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Abstract

Making a high-dimensional (e.g., 100K-dim) feature for
face recognition seems not a good idea because it will bring
difficulties on consequent training, computation, and stor-
age. This prevents further exploration of the use of a high-
dimensional feature.

In this paper, we study the performance of a high-
dimensional feature. We first empirically show that high
dimensionality is critical to high performance. A 100K-dim
feature, based on a single-type Local Binary Pattern (LBP)
descriptor, can achieve significant improvements over both
its low-dimensional version and the state-of-the-art.

We also make the high-dimensional feature practical.
With our proposed sparse projection method, named rotated
sparse regression, both computation and model storage can
be reduced by over 100 times without sacrificing accuracy

quality.

1. Introduction

Modern face verification pipelines mainly consist of two
stages: extracting low-level features, and building classifi-
cation models. The first stage focuses on constructing in-
formative features manually or from data. The second stage
usually exploits supervised information to learn a classifica-
tion model [10, 26, 30], discriminative subspace [3, 26, 36],
or mid-level representation [4, 24, 34, 38].

A good low-level feature should be both discrimina-
tive for inter-person difference and invariant to intra-person
variations such as pose/lighting/expression. Recent suc-
cessful features have been either handcrafted (e.g., Gabor
[27], LBP [1], and SIFT [29]) or learned from data [&].
In the design of a feature, we often compromise its infor-
mativeness (containing as much discriminative information
as possible) and compactness (size). We favor a compact
feature as it makes the second stage easier and whole stor-
age/computation cheaper.

However, we question whether such a trade-off occur-
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ring in the first stage is too early, w.r.t the whole pipeline.
We first study the performance of the high-dimensional fea-
ture as the function of its dimensionality (more precise-
ly, amount of discriminative information). To effective-
ly construct a high-dimensional, informative feature, we
appropriately exploit the advantages of the recent strong
alignment [7] and other modern techniques. In short, we
densely sample multi-scale descriptors centered at dense
facial landmarks and concatenate them. We empirically
found that a high-dimensional feature, with sufficient train-
ing data, is necessary to obtain state-of-the-art results. For
example, based on a single-type of LBP descriptor, our
high-dimensional feature with 100K-dim can achieve over
93.18% accuracy' on challenging Labeled Face in Wiled
(LFW) [23] dataset, significantly higher than its non-high-
dimensional version and the established state-of-the-art.

Of course, high-dimensional feature leads to high cost.
Even if we use a linear dimension reduction method like
Principal Component Analysis (PCA), projecting a fea-
ture from 100K-dim to 1K-dim needs 100M of expensive
floating-point multiplications. Moreover, storage of the pro-
jection matrix in floating-point formate is 400M! Such a
high cost is unaffordable in many real scenarios such as mo-
bile applications or on embedded devices. Even when using
a desktop, deploying such system is undesired.

To make high-dimensional feature really useful, we pro-
pose a simple two-step scheme for obtaining a sparse lin-
ear projection. In the first step, any conventional subspace
learning methods can be applied to get the compressed, low-
dimensional feature. In the second step, we adopt /; regres-
sion to learn a sparse project matrix which maps the feature
from the original high dimension to low dimension. Con-
sidering that the commonly used distance metrics (e.g., Eu-
clidean and Cosine) are invariant to a rotation transforma-
tion, we further introduce an additional freedom of rotation
in the mapping. Our method, called Rotated Sparse Regres-
sion, can reduce the cost of linear projection and its storage

'Under unrestricted protocol; no outside training data in recognition
system.



by sacrificing very little accuracy (less than 0.1%).
The main contributions of this paper are:

e We reveal the significance of a high-dimensional fea-
ture in the context of modern technology (face align-
ment / learning methods / massive data) for face recog-
nition;

We propose a rotated sparse regression to make high-
dimensional feature feasible;

We demonstrate state-of-the-art performances of the
high-dimensional feature, in various settings (unsuper-
vised / limited training / unlimited training).

