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Figure 1. The use of more specific and detailed geometric models

as proposed in this paper enables better understanding of scenes,

illustrated here by localizing chairs tucked under the table in 3D.

Abstract

We develop a comprehensive Bayesian generative model
for understanding indoor scenes. While it is common in this
domain to approximate objects with 3D bounding boxes, we
propose using strong representations with finer granular-
ity. For example, we model a chair as a set of four legs, a
seat and a backrest. We find that modeling detailed geom-
etry improves recognition and reconstruction, and enables
more refined use of appearance for scene understanding.
We demonstrate this with a new likelihood function that re-
wards 3D object hypotheses whose 2D projection is more
uniform in color distribution. Such a measure would be
confused by background pixels if we used a bounding box
to represent a concave object like a chair.

Complex objects are modeled using a set or re-usable 3D
parts, and we show that this representation captures much
of the variation among object instances with relatively few
parameters. We also designed specific data-driven infer-
ence mechanisms for each part that are shared by all objects
containing that part, which helps make inference transpar-
ent to the modeler. Further, we show how to exploit contex-
tual relationships to detect more objects, by, for example,
proposing chairs around and underneath tables.

We present results showing the benefits of each of these
innovations. The performance of our approach often ex-
ceeds that of state-of-the-art methods on the two tasks of
room layout estimation and object recognition, as evaluated
on two bench mark data sets used in this domain.

Figure 2. A visual summary of the main contributions of this

work. 1) Detailed geometric models, such as tables with legs and

top (bottom left), provide better reconstructions than plain boxes

(top right), when supported by image features such as geometric

context [5] (top middle), or an approach to using color introduced

here. 2) Non convex models allow for complex configurations,

such as a chair under a table (bottom middle). 3) 3D contextual re-

lationships, such as chairs being around a table, allow identifying

objects supported by little image evidence, like the chair behind

the table (bottom right). Best viewed in color.

1. Introduction

Indoor scene understanding from monocular images has

received much recent interest, and advancements in estimat-

ing the 3D geometry of such environments [2, 7, 11, 17]

have enabled several interesting applications. For example,

Gupta et al. [1] used extracted 3D information to predict

human activities, while Hedau et al. [3] and our previous

work [10] showed that knowledge of the 3D environment

helps object recognition. Further, Karsch et al. [6] exploited

the inferred 3D geometry to insert realistic computer graph-

ics objects into indoor images.

State-of-the-art approaches to modeling indoor scenes

largely use right-angled parallelepipeds (3D boxes) as con-

tainers. A single box is used to approximate the walls, floor,

and ceiling enclosing the scene (room box), and also to rep-

resent objects inside it, such as beds and tables. Alterna-

tively, blocks have been used to reason about clutter, but

without further understanding of what is in the scene [7].

These representations allow promising reconstruction re-

sults, and hold the advantage that gross geometric structure

simplifies inference.
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However, these representations have four main limita-

tions, which we illustrate using Figure 2. First, bounding

boxes of concave objects projected into images tend to in-

clude much background, which is confusing evidence for

inference. For example, the middle-top image shows the

output of an appearance-based 2D classifier (geometric con-

text [5]), where pixels with higher probability of being part

of an object instead of the wall or the floor are colored gray.

Fitting a single 3D block to this feature map will be ham-

pered by the confusing evidence, whereas a more articulated

table model with legs and top explains the classification re-

sults for pixels between the legs of the table. Second, even if

a single-bounding-box representation succeeded in discov-

ering the presence of an object in the image, the parameters

of a single fitted block have only modest power to distin-

guish objects. We previously showed that it is possible to

classify furniture objects based only on 3D bounding box

dimensions [10], but with much confusion when objects are

similar in size. Having a class-dependent topological struc-

ture should help resolve such ambiguities, and in this case

a composite table model is clearly a better fit than a sim-

ple box. Third, plain blocks cannot capture complex spatial

configurations, and would not allow sliding chairs under the

table (Figure 2, bottom row). Finally, a finer representation

is also more useful for robot applications. For example, a

small robot would be able to infer that there is a possible

path between the table legs.

