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Abstract

In this paper, we present a novel approach to model 3D
human body with variations on both human shape and pose,
by exploring a tensor decomposition technique. 3D human
body modeling is important for 3D reconstruction and ani-
mation of realistic human body, which can be widely used in
Tele-presence and video game applications. It is challeng-
ing due to a wide range of shape variations over different
people and poses. The existing SCAPE model [4] is popu-
lar in computer vision for modeling 3D human body. How-
ever, it considers shape and pose deformations separately,
which is not accurate since pose deformation is person-
dependent. Our tensor-based model addresses this issue by
jointly modeling shape and pose deformations. Experimen-
tal results demonstrate that our tensor-based model outper-
forms the SCAPE model quite significantly. We also apply
our model to capture human body using Microsoft Kinect
sensors with excellent results.

1. Introduction
3D human body modeling has numerous applications in

Computer Vision, Graphics, and Multimedia. It plays an

important role in tracking, reconstructing and animating hu-

man body. It provides users with immersive experience in

Tele-presence and video game applications. The problem

is challenging because the variation in 3D human body ge-

ometry (over different people and poses) is a complicated

function over multiple shape and pose variables.

Among the early work in human body modeling [2, 13,

4, 3, 10], the SCAPE model [4] has been widely used in

estimating human shape and pose as well as in reshaping

human body in images and videos. It learns a pose deforma-

tion model from a subject with multiple poses and learns a

shape model from many subjects with a neutral pose. How-

ever, the decoupling of shape and pose deformations in the

SCAPE model has a major limitation - 3D meshes of differ-

ent individuals change in the similar manner for the same

pose change. Figure 1 demonstrates this problem. We fit

the SCAPE model on a female subject at the neutral pose

Figure 1. Comparison between the SCAPE model (left column)

and the proposed TenBo model (right column). The ground truth

is shown in the middle column. The shape parameters for both

SCAPE and TenBo models are estimated from the original neutral

pose data. They are then used to predict the 3D geometry under

different poses. Two poses are shown in the figure, with close-ups

to highlight the differences, especially in those circled areas.

to estimate her shape parameters. Then the fitted SCAPE

model is used to predict two poses (pose 1, 2 in the left col-

umn). The chest and shoulder areas in the predicted poses

look far away from the ground truth (shown in the middle

column), since the pose model in SCAPE is learned from a

muscular male subject.
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In this paper, we propose a TENsor-based human BOdy

model (abbreviated as TenBo) to address this problem. Us-

ing the tensor decomposition technique, we model the de-

formation as a joint function over both shape and pose pa-

rameters to preserve the dependency between them. Com-

pared with SCAPE, TenBo model effectively leverages

training data from multiple people under multiple poses to

improve accuracy. Figure 1 (right column) clearly shows

that the predicted poses based on the TenBo model is much

closer to the ground truth. Experimental results show that

our TenBo model outperforms the SCAPE model in pre-

dicting novel poses with 16.6% of error reduction. We also

apply our TenBo model to capture human body using Mi-

crosoft Kinect sensors with excellent results.

This paper is organized as follows. We firstly discuss re-

lated work and overview our TenBo model. Then, we intro-

duce mesh deformation definition and describe our TenBo

model in details. The training of the TenBo model and fit-

ting to the point cloud will be discussed next. Finally, we

show experimental results and conclude this paper.

2. Related Work
3D Human Body Models: The early human body mod-

els, including [2] and [13], focused on modeling the shape

variations in similar poses. Then [4, 3, 10] integrated both

shape and pose variations to allow 3D animations for differ-

ent people under different poses. Allen [3] used maximum

posteriori estimation to learn a correlated model of identity

and pose-dependent body shape variation. The optimization

procedure is expensive due to the solving of nonlinear func-

tions with high number of degrees of freedom. Hasler [10]

used differential encoding to express shape/pose variations

and used regression to incorporate shape and pose parame-

ters. The SCAPE model [4] is a widely used model which

decouples shape and pose deformations. However, due to

the decoupling, the pose deformation model is shared by all

individuals, i.e. the 3D meshes of different people change in

the similar manner for the same pose change, which is not

correct. In this paper, we address this problem by jointly
modeling the shape and pose deformations to preserve their

dependency.

