between the window size and accuracy in performance

for the small occlusion test. The graph clearly shows the

boost in performance offered by increasing the neighbor-

hood range. At a window range of 2 pixels we are approach-

ing the performance of traditional MRF and CRF models

with local neighbors. We found the best performance at

σw = 7 pixels. Performance tails off as the range increases.

This is to be expected since the local conditioning of the po-

tentials is no longer valid over large distances; in addition,

at 35 pixels we are approaching the size of the characters
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Figure 5: The variation of accuracy with the spatial window
size for the KAIST Hanja2 database with small occlusions. We

observe a noticeable decrease in performance for small window

sizes (approaching the standard 4-connected CRF) demonstrating

the advantage of having a non-local pairwise potential. There is

also a drop-off in performance with large window sizes suggesting

that very long range potentials act as a hinderance.

themselves.

Figure 6(a) shows the variation in accuracy with the w
and σf parameters. We observe that the weighting w of

the pairwise term has relatively little impact but there is a

definite optimal value for the σf term. We kept the weight

w = 25 and σf = 0.1 terms constant for our other experi-

ments. The weight w is of little importance since we have

an uninformative unary term in the occluded region. The σf
plays a greater role due to the windowing process applied to

the pairwise potentials. Windowing the potentials shown in

Fig. 3 leads to uninformative tails (at large distances) for all

classes and the embedded approximation of the dissimilar-

ity measure will be less accurate in these regions. Chang-

ing the σf parameter to match the window helps provide a

sharper drop off in the edge potentials outside the windowed

region and leads to an improved accuracy.

The Embedding: We observed several advantages of using

LMDS, besides its relatively low computational complexity

and memory requirements. First, the number of landmark

points c is a simple parameter that may be used to trade-off

error for performance (both computational as well as mem-

ory). We observed that a few samples (we used c = 80
for a 10 dimensional feature space) are sufficient in practice

for producing embeddings with acceptable error (Fig. 6(b)).

Second, the intrinsic dimensionality of the feature space

may be discovered automatically as the number of positive

Eigenvalues in Λ(please see supplementary material).

Limitations: Whilst our approach provides state-of-the-art

performance and confers many benefits in the expressive

power of the non-local and conditional potentials. Under

the current model we learn a different feature space for ev-

ery label. This is clearly expensive for multi label prob-
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Figure 6: The variation of accuracy with the parameters of (9)
for the KAIST Hanja2 database with small occlusions. (a) We

observe that the performance is relatively invariant to the weight

parameter w but there is an optimal value of σf close to 0.1.

(b) We observe a slight improvement in accuracy as we increase

the number of landmarks c used but limiting the dimensionality of

the embedded space p has a greater impact.

lems with a large label set. Also we are currently neglect-

ing cross terms in that density estimating between different

labels can also be performed and encoded into the update

filtering at each iteration. The number of cross terms would

scale quadratically with the size of the label set.

Further Work: This work opens a number of avenues

for future investigation. In particular there are many op-

tions for estimating the conditional potential distances for

a wider variety of multidimensional complex data and to

improve scaling with larger training datasets. In particu-

lar non-parametric density estimators and regression tech-

niques may prove very useful for this task.

Conclusions: We have demonstrated how to condition ex-

pressive, non-local pairwise potentials on input data. Key to

our approach is the fast estimation of a feature space that is

specific to the test image. This embedding of the pixels in

feature space leads to an efficient mean-field inference in a

fully-connected CRF model, yet with a generalized under-

lying dissimilarity measure. Our method confers state-of-

the-art performance when compared to recent approaches

that perform inference on similar models.
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[10] P. Krähenbühl and V. Koltun. Efficient inference in fully connected

CRFs with gaussian edge potentials. In NIPS, pages 109–117, 2011.

1, 2, 3, 6, 7
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