These observations lead us to propose a principled

framework for modeling indoor scenes with representations

for articulated objects, such as the table and the chairs in

Figure 2. As in our previous work [10], we set out to si-

multaneously infer the 3D room box, the objects in it, their

identity, and the camera parameters, all from a single im-

age. Our first key contribution to this goal is to integrate

composite 3D geometry for objects. Our results show that

doing so improves both the global 3D reconstruction of the

scene and object recognition. We also show that more accu-

rate geometry both supports, and benefits from, higher level

image features, such as pixel grouping based on appearance.

A second key contribution of this work is a geometric
representation based on re-usable parts, from which we

build more complex models. We designed data-driven infer-

ence for each of these parts. Importantly, inference strate-

gies designed for a specific part are naturally shared by all

the objects containing that part, and the modeler can create

models using the available parts without having to worry

about the inference. A third contribution is showing how to

exploit contextual relationships between objects to help

inference if there is significant occlusion or weak image ev-

idence. For example, we show how to improve recognition

of chairs by looking around tables. There is often little im-

age evidence supporting the identification of a chair, per-

haps just a leg or the top of a backrest (Figure 2, bottom

right), but this can be addressed using top-down informa-

tion, by looking for chairs in places that are likely based on

the current model hypothesis.

Other related work. To our knowledge, the first attempt

in this domain at using geometry other than blocks was by

Hedau et al. [4], who used a plane to model backrests on

top of blocks. However, if we exclude the backrest, their

model still relies on the block representation, and they do

not attempt to distinguish among object classes based on

their geometry. Satkin et al. [12] then proposed to match

full models of bedrooms and living rooms available from

Google Warehouse, but they do not allow any variability in

the size and the arrangement of the objects in the model. We

also relate to recent work in object recognition that relies

on modeling the 3D geometry of object categories [8, 16].

A first important difference is that our method understands

objects in the context of the scene, with a likelihood func-

tion that evaluates the fit of the entire scene (Sec. 2.4), as

opposed to having a different appearance model trained for

each category. Second, we advocate a stronger 3D repre-

sentation, where geometric variations within an object cat-

egory are modeled in 3D, for example using priors on 3D

size, instead of learning orientations and distances among

the parts of an object in 2D [16]. Our 3D representation

is also independent of the camera, hence we do not need

to discretize the viewpoint and learn a different model per

viewpoint [8, 16]. Lastly, this work is related to that of

Schlecht and Barnard [13] on learning topologies of furni-

ture from images by assembling re-usable parts.

2. Modeling indoor scenes
We use a Bayesian generative model, where we assume

that images are generated by the projection of the 3D ob-

jects in the scene [10, 11]. We partition model parameters,

θ, into scene parameters, s, encoding the 3D geometry, and

camera parameters, c, modeling the perspective transforma-

tion. We define the posterior distribution as

p(θ|D) ∝ p(D|θ)p(θ) , (1)

where D are features detected on the image plane and p(θ)

is the prior distribution over model parameters.

Scene parameters s = (r, o1, ..., on) include the room

box and objects in it, where the number of objects n is not

known a priori. We model the room as a right-angled par-

allelepiped [7, 3, 10, 11], defined in terms of its 3D center,

width, height and length

r = (xr, yr, zr, wr, hr, lr, γr) , (2)

where γr is the amount of rotation around the room y axis

(yaw) [11]. We model the imaging process with a standard

perspective camera model

c = (f, φ, ψ) , (3)
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where f , φ and ψ are, respectively, the focal length, the

pitch and the roll angle. Since absolute positions cannot

be determined when reconstructing from single images, we

arbitrarily position the camera at the origin of the world co-

ordinate system, pointing down the z-axis. [10, 11]. Further,

the extrinsic camera rotations (three degrees of freedom) are

fully determined by φ, ψ and the yaw γr of the room.

A key contribution of this work is representing object

models by assemblages of re-usable geometric primitives

(parts), as opposed to simple bounding boxes. For example,

Figure 3 shows a chair built by stacking a set of four sym-

metric legs, and an L-shaped structure. Here, we provide

a generic formulation that is independent of the parts used,

and in §2.3 we describe the parts used in our experiments.