Human Shape and Pose Estimation: The SCAPE

model [4] has been used widely in human shape and pose

estimation [8, 5, 6, 17, 20]. Guan [8] estimated human

shape and pose from a single image using shading informa-

tion. Balan [5] estimated human body shape under cloth-

ing. Weiss [17] scaned 3D human body from noisy image

and range data by using silhouette objective. Freifeld [6]

developed a 2D contour person model. In [9], Hasler pre-

sented a bilinear model of shape and pose to estimate 3D

meshes of dressed subjects from images.

Other Applications: Guan [7] developed a DRAPE

model to learn a deformable clothing model that uses

SCAPE to represent underlying naked body. [19] and [11]

allow users to reshape human bodies in images and videos.

Tensor Faces: Tensor based approaches have been suc-

cessfully applied to face modeling [15, 16], which moti-

vated us to extend them to human body modeling. Com-

pared with TensorFaces, our TenBo model has less require-

ment on training data. TenBo allows each subject to per-

form only a small subset of the poses rather than the full set

and allows large variations among different subjects to per-

form the same pose, while TensorFaces requires the same

capture configuration for all subjects (e.g. the same expres-

sions for all the subjects).

3. Overview
Each 3D human body mesh can be considered as a de-

formation from a reference mesh. Our TenBo model con-

siders the deformation D as a joint function D(v,θ) over

shape parameters v and pose parameters θ to integrate

shape deformation (due to different persons) and pose de-

formation (due to different poses) using tensor technique.

Compared with the SCAPE model, which separates the

shape deformation S(v) and the pose deformation Q(θ) as

D = S(v)Q(θ), our TenBo model is able to preserve the

dependency between the shape and pose deformations.

In addition, our TenBo model uses the training data (3D

meshes from multiple subjects under different poses) more

effective than the SCAPE model. The SCAPE model only
uses one subject (with multiple poses) to train the pose

model and only uses one pose (from multiple persons) to

train the shape model. In comparison, our TenBo model

uses multiple poses from multiple subjects to combine the

shape and pose deformations together. Table 1 lists the dif-

ference between SCAPE and TenBo. Note that training the

TenBo model only requires a few poses per subject rather

than the full set of poses. It also allows large variations

among different subjects to perform the same pose. This

significantly simplifies the data capture process.

4. Mesh Deformation Definition
We use the same mesh deformation definition as in the

SCAPE model [4]. Let us denote the reference mesh (i.e. a

natural standing pose for the person who is selected as the

reference subject) as X = {VX , P}. X includes M vertices

VX = {x1, . . . ,xM} and N triangles P = {p1, . . . , pN}.

In this paper, we assume all meshes are registered (i.e. all

meshes share the same triangulation P and number of ver-

tices M , and the vertex correspondence is known).

The deformation for an arbitrary 3D body mesh Y =
{VY , P} indicates the difference between the mesh Y and

the reference mesh X . The deformation is defined at the

triangle level, e.g. three vertices xn,1, xn,2, xn,3 of the tri-

angle pn on the reference mesh X is deformed to yn,1, yn,2,
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SCAPE Model TenBo Model
Model Difference Consider shape and pose deformations separately Consider shape and pose deformations jointly
Training Use multiple poses from one subject and a neutral Use multiple poses from multiple subjects

pose from multiple subjects

Pose Deformation Train on one subject Train on multiple subjects

Shape Deformation Train on one pose Train on multiple poses

Table 1. Comparison between the SCAPE model and our TenBo model.

yn,3 on the mesh Y . Each vertex is a 3×1 vector including

3D coordinates. The deformation is applied in terms of the

triangle’s local coordinate system, by using the first vertex

(xn,1 and yn,1) as the origin. The deformation of triangle

pn from X to Y is represented as the linear transformation

of two edges ( Δxn,1 = xn,2−xn,1,Δxn,2 = xn,3−xn,1)

as follows:

Δyn,q = yn,q+1 − yn,1 = Rl[n]DnΔxn,q, q = 1, 2, (1)

where Rl[n] is the rotation matrix (from X to Y ) for the

body segment l[n] (e.g. torso, upper arm) that includes the

triangle pn, Dn is the non-rigid deformation matrix for the

triangle pn. Both Rl[n] and Dn are 3 × 3 matrices. Rota-

tion matrices {Rl[n]} for all body segments determine the

human pose, and deformation matrices {Dn} for all trian-

gles determine the human shape. Note that Rl[n] is shared

by all triangles belonging to the body segment l[n]. The

calculation of Rl[n] and Dn for a given mesh Y and the

3D reconstruction of mesh Y using Rl[n] and Dn has been

solved in the SCAPE model [4]. In this paper, we focus on

modeling the non-rigid deformation matrices Dn, which is

the major difference between this paper and SCAPE.

5. Tensor-based Human Body Model (TenBo)
Our TenBo model includes two parts - (a) model for an

individual body segment (e.g. forearm, upper arm), and (b)

model for the whole body. We first introduce a tensor-based

method to model the deformation of an individual body seg-

ment. Then we will discuss how to integrate local shape
vector (refer to shape parameters for a body segment) into

global shape vector (refer to shape parameters for the whole

body). We use sl to denote the local shape vector on the lth

body segment and use v to denote the global shape vec-

tor. We assume that a human body has L segments, and

denote the number of triangles on the lth segment as nl

(
∑L

l=1 nl = N ).

5.1. Model for an Individual Body Segment

We model the deformation for each body segment as a

joint function over both shape and pose parameters using

tensor technique. We rearrange the deformation matrix Dn

column by column as a 9×1 vector for every triangle on the

lth segment (including nl triangles) and group all vectors as

Figure 2. Tensor decomposition for the deformation of a body seg-

ment .

a 1×1×9nl tensor, denoted as dl. The segment deformation

dl is modeled as a joint function over the local shape vector

sl (It × 1) and the joint angle vector θl (Jt × 1) as follows:

dl(sl,θl) = Gl ×1 s
T
l ×2 θ

T
l ×3 Bl (2)

where Gl is a tensor core (It×Jt×Kt), Bl is a deformation

basis matrix (9nl×Kt), and ×n refers to the n-mode multi-

plication [12]. The local shape vector sl encodes the shape

of the lth segment using It parameters. The joint angle vec-

tor θl includes joint angles from the two nearest joints of

the lth segment (e.g. wrist and elbow joints for forearm

segment) and a constant bias. Each joint has 3 joint angles.

Therefore, θl has 6 joint angles and 1 constant (Jt = 7).

The deformation basis matrix Bl includes Kt deformation

bases, which represent the deformation of the lth segment

in a low dimensional space. Figure 2 shows the diagram of

the tensor model. Essentially, the core Gl encodes the re-

lationship between the deformation (dl) and the shape/pose

parameters (sl, θl), where the deformation is represented as

a linear combination of deformation-basis vectors:

dv
l (sl,θl) =

It∑
i=1

Jt∑
j=1

Kt∑
k=1

Gl(i, j, k)sl(i)θl(j)Bl(:, k) (3)

where dv
l is the vector permutation of dl (9nl × 1 vec-

tor). The weight of basis Bl(:, k) is determined by the core

Gl and the shape/pose parameters (sl, θl). Each segment

has ItJtKt parameters in Gl and 9Ktnl parameters in Bl,

which need to be trained. After training is completed, we

can compute the deformation dl based on the local shape

parameters sl and the joint angles θl , which are estimated

for a specific person with a specific pose.
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5.2. Model for the Whole Body

The local shape vectors sl from different body segments

are highly correlated to the global shape vector v that en-

codes the shape of the whole body (e.g. tall person has

longer arms and legs). We model this correlation using lin-

ear transform as:

sl = Alv, (4)

where sl includes It local shape parameters for the lth seg-

ment, v includes Iv global shape parameters, and Al is a

transform matrix (It×Iv) for the lth segment. By replacing

the local shape vector sl with the global shape vector v, eq.

(2) can be rewritten as:

dl(v,θl) = Gl ×1 v
TAT

l ×2 θ
T
l ×3 Bl. (5)

Combining all body segments, the entire TenBo model has

L(ItJtKt + ItIv) + 9KtN parameters (ItJtKt parameters

in Gl, ItIv parameters in Al, 9Ktnl parameters in Bl).