2. Related Works

Since the topics covered in face recognition literature are
numerous, we focus on two most-related aspects.
Over-completed representation is an effective way to ob-
tain an informative, high-dimensional feature. In unsuper-
vised feature learning, densely sampling overlapped image
patches [5, 12] consistently improve performance. For ex-
ample, Coated et al. [12] discovered through experimen-
tation that over-completed bases are critical to high perfor-
mance regardless of the choice of encoding methods. Simi-
lar observations have also been made in [5, 22, 37].

Multi-scales sampling has also proven be effective. Ex-

amples include multi-scale LBP [9] and multi-scale SIFT
[18, 19] for face recognition, Gist descriptor for image re-
trieval [14], and scene classification [32, 35].
Feature compression. Two common approaches for com-
pressing features are feature selection and the subspace
method. Feature selection is the most effective way to re-
move noisy and irrelevant dimensions. It is usually formu-
lated in a greedy way such as boosting [15], or in a more
principled way by enforcing [; penalty [20] or structure s-
parsity [28].

The subspace method is more suitable for extracting the
most discriminative low-dimensional representation. It can
be implemented as an unsupervised [2 1, 36] or supervised
subspace methods [3, 10, 26]. For linear subspace meth-
ods, the high-dimensional feature is projected into a low-
dimensional subspace with a linear projection. To make the
projection sparse, Hastie ef al. developed a sparse version
of PCA [41] and LDA [11] by adding a sparse penalty and
formulating them as elastic net problems [40]. However, the
additional sparse penalty often makes the original optimiza-
tion method inapplicable. This drawback could become an
insurmountable obstacle when trying to enforce sparsity to
other more sophisticated subspace learning methods.

3. High-dimensional Feature is Necessary

In this section, we describe our construction of the high-
dimensional feature in detail and study its accuracy though
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(b)

Figure 1. (a) shows the fiducial points used in the high-dimensional
feature, we found denser fiducial points significantly improve the
performance of the feature. (b) explains the multi-scales represen-
tation. The small scale describes the detailed appearance around
the fiducial points and the large scale captures the shape of face in
relative large range.

experimentation as a function of the dimensionality.

3.1. Constructing high-dimensional feature

We construct the feature simply by extracting multi-scale
patches centered at dense facial landmarks. We first locate
dense facial landmarks with a recent face alignment method
[7] and rectify similarity transformation based on five land-
marks (eyes, nose, and mouth corners). Then, we extract
multi-scale image patches centered around each landmark.
We divide each patch into a grid of cells and code each cell
by a certain descriptor. Finally, we concatenate all descrip-
tors to form our high-dimensional feature.

In the above process, the following two factors are worth

noting.
Dense landmarks. Our feature is based on accurate and
dense facial landmarks. This is only possible with recent
great progress made in face alignment (i.e. locating land-
marks) [2, 7]. Using sampling or regression techniques, to-
day’s face alignment methods can output both accurate and
dense landmarks on faces in the wild. In this paper, we
leverage these works and show that this factor is crucial to
our work.

We select landmarks of the inner face due to their rela-
tively high accuracy and reliability. Figure | (a) (from s-
parse to dense) shows the landmarks we used for feature
extraction, which are salient points on the eye brows, eyes,
nose and mouth. There are 27 landmarks in total.

Multiple scales. As shown in Figure 1 (b), we first build
an image pyramid of the normalized facial image (with a
similarity transformation which is determined by five land-
marks). Then, at each landmark we crop fixed-size image
patches on every pyramid layer. Finally the images patches
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Figure 2. Accuracy as a function of the features dimension.

at all layers are divided into 4x4 cells which are described
by a certain kind of local descriptor.

Note that our patch size is very large. For example, the
patch at the third layer covers more than half the area of the
face. We found this is important because such a large patch
contains global shape information.

3.2. High dimensionality leads to high performance

In this section, we investigate the effect of the dimen-
sionality of our feature on face verification accuracy. We
use the LFW benchmark, following its unrestricted pro-
tocol [23]. We evaluate five different local descriptors:
LBP [1], SIFT [29], HOG [!3], Gabor [27], and LE [8].