Each object, oi, is defined by its type, ti (e.g., chair,

couch, table), and its geometrical structure sti, which is a

function of the object type:

oi = (ti, sti, x, y, z, w, h, l) . (4)

The last six parameters are the 3D center and size of a

bounding box containing the entire object model. We de-

fine the size and position of object parts relative to the object

bounding box, as one does not have access to absolute sizes

when reconstructing from single images. We also assume

that objects are aligned with the room walls [7, 11].

A model’s structure is created by choosing from a set of

available parts. We constrain the modeler to stack the parts

vertically, although extensions are possible. Notationally,

sti = (p1, ..., pn, hr1, ..., hrn) . (5)

Here (p1, ..., pn) is the collection of parts, which is fixed

for each object class. Variable hri denotes the height of the

ith part expressed as a ratio of the total object height, with∑n
i=1 hri = 1. For example, the legs component in the

chair model accounts for half of the chair height, implying

hr1 = 0.5 and hr2 = 0.5 (Figure 3, bottom left). Parts

are ordered vertically from bottom to top, and we will refer

to the bottom one as the support. Each part pi comprises a

set of internal parameters pθi, which are defined relatively

to the bounding box occupied by that part. The height of a

chair’s seat is an example of an internal part parameter, and

Figure 3 (bottom right) shows changing it while keeping the

part bounding box fixed.

To summarize, an object is a vertical stack of parts. The

object size and position in the room are specified by its

bounding box, while part heights (hr1, ..., hrn) determine

bounding boxes for each part. Last, internal part parameters

are defined relatively to these boxes. An advantage of this

representation is that object parameters are subdivided into

three sets, and this is is very convenient for inference (§3).

Changes in the bounding box parameters propagate to all

the parts (Figure 3, top right), changes in the part heights

Figure 3. Top left: A chair is built by stacking two parts, a group of

four legs and an L-shaped component. Top right: Changes in the

object bounding box propagate to each part. Here the object width

is divided by two, and this results in parts that are half as wide.

Bottom left: Parts are stacked vertically, with their height defined

as a ratio of the total object height (two different ratios shown).

Bottom right: Changing the internal parameters of a part, here the

L shaped one, while keeping the part bounding box fixed.

propagate to the parameters for the affected parts (Figure 3,

bottom left), and changing the internal parameters results in

changes local to the specific part (Figure 3, bottom right).

We impose two simple containment constraints: 1) ob-

jects must be entirely inside the room; and 2) objects can-

not overlap. We emphasize that precise geometry enables

configurations that bounding boxes would not, for example

sliding a chair under a table (Figure 2). For efficiency, dur-

ing inference we first check if the objects’ bounding boxes

collide, and only if that is the case do we check collisions

using the geometry of the individual parts.

2.1. Prior distributions

Priors on the room box, objects, and camera parameters

help constrain the search over parameter space, and also al-

low for recognition based on size and position [10]. Since

absolute size and position cannot be inferred from single

images, priors are defined in terms of size and position ra-

tios. We extend this basic approach to composite object

models that enable much better recognition.

Assuming independence among objects [10], we define

p(θ) = π(ch)π(r)
n∏

i=1

π(oi) , (6)

where π(ch) is a prior on the camera height with a normal

distribution with parameters (μh, σh) [10], and π(r) is a

relatively non-informative normally distributed prior on the

room box parameters, parameterized by the ratio between

room width and length r1, and the ratio between the floor

area and the room height r2. Specifically,

π(r) = N (r1, μr1, σr1)N (r2, μr2, σr2) . (7)

These parameters are learned from training images [10].
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An object prior is defined over the size and position of

its bounding box. We consider the ratios between

• height and largest dimension or1 = h/max(w, l)
• width and length or2 = max(w, l)/min(w, l)
• room height and object height or3 = hr/h

In our previous work [10], we showed how these quanti-

ties help distinguish between object classes. For example

or2 discriminates between roughly square furniture, such

as chairs, and objects with a rectangular base, such as

couches [10]. All these quantities are assumed to be nor-

mally distributed [10]. Finally, we also use a Bernoulli dis-

tributed binary variable d, encoding whether an object is

against a wall [10] (e.g., usually true for beds). For frames

we similarly encode the probability that they touch the floor.