TenBo has the same order of complexity as the SCAPE

model which has 9(Iv + 7)N parameters.

Once we finish training the TenBo model, we can apply

it to estimate shape parameters v and pose parameters θl

using a 3D point cloud of a human body surface as input.

Furthermore, we can generate animations for any subject

(assuming shape vector v is available) with different pose

sequences. Next, we discuss how to learn the TenBo model.

6. Learning the TenBo Model
The TenBo model is learnt based on a training dataset

that includes 3D human body meshes from multiple sub-

jects (each subject has one or multiple poses). We assume

that all meshes are registered. Let us denote the number

of subjects as I , the total number of poses as J and denote

the number of poses for the ith subject as Ji (
∑

i Ji = J).

The training process includes two steps: preprocessing and

optimization.

6.1. Preprocessing

In preprocessing, for every mesh in the training dataset,

we compute the rotation matrix Rl and the joint angle vec-

tor θl for every body segment, and compute the deformation

matrix Dn for every triangle (see calculation details in the

SCAPE model [4]). Then, we rearrange Dn to generate

segment deformation tensor dl (a 1× 1× 9nl tensor). We

denote the deformation tensor and the joint angle vector for

the jth pose for the ith subject as di,j
l and θi,j

l respectively.

6.2. Optimization

The goal of training is to search for the optimum ten-

sor core Gl, shape transform matrix Al and deformation ba-

sis matrix Bl for every body segment as well as the global

shape vector vi for every training subject to minimize L2

Figure 3. The deformation tensor Dl and joint angle matrix Θl.

distance between the actual deformation di,j
l and the de-

formation generated by the tensor model (eq. (5)) for all

training meshes. The cost function is as follows:

h(G1..L,A1..L,B1..L,v1..I) =
I∑

i=1

Ji∑
j=1

L∑
l=1

||di,j
l − Gl ×1 v

T
i A

T
l ×2 (θ

i,j
l )T ×3 Bl)||2, (6)

where vi is the global shape vector for the ith subject. This

function can be simplified by the following steps. Firstly,

we group the deformation tensors and joint angle vectors of

different poses for every subject as Di
l = [di,1

l , . . . ,di,Ji

l ],

Θi
l = [θi,1

l , . . . ,θi,Ji

l ]. Di
l is a 1×Ji×9nl tensor and Θi

l is

a 7× Ji vector. Then, we combine Di
l and Θi

l from all sub-

jects into a deformation tensor Dl and a joint angle matrix

Θl respectively as shown in Figure 3. Dl is a I × J × 9nl

tensor and Θl is a 7×J matrix, where J is the total number

of poses (
∑

i Ji = J). Each horizontal slice of Dl corre-

sponds to a subject, and each lateral slice of Dl corresponds

to a pose. We group Di
l along the diagonal direction and

set entries off the diagonal as zero. We use a tensor Wl to

indicate the non-zero pattern in Dl. Wl(i, j, k) equals 1 if

Dl(i, j, k) �= 0, 0 otherwise. Finally, we group the global

shape vectors for all subjects as a shape parameter matrix

V = [v1, . . . ,vI ]. V is a Iv × I matrix (Iv is the number

of global shape parameters and I is the number of subjects).

Therefore, the cost function eq. (6) can be rewritten as:

h(G1..L,A1..L,B1..L,V )

=
L∑

l=1

||Wl ∗ (Dl − Gl ×1 V
TAT

l ×2 Θ
T
l ×3 Bl)||2, (7)

where ’*’ indicates the element by element product. In or-

der to remove ambiguity in the deformation basis Bl, we

add an orthogonal constraint BT
l Bl = I . This optimiza-

tion problem can be solved either by using a gradient de-

scent based algorithm [1] or by using an iterative process

in which each of the four parameters (Gl,Al,Bl,V ) is op-
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timized separately, keeping the others fixed. We use the lat-

ter approach. Gl,Al and V can be easily solved since they

have quadratic objective without constraint. Solving Bl is a

little different due to the orthogonal constraint BT
l Bl = I .