Figure | shows our main result: high-dimensional fea-
ture results in high performance. There is a 6% ~ 7% im-
provement in accuracy when increasing the dimensionality
from 1K to over 100K for all descriptors. In this experimen-
t, the feature dimension is increased by varying landmark
numbers from 5 to 27 and sampling scales from 1 to 5.

To effectively apply a supervised learning method in the
second stage, the dimension of these features is reduced to
400 by PCA?. We compared three leading learning meth-
ods, LDA [3], PLDA [26], and Joint Bayesian [10]. Our
results held regardless of the choice of supervised learning
methods. For simplicity, we only report the results from the
Joint Bayesian method, which consistently achieves best ac-
curacy.

We believe the results of the high performance of high-
dimensional feature are due to a few reasons. First, the land-
marks based sampling make the feature invariant to varia-
tions like poses and expressions. Second, dense landmark-
s functions similar to the dense sampling in BOV frame-
work [5, 12], which includes more information by the over-
completed representation. Third, the multi-scale sampling

2The results are similar from 400 to 1,000.
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effectively and comprehensively encodes the micro and
macro structures of the face. Last, the previous factors are
not redundant. They are complementary. We will conduct
more detailed experiments to further investigate these fac-
tors in Section 5.1.

Note that the effectiveness of the high-dimensional fea-
ture may be limited by insufficient training data. But nowa-
days, larger datasets are gradually available in research
[10, 23] and industry [33]. Given sufficient supervised data,
the high-dimensional feature is more preferable. In Sec-
tion 5.2, we will present the results of the high-dimensional
feature in a large training data setting.

Recent works on other image classification problems al-
so revealed the importance of the high-dimensional feature.
Yang et al. [37] showed that over-completed representa-
tion is more separable, and Sdnchez et al. [31] reported on
the significance of high-dimensional features in large-scale
image classification. Pooling in spatial [25] and feature s-
paces [0] also lead to higher dimensionality and better per-
formance.

4. Rotated Sparse Regression based Efficient
Compression

Although high dimensionality leads to high perfor-
mance, this comes at a high cost. In this section, we propose
a novel method for learning a sparse linear projection which
maps the high-dimensional feature to a discriminative sub-
space with a much lower computational/storage cost.

As shown in Figure 3, our method can be divided in-
to two steps. In the first step, we adopt PCA to com-
press the high-dimensional raw feature. Then the super-
vised subspace learning methods such as LDA [3] or Joint
Bayesian [10] are applied to extract discriminative informa-
tion for face recognition and (potentially) further reduce the
dimension.

In the second step, we learn a sparse linear projection
which directly maps high-dimensional feature set X to low-
dimensional feature set Y learned in the first step. Specifi-
cally, we adopt an /;-based regression to learn a sparse ma-
trix B with additional freedom in rotation which can further
promote the resulting sparsity.

4.1. Rotated sparse regression

Let X = [z1, 22, ..., xy] be the input high-dimensional
feature set and Y = [y1, ya, ..., yn] be the corresponding
low-dimensional feature set obtained from any conventional
subspace learning methods. N is the number of training
samples. Our objective is to find a sparse linear projection
B which maps X to Y with low error:

min [[Y = BTX|3 + | B, (1)
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Figure 3. This figure illustrates our method for sparse subspace
learning. In the training phase, low-dimensional features Y are
first obtained by PCA and supervised subspace learning. Then we
learn the sparse projection matrix B which maps X to Y by the
rotated sparse regression. In the testing phase, we compute the
low-dimensional feature by directly projecting high-dimensional
feature using sparse matrix B.

where the first term is the reconstruction error and the sec-
ond term is enforced sparse penalty. The scalar A balances
two terms.

Considering the commonly used distance metrics in the
subspace (e.g., Euclidean and Cosine) are invariant to ro-
tation transformation, we can introduce additional freedom
in rotation to promote sparsity without sacrificing accuracy.
With an additional rotation matrix I, our new formulation
is:

win ||F'Y — BYX|3+ | B,

st. R'R=1.

Since the above formulation is a linear regression with s-
parse penalty and additional freedom in rotation, we term it
as Rotated Sparse Regression.