The full prior for an object is then

π(o) = π(d)
3∏

j=1

N (orj , μj , σj) . (8)

We set the parameters of object priors from text data avail-

able from online furniture and appliance catalogs [10].

2.2. Building object models

As part of this work, we implemented a modeling frame-

work that allows any object assembled from the palette of

geometric parts. To create a new object, the modeler spec-

ifies how these parts are arranged in the vertical stack, and

provides parameters for the prior distributions as described

above. The modeler also needs to provide the relative

heights (hr1, ..., hrn) and the internal parameters of each

part (pθ1, ..., pθn). She can either provide a single value for

each parameter, which will be kept fixed for each object of

that category, or a valid range. In the latter case, we assume

that each value in the range is equiprobable. Rather then

include the internal parameters of an object as part of its

prior, which leads to additional model selection problems,

we simply set them as part of the model. In this work, we

set values by manually fitting models to training images.

2.3. Designing object parts

We designed object parts to be modular so that they can

be re-used in the modeling phase. We further design specific

data-driven inference for each part, as we have found that

dedicated inference, which takes advantage of part-specific

characters, helps deal with the challenges of fitting complex

geometry. The inference strategies defined for a part are

shared by all objects using that part, and are transparent to

the modeler. We emphasize that we only need to implement

these once — i.e., the inference for the four legs of a table

is the same module as for the four legs of a chair.

All parts used in this work are built from simple geomet-

ric primitives, such as blocks and cylinders, which can be

easily rendered with OpenGL, as this is required to evaluate

Figure 4. Top row: parts L1, L2, L3. These are distinguished by

constraints on where the vertical “back” can be attached. L1 is

completely free, and shows all four possibilities. L2 and L3 are

for restricting to long side and short side respectively. Middle: a

single block, a set of four symmetric legs, and a frame. Bottom:

the free parameters of the L-shaped component and of the set of

legs are shown by the double arrows.

the likelihood function (described in the next section). Fur-

ther, each part module has a collision detection mechanism

to determine whether there is 3D overlap with any of the

other objects in the scene.

We use three kinds of parts in this work (Figure 4): an L-

shaped component built from two blocks, a set of four sym-

metric cylindrical legs, and a single block. The L compo-

nent is parametrized in terms of the height of the horizontal

block, and the width of the vertical block relative to the part

bounding box. We use a third discrete variable to specify

the side where the vertical block is located. Since we as-

sume that all objects are aligned with the room walls, only

four configurations are possible (Figure 4, top left). Within

this context, we provide three kinds of L-shaped parts (Fig-

ure 4, top): L1, where the vertical block can be along any

side, L2, where the vertical block is restricted to a long side

of the horizontal block, and L3, where it is on a short side.

The set of cylindrical legs is parametrized in terms of the

leg radius and the offset between the leg position and the

corner, both of which are shared among all legs. Finally,

the simple block part does not require any parameters, as

we assume that the block is as big as the part bounding box,

which is encoded at the next level up.

This modeling system, together with the modest set of

parts, is able to capture a large number of configurations

common in the base structure of much furniture. Having

parts that capture some of the complexities of the objects,

while inheriting their bounding box, simplifies the work of

the modeler, and proves effective for inference (see Sec. 3).

In this work, we modeled 6 different furniture types:

simple beds (a single block), beds with headrests (an L3

component), couches (an L2 component), tables (a stack of

four legs and a single block for the top), chairs (a stack of

four legs and an L1), and cabinets (a single block). Lastly,

we use thin blocks attached to a room wall to model frame

categories (Figure 4, middle right), which include doors,

picture frames and windows [10].
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2.4. The likelihood function

The likelihood function measures how well the detected

image features D match the features predicted by the cur-

rent model hypothesis θ. This function includes three differ-

ent components that have been proved useful in this domain:

edges [10, 11], orientation surfaces [7, 10], and geometric

context [2, 5, 7]. We also introduce a new component that

evaluates the color grouping predicted by the model.

The edge likelihood [10] p(Ed|Eθ) has a factor for each

edge point matched to a model edge, and factors for missing

edge points, and noise (unmatched) edges. Matched edges

contribute normal densities for the distance between edge

location and the projected model edge, and for the angle be-

tween the edge direction and the projected model edge [10].