It is a standard orthogonal Procrustes problem which can be

solved by using singular value decomposition (SVD).

Note that training a TenBo model needs three inputs:

dimension of the local shape vector It, dimension of the

global shape vector Iv and the number of deformation bases

Kt. Any change in these values requires additional training

process and results in a different TenBo model. However, in

practice it is desirable to change the dimension of the global

shape parameters Iv without re-training or loading a differ-

ent model. To address this issue, we introduce principal

shape components in the next section.

6.3. Identifying Principal Shape Components

Similar to the principal component analysis (PCA), the

principal shape components keep the subspace with mini-

mum cost (see cost function eq. (7)). Extracting principal

shape components needs two changes in the optimization.

Firstly, we replace AlV with the local shape parameter

matrix Sl (Sl = AlV ) in eq. (7). Sl is an It× I matrix (It
is the number of local shape parameters and I is the num-

ber of subjects in the training dataset). Similar to the opti-

mization in the previous section, we can solve Gl,Sl,Bl to

minimize cost ||Wl ∗ (Dl −Gl ×1 S
T
l ×2 Θ

T
l ×3 Bl)||2 for

all body segments.

Secondly, we group Sl for all body segments as M =
[ST

1 , . . . ,S
T
L]

T ( M is an LIt × I matrix) and com-

pute the singular value decomposition of M (i.e. M =
UMΛMV T

M ). Each row of V T
M includes values of a prin-

cipal shape component for all subjects. Therefore, we can

change the dimension of global shape parameters Iv by se-

lecting the first Iv rows of V T
M as the global shape pa-

rameter matrix V . Figure 4 shows the first four princi-

pal shape components. The first Iv columns of UMΛM

includes the transform matrices Al for all segments (i.e.

UMΛM (:, 1 : Iv) = [AT
1 , . . . ,A

T
L]

T ).

7. Fitting the TenBo Model to the Point Cloud
The fitting problem can be formulated as “given a set of

3D points z1, . . . , zMp captured from a human body sur-
face, determine the global shape parameters v and the pose
parameters (or joint angles) θ, such that the difference be-
tween the reconstructed 3D human body based on v and θ
and the original human body is minimum”.

We modify the shape completion algorithm in the

SCAPE model [4] to solve the fitting problem. The SCAPE

model assumes that the vertex correspondence between the

point cloud and the reference mesh X is given. But we do

not have this assumption in this paper. Therefore, we use

ICP [18] to extract the correspondence. The fitting goal is

Figure 4. The first four principal shape components (PSC).

to solve v and θ to minimize the cost:

g(v,θ) =

min
y1,...,yM

( N∑
n=1

2∑
q=1

||Rl[n](θ)Dn(v,θ)Δxn,q −Δyn,q||2

+wz

Mp∑
m=1

||(yclosest(zm)− zm)||2) (8)

where y1, . . . ,yM are the M vertices on the reconstructed

3D mesh, N is the number of triangles, Rl[n],Dn,Δxn,q ,

and Δyn,q refer to eq. (1), Mp is the number of points in

the point cloud, yclosest(zm) is the closest vertex to zm on

the reconstructed mesh, wz is a weight. The rotation Rl[n]

is a function of joint angles θ and the deformation Dn is a

joint function of shape parameters v and joint angles θ.

The optimization is in the similar manner to the SCAPE

model [4] except adding an ICP step in each iteration to

search for the correspondence between the point cloud and

the vertices on the reconstructed mesh. When using Mi-

crosoft Kinect, we can estimate the corresponding body

segment l[zm] for each point zm using skeleton informa-

tion. This is useful in searching for the closest vertex

yclosest(zm) since it can significantly reduce the searching

scope to the vertices on the body segment l[zm].

8. Experimental Results
We compare our TenBo model with the SCAPE model

[4] on the MPI Dataset [10] using cross validation. We also

show 3D human body reconstruction using the depth map

from Microsoft Kinect sensors.