4.2. Optimization

We notice that the objective function is convex if R or
B is given. Thus, we adopt an alternative optimization
method. The iteration is initialized by simply letting the
matrix R be equal to the identity matrix.
Solving B given R. Let Y = RTY’, the objective function
can be rewritten as,
min Y = BYX|5 + A B 3)
As B’s columns are independent of each other in E-
quation (3), we can optimize each column in parallel. In
our implementation, we use an efficient coordinate descent
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method [16] which is initialized by the valued obtained in a
previous iteration to solve it.

Solving R given B. When matrix B is fixed, the sparse
penalty term is constant. By removing the constant penalty
term from the objective function, we have

min ||RTY — BT X3,
" “)

st. R'R=1I.

This problem has a closed form solution. Suppose the SVD

decomposition of Y X7 B is UDVT, then the closed form

solution of matrix R is
R=UVT.

By iteratively optimizing two sub-problems, we can effi-
ciently learn a rotated sparse regression.

With the learned linear projection matrix B, the low-
dimensional feature is simply computed by BT X. Due to
the sparse penalty, the number of non-zero elements of ma-
trix B is reduced by orders of magnitude (see our experi-
ments in Section 5.4). As the complexities of linear projec-
tion in computation and memory are linear to the number of
non-zero elements, the cost of the linear projection is dra-
matically reduced.

4.3. Discussion

An alternative approach to sparse subspace learning is
directly adding an [; penalty term into the original objective
function [41, 1 1]. Despite such an approach being more ele-
gant in the formulation, they cause difficulties for optimiza-
tion. In contrast, our method directly exploits the original
subspace method to compute the low-dimensional feature
and avoid difficulties in developing new optimization meth-
ods. Moreover, since only the low-dimensional feature is
required in the second step, it is not necessary for the orig-
inal subspace learning method to be linear. In addition, the
rotation term in our formulation provides additional free-
dom and further promotes the sparsity.

Feature selection is also a common approach to dealing
with high-dimension problems such as boosting [15] and
multi-task feature selection [28]. It aims to select a subset
of dimensions which contains more discriminative informa-
tion and remove the noise and redundancy. Compared with
feature selection methods, our method exploits the infor-
mation in all dimensions rather than a subset of them. As
shown in Section 5.5, our method achieves much better per-
formance, which indicates most of dimensions are useful in
our constructed high-dimensional feature.

5. Experimental Results

In this section, we present more experimental results
of our high-dimensional feature and rotated sparse regres-



sion method. We evaluate the high-dimensional feature un-
der three settings: unsupervised learning, supervised learn-
ing with limited and unlimited training data. We adop-
t the Joint Bayesian method[10]® for supervised subspace
learning. Before diving into details, we first introduce the
three datasets in our experiments and the baseline feature
we compare with.

LFW [23]. The LFW database contains 13,233 images
from 5,749 identities. The number of images varies from
1 to 530 for one subject. All these images are collected
from the Internet with large intra-personal variations.
WDRef [10]. The WDRef database contains 99,773 im-
ages of 2,995 subjects. Over 2,000 subjects have more than
15 images. They are collected from the Internet with large
variations in pose, expression and lighting.

Multi-PIE [17]. The Multi-PIE database contains images
of 337 subjects. These images are captured under controlled
pose, expression and light conditions.

Baseline feature. The baseline method first normalize the
image to 100*100 pixels by an affine transformation calcu-
lated based on 5 landmarks (two eyes, noise and two mouth
tips). Then, the image is divided into 10*10 no-overlapped
cells. Each cells within the image is mapped to a vector by a
certain descriptor. All descriptors are concatenated to form
the final feature.

5.1. The High-dimensional feature is better

In the first experiment, we evaluate the performance of
the high-dimensional feature with supervised learning. We
extract image patches at 27 landmarks in 5 scales*. The
patch size is fixed to 40 x 40 in all scales. We divide each
patch into 4 x 4 non-overlapped cells. We evaluate 5 de-
scriptors for encoding each cell: LE [8], LBP [1], SIFT [29],
HOG [13] and Gabor [27]. The dimension of the features
are reduced to 400 by PCA for supervised learning. We fol-
low LFW’s “unrestricted protocol” - only use training data
provided by LFW.