Orientation surfaces [7] are often used in indoor environ-

ments, where most pixels are generated by a plane aligned

with one of three orthogonal directions, and we estimate

which one using the approach by Lee et al. [7]. We ap-

proximate the orientation likelihood p(Od|θ) as the fraction

of pixels such that the orientation predicted by the model

matches that estimated from the image data (Od) [10]. Fol-

lowing Hedau et al. [2], we also consider geometric context

labels, which estimate the geometric class of each pixel,

choosing between: object, floor, ceiling, left, middle and

right wall. This is done using a probabilistic classifier

trained on a mixture of color and oriented gradient features.

We use the code and the pre-trained classifier available on-

line [2]. For each pixel pk, this provides a probability dis-

tribution gck = [gck1, ..., gck6] over the six classes. Given

the label l predicted by the model for pixel pk, we define

p(gck|pk) = p(gck|pk = l) = gcl , and

p(GC|θ) =

∑
pk∈I p(gck|pk)
size(I)

, (9)

where we average the contributions of all image pixels.

Since the available classifier was trained against data where

only furniture was labeled as objects, and not frames, we

consider frames as part of the wall they are attached to, and

not as objects when we evaluate on geometric context.

We also introduce a new component promoting that pix-

els from the same color distribution are grouped together

(Figure 5). This is similar to evaluating the quality of the

grouping provided by a 2D segmentation algorithm, with

the key difference that the grouping is provided top-down

by the model hypothesis. Note that the possible group-

ing hypotheses are significantly constrained compared with

segmenting an image without any such guidance. In this

scope, detailed geometry and 3D reasoning play an impor-

tant role, as shown in Figure 2, where structures with legs

provide a much better grouping than a plain block. Further,

the reasoner does not need to entertain arbitrary groupings,

as it would if it were doing bottom up clustering.

Figure 5. Our color likelihood encourages pixels similar in color

to be grouped together. For each pixel, we compute a color his-

togram in LAB space. In columns 2 and 3, we select a pixel

(marked with a yellow star) and compute the chi-square distance

between its histogram and that of all other pixels. We show this in

a heat map fashion, where we set the red channel proportionally

to this distance. In the first row, pixels within the cabinet are very

close in LAB space. We can see the benefits of using color by

comparing the best fit found without using color (column 1) and

with color (column 4). Best viewed in color.

We consider two pixels in the same group if they are both

part of the projection of the same object, or of the same

room surface, but we consider walls as a single group, as

they tend to be of the same color. Intuitively, two pixels

pi and pj have a high probability of being together if their

distance dij in feature space is small. We use

p(pi, pj |θ) ≈ d
(1−Ig(pi,pj ,θ))

ij ∗ (1−dij) Ig(pi,pj ,θ) , (10)

with dij ∈ [0, 1] (see below), and Ig(pi, pj , θ) is an indica-

tor function that takes value 1 if the model assigns the two

pixels to the same group, 0 otherwise. Notice that we have

a high p(pi, pj |θ) in two complimentary cases: 1) the two

pixels are assigned to the same group and their distance is

small, as we want groups to be perceptually uniform; and

2) the two pixels are in different groups and the distance

is large, as groups (objects) tend to be different from each

other. We measure the global quality of the grouping over

the entire image by averaging the pairwise contributions

p(I|θ) ≈
∑i≤N

i=1

∑j≤N
j=i g(pi, pj |m)

(N2 −N)/2
(11)

where N is the number of pixels in the image.

This is a generic formulation of a grouping function, that

allows for any choice of feature space. In this work, we ex-

periment with color and use dij = χ(CHi, CHj), where

χ(CHi, CHj) is the chi-square distance between the color

histograms computed at pixels i and j over a window of

size n = 15. We use histograms instead of simple pixel in-

tensities because we want to capture the color distribution

of objects and surfaces, which arise at a larger scale than

the pixel level. We experimented with the LAB color space,

and used a 3-dimensional histogram with 8 bins per dimen-

sion, where elements are softly assigned to bins. We denote

the contribution of this color distance grouping function by

p(C|θ). To reduce computation time, we only use the center

pixels of 5-by-5 grid cells.
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The four components are combined into

p(D|θ) ≈ p(Ed|Eθ)p(Od|θ)αp(GCd|θ)βp(C|θ)δ. (12)

As in our previous work [10], we set α = 6. We set β = 12
and δ = 30 by running our algorithm on the training portion

of the Hedau dataset [2]. Here we used a coarse grid search

over β and δ, with a step of 2, using the room box layout

error (defined in Section §4) as an objective function. For

black and white images, we used δ = 10, as only a third of

the information is available.