8.1. Data Set

The MPI Dataset includes 520 full body 3D scans, cap-

tured from 114 subjects. 35 poses are predefined for sub-

jects to perform. A neutral pose (natural standing pose) is
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for everyone to scan. Only one subject (male) is scanned for

all 35 poses, named as the reference subject. Other subjects

perform either 10 predefined poses (randomly selected) or

just the neutral pose. Each scan has 6449 vertices and 12894

triangles. All scans are registered. We choose 423 scans

with good quality from 89 subjects. 50 subjects only have

the neutral pose and the other 39 subjects have more poses.

8.2. Evaluation

We use leave-one-out cross validation to compare our

TenBo model with the SCAPE model. A subject with more

than two poses (except the reference subject) is selected as

the validation data, and the remaining subjects are used for

training both SCAPE and TenBo models. This process re-

peats until every subject with more than two poses (except

the reference subject) has been used as validation data once.

We keep the reference subject for training, since he is used

to train the pose model in SCAPE. For each validation sub-

ject, the evaluation includes three steps: (a) training models

(TenBo and SCAPE) using other subjects, (b) estimating

the global shape parameters v for the validation subject un-

der the neutral pose, and (c) predicting the 3D geometry of

non-neutral poses for the validation subject based on the es-

timated shape parameters v and joint angles θ (calculated in

preprocessing, see Section 6.1). Predicting on novel poses

shows the model generalizability. Accurate prediction re-

quires (a) a good model to capture the relationship between

the deformation and shape/pose parameters, and (b) accu-

rate estimation of global shape parameters v.

We use the average deformation error in the prediction

over all validation subjects as the evaluation measure. The

deformation error between a predicted mesh Y r (including

vertices {yr
1 . . . ,y

r
M}) and the original (or ground truth)

mesh Y o (including vertices {yo
1, . . . ,y

o
M}) is defined as

the average vector distance between triangle edges:

d(Y r, Y o) =

√√√√ 1

2N

N∑
n=1

2∑
q=1

||Δyr
n,q −Δyo

n,q||2. (9)

This deformation error is approximately proportional to the

difference in deformation matrix Dn because:

Δyr
n,q −Δyo

n,q ≈ Rl[n](D
r
n −Do

n)Δxn,q, (10)

where Dr
n is the deformation matrix to generate the pre-

dicted mesh Y r, Do
n is the ground truth deformation matrix

obtained from the original mesh Y o. In our experiment, the

deformation error is highly correlated to the average defor-

mation matrix difference (En||Dr
n − Do

n||) with Pearson

correlation 0.99. We also calculated the Hausdorff distance

which measures the global shape difference. The Pearson

correlation between the deformation error and the Haus-

dorff distance is 0.74. Since the deformation error and the

Hausdorff distance have the same trend in results, we only

show the deformation error for the sake of brevity.

Figure 5. Prediction error over different number of global shape

parameters Iv .

8.3. Cross Validation Results

In this section, we show the cross validation results for

both TenBo and SCAPE models. When training the TenBo

model, we heuristically choose the local shape dimension

It = 4 due to the low dimensional shape of body seg-

ment. In the prediction step, we predict the 3D geometry for

non-neutral poses for the validation subject using the global

shape vector v (estimated under the neutral pose) and corre-

sponding joint angles θ for the non-neutral poses (computed

in preprocessing). We estimate the global shape vector v us-

ing the neutral pose in two different ways: (a) using entire

body scan as input, and (b) using sampled vertices as input.

8.3.1 Using Entire Body Mesh for Shape Estimation

Using the entire body scan as input, the deformation ten-

sor dl and joint angles θ are available (calculated in pre-

processing). The global shape vector v can be estimated by

solving eq. (5). Figure (5) shows the prediction error for the

SCAPE model and four TenBo models over different num-

ber of global shape parameters Iv . The four Tenbo mod-

els have different number of deformation bases (i.e. Kt,

see Section 5.1). Clearly, the TenBo model outperforms the

SCAPE model (by 16.6%). If we separate female and male

subjects, TenBo outperforms SCAPE for both female (by

17.5%) and male subjects (by 14.5%). We observe that the

prediction error is flat when using more than 4 global shape

parameters. This is likely because the mesh resolution is

low and the mesh alignment is not perfect. We also observe

that the fitting quality does not improve when Kt ≥ 10. In

the rest of this section, we use 4 global shape parameters

(Iv = 4) for both SCAPE and TenBo models, and use 10

deformation bases (Kt = 10) for TenBo.