As shown in Table 1, compared with the baseline fea-
ture, the high-dimensional feature brings 4% ~ 6% gain
in accuracy for all descriptors. The single LBP descriptor
obtains 93.18% which is 2% higher than the state-of-the-art
result [ 10] which is based on multiple feature combination.

To better understand our high-dimensional feature, we
separately investigate three factors: sampling at landmarks,
landmark number, and scale number.

Sampling at landmarks. To investigate this factor, we ex-
tract image patches in a single scale at 9 landmarks and
compare it with the baseline feature. Their dimensionality

3We have tried several supervised learning methods such as LDA [3],
PLDA [26] and Joint Bayesian [10]. According to our experiments, the
accuracy consistently improved. Given limited space, we only report the
results of Joint Bayesian which achieved the best results.

4The normalized facial image are resized to five scales. The side length-
s of the image in each scale are 300, 212, 150, 106, 75.
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Baseline | High dimension
LE 88.78% 92.92%
LBP 88.33% 93.18%
SIFT | 85.95% 91.77 %
HOG | 87.90% 91.10%
Gabor | 84.93% 90.97 %

Table 1. The comparison between the high-dimensional feature
and the baseline feature under LFW unrestricted protocol.

Baseline | Sampling at landmarks
LE 88.78% 90.60%
LBP 88.33% 90.30%
SIFT | 85.95% 89.08%
HOG | 87.90% 88.78%
Gabor | 84.93% 87.27%

Table 2. The comparison between sampling at regular grids (Base-
line) and sampling at landmarks.

are kept close so as to exclude the impact of the dimension-
ality. As shown in Table 2, sampling at the landmarks leads
to comparatively better performance, which indicates sam-
pling at the landmarks effectively reduce the intra-personal
geometric variations due to pose and expressions.
Landmark number. In this experiment, we increase the
landmarks number from 5 to 27 to investigate performance
as a function of the number of landmarks. Figure 4 shows
the accuracies of all descriptors improve monotonically,
when the number of landmarks increases from 5 to 22. In-
creasing from 22 to 25 will not cause much improvement or
even bring small negative effect.

Scale number. To verify the effect of multi-scale represen-
tation, we conduct experiments to study the performance
with varying numbers of scales. We can see from Fig-
ure 5 that the accuracy of all descriptors increases when the
number of scales increases. The accuracy gain is around
2% ~ 3%, when we raise the number of scales from 1 to 5.
But after 5 scales, the benefit becomes marginal.

5.2. Large scale dataset favors high dimensionality

To investigate the performance of the high-dimensional
feature on a large scale dataset, we use the recent Wide and
Deep Reference (WDRef) [10] database for training. Since
we have more training data now, the feature dimension is
reduced to 2,000 by PCA for supervised learning.

As shown in Table 3, compared with a smaller training
set in LFW, the large-scale dataset leads to an even larger
improvement for the high-dimensional feature. Taking the
LBP descriptor as an example, the improvement due to high
dimensionality is 4.5% on the LFW dataset; On the large s-
cale WDRef dataset, the improvement increases to 5.7%.
Therefore high dimensionality plays an even more impor-
tant role when the size of the training set becomes larger.
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Figure 4. The effect of landmark number on performance.

Baseline | High dimension
LE 90.28% 94.89 %
LBP 89.39% 95.17 %
SIFT 86.85% 93.21%
HOG | 88.93% 93.40 %
Gabor | 87.38% 92.83%

Table 3. The comparison between the high-dimensional feature
and the baseline feature. Training is on WDRef and testing is on
LFW.

5.3. High-dimensional feature with unsupervised
learning

In this experiment, we study the impact of high dimen-
sionality under the unsupervised setting. The experiment
is carried out on LFW and Multi-PIE databases. For LFW
database, we follow LFW’s restricted protocol (no use of
identity information). For Multi-PIE databases, we follow
the settings in [38] which are similar to LFW protocol. We
first reduce the dimension of the feature to 400 by PCA and
then compute the cosine similarity of a pair of faces.

As shown in the Table 4, in both databases, the high-
dimensional features are 3% ~ 4% higher than the baseline
method, which proves the effectiveness of high dimension-
ality in the unsupervised setting.

5.4. Compression by rotated sparse regression

In this experiment, we evaluate the proposed rotated s-
parse regression method by comparing it with a sparse re-
gression based on Equation 1. By varying the value of A\, we
compare the sparse regression and the rotated sparse regres-
sion under different sparsity. We follow the LFW unrestrict-
ed protocol and report the average sparsity (the proportion
of zeros elements) over 10 rounds.

0.85f —4—SIFT
—<—HOG
Gabor
2 3 4 5
Scale Number

Figure 5. This figure shows the effect of multi-scale representation.

LFW Multi-PIE
Baseline | High dim | Baseline | High dim
LE 81.05% | 84.58% 83.27% | 87.23%
LBP 80.05% | 84.08% 80.60% | 83.92%
SIFT 7717% | 83.03% 79.30% | 83.97%
HOG 80.08% | 84.98% 82.98% | 87.08%
Gabor || 7497% | 82.02% 81.05% | 85.12%

Table 4. The comparison between the high-dimensional feature
and the baseline feature on LFW and Multi-PIE database under
unsupervised setting.

Sparsity | Compression Sparse Rotated Sparse
Ratio Regression Regression
0.95 20 93.18% 93.18%
0.98 50 92.93% 93.18%
0.99 100 92.05% 93.09%
0.995 200 91.43% 92.98%

Table 5. The comparison of the sparse regression and rotated s-
parse regression under various sparsity.

Without the sparse penalty, the high-dimensional LBP
achieves 93.18% under the LFW unrestricted protocol. As
shown in Table 5, both methods maintain accuracy when the
sparsity is 0.95. However, when the sparsity goes beyond
0.98, the proposed rotated sparse regression can still retain
fairly good accuracy, but sparse regression suffers from a
significant accuracy drop. This is due to the additional ro-
tation freedom. It makes the projection matrix more sparse
given the same reconstruction error. When sparsity increas-
es to 0.99, with the aid of rotated sparse regression, we re-
duce the cost of linear projection by 100 times with less than
0.1% accuracy drop.
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Figure 6. This figure compares the rotated sparse regression and
two feature selection methods

5.5. Comparison with Feature Selection

In this experiment, we compare the rotated sparse re-
gression and two feature selection methods: backward
greedy [39] and structure sparsity [28]. We use the high-
dimensional LBP feature as input in all methods. For back-
ward greedy, we treat each image patch as a selection unit.
In each iteration, we remove the image patch that leads to
the smallest drop in accuracy. For structure sparsity, we
follow the method in [28] which uses I3 ;-norm to enforce
structure sparsity for feature selection.

As shown in Figure 6, feature selection methods suffer
from a significant accuracy drop when sparsity is larger than
60%. When sparsity is around 80%, the rotated sparse re-
gression is slightly better than no sparse compression, as s-
parsity may promote generalization. When sparsity is high-
er than 90%, our method outperforms the feature selection
method by 6%, which verifies the effectiveness of the pro-
posed method. It also indicates that the majority of dimen-
sions in our high-dimensional feature are informative and
complementary. Simply removing a subset of them will lose
information and lead to a performance drop.

5.6. Comparison with the state-of-the-art

Finally, we make a comparison with the state-of-the-art
methods under two settings: supervised learning without
and with outside training data. We achieve 93.18% (2nd
best is 90.07% [26]) under the LFW unrestricted protocol
(know identity information). Using WDRef as outside train-
ing data, we achieve 95.17% (2nd best is 93.30% [4]). As
shown in Figures 7 and 8, our method significantly outper-
forms the state-of-the-art method under both settings.

6. Conclusion

In this paper, we have studied the performance of face
feature as a function of dimensionality. We have shown
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through experimentation that high dimensionality is criti-
cal to achieving high performance. We also made the high-
dimensional feature practical enough to be introduced into a
rotated sparse regression technique. We hope our promising
results can encourage more work on building more informa-
tive features and increased studying of better compression
solutions.
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