We also compared TenBo with Hasler’s algorithm [10].

We use linear regression to train pose functions when im-

plementing Hasler’s algorithm. Compared with Hasler’s

model which has prediction error (0.77cm) in cross vali-

dation, TenBo has less prediction error (0.37cm).
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Figure 6. Prediction error over different sampling rates.

8.3.2 Using Sampled Vertices for Shape Estimation

Next, we study the effect on shape estimation with differ-

ent number of vertices to simulate when point clouds are

available. For each validation subject, we randomly sample

vertices on the 3D mesh of the neutral pose. We conduct

random sampling in two ways: (a) sampling vertices of the

whole body, and (b) sampling vertices on the frontal side.

Different from using the entire mesh, we can not compute

the deformation and joint angles directly from the sampled

vertices. Therefore, we use the fitting algorithm in Section 7

to estimate both shape and pose parameters. The prediction

part is the same as using the entire mesh as input.

Figure 6 shows the prediction error for both SCAPE and

TenBo over different sampling rates. We have three obser-

vations - (a) TenBo model outperforms the SCAPE model,

(b) prediction error converges when the sampling rate is

above 10%, so we do not need a lot of data to estimate

body shape, and (c) sampling the whole body helps when

the sampling rate is lower than 10%. This means that the

samples from the back help when the frontal samples are

not enough to capture the shape.

Figure 7 shows the prediction error over different sam-

pling noise. We sampled at sampling rate 50% and add

zero-mean Gaussian noise along all x-y-z directions. The

standard deviation σ of the noise changes from 0 to 3cm.

Again, TenBo outperforms SCAPE. Both models are not

visibly affected when σ is less than 1cm and then the pre-

diction error increases as the noise increases. Using the

frontal samples alone is less sensitive compared with using

the samples from the whole body, since the confusion from

both side makes things worse when noise level is high.

8.4. Run Time of the Fitting Algorithm

We test the run time of the fitting algorithm (Section 7)

for both SCAPE and TenBo models. The fitting algorithm is

run on a single desktop without GPU acceleration to fit 100

point clouds, which are generate by random vertex sampling

on 100 3D body scans (at sampling rate 20%). We use the

average shape at the neutral pose as the initial guess. On

Figure 7. Prediction error over different adding noise.

average, the SCAPE model takes 1.57 sec (45.9 iterations,

34.23 msec per iteration) and TenBo takes 1.78 sec (45.1

iterations, 39.49 msec per iteration) to fit one point cloud.

Both models take similar number of iterations to converge.

For each iteration, TenBo is more expensive only in com-

puting deformation vectors. Note that both models have the

same complexity in animation where shape parameters are

known and only pose parameters change over time.

8.5. 3D Reconstruction Using Microsoft Kinect

We also apply the TenBo model to capture 3D human

body using Microsoft Kinect. With the help of skeleton, the

body segment correspondence for pixels in the depth map

can be easily estimated. Then we can use eq. (8) to estimate

both shape and pose parameters. Figure (8) show 3D recon-

struction for three users under five poses. We can see that

reconstruction is close to the user’s shape and pose (using

the color image on the left as the reference). These results

show the capability of the TenBo model in real applications

using the off-the-shelf capture device.

9. Conclusion

This paper presents a novel tensor-based 3D human body

model (TenBo model). Compared with the popular SCAPE

model which separates the shape and pose deformations, the

proposed approach jointly models shape and pose deforma-

tions in a systematic manner. The experiments demonstrate

the superior performance of the proposed TenBo model to

the SCAPE model. Our TenBo model is capable of captur-

ing the human body shape using the depth map and skeleton

provided by Microsoft Kinect sensors and generating ani-

mations. In the future, we plan to extend our research in sev-

eral ways - (a) speeding up the fitting algorithm to support

real-time applications, and (b) integrating TenBo model and

human pose estimation algorithm (e.g. inferring dense cor-

respondences [14]) to improve shape/pose estimation using

Microsoft Kinect sensors.
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Figure 8. 3D reconstruction of human body using Microsoft Kinect sensors.
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