3. Inference
We use MCMC sampling to search the parameter space,

defined by camera and room box parameters, the un-

known number of objects, their type, and the parameters

of each object and its parts. As in our previous work [10,

11], we combine two sampling methods—reversible jump

Metropolis-Hastings for discrete parameters (how many ob-

jects, what type they are), and stochastic dynamics [9, 10]

for continuous parameters (camera, room box, and object

parameters). Proposals from these two samplings strategies

are referred to as “jump” and “diffusion” moves [15].

Since indoor images satisfy the Manhattan world as-

sumption where most surfaces are aligned with three or-

thogonal directions, we start by detecting a triplet of orthog-

onal vanishing points that we use to initialize the camera pa-

rameters. This has become a standard procedure in this do-

main [2, 7, 11, 10]. We initialize the parameters of the room

box by generating candidates from orthogonal corners de-

tected on the image plane [10]. We sample over the contin-

uous parameters of each candidate and use the one with the

best posterior to initialize the room box parameters. Then,

we randomly alternate the following moves:

• sample over room box and camera parameters

• jump move: add/remove an object, change the cate-

gory of an object

• pick a random object and sample over the parame-

ters of its bounding box, or over (hr1, ..., hrn) and

(pθ1, ..., pθn). In the latter case, enforce
∑

i hri = 1,

and that all parameters are within the allowed range.

This procedure is executed using twenty threads, where

each thread executes the steps above. At the end, we al-

low thread to exchange the objects they have found, and we

keep the best sample found across the threads [10]. The

whole procedure takes on average 15 minutes per image.

Jump moves. All jump moves are accepted or rejected

using the Metropolis Hastings acceptance formula. Switch-

ing the category of an object, causes two changes: 1) the

prior distribution used to evaluate the object size and po-

sition; and 2) the geometric representation of the object.

For example if a simple bed is turned into a couch, the bed

Figure 6. We use detected “pegs” to propose furniture with legs

(left). Proposing a table from two pegs (middle) requires estimat-

ing the width/length and the height of the table, proposing it from

three only leaves the height as a free parameter. View in color.

“box” is replaced with an L component, by making sure

that their bounding boxes coincide. To increase the accep-

tance ratio of jump moves, we propose objects from im-

age corners in a data-driven fashion [11], and briefly sam-

ple its continuous parameters before evaluating Metropolis-

Hastings (delayed acceptance [11]).

Part-specific inference. Efficient inference of complex

structure, such as chairs with legs, seat and backrest, is more

exacting than that of simple blocks. We designed specific

inference moves for the different parts, which are re-used

by all objects containing that part. While all objects share

the data-driven proposal mechanism from corners, we use

specific inference for the L-component and the set of four

legs. For the former, we have to keep in mind that two to

four configurations are possible (Figure 4, top row), and we

try them all whenever a jump move involves an object con-

taining an L component.

Legs are harder to identify, since they do not generate

corners on the image plane that can be used for data-driven

proposals. We thus detect peg structures, which are likely

candidates for being legs (Figure 6, left), as suggested by

Hedau et al. [4]. A peg can be used to propose a four-legged

component the same way that a corner is used to propose a

block. More effective proposals can be generated from two

or even three of such pegs (Figure 6, center). We then use

this proposal mechanism, as well as the standard ones, for

all objects whose support is a set of four legs, namely tables

and chairs. Note that this is different from Hedau’s work [4]

where objects are modeled with bounding boxes, and pegs

are part of the likelihood, as a way to explain the missing

edges between the legs of a table. Our likelihood does not

need to explain that missing edge, since not finding it is

predicted by the strong geometric model.

Using context. We found that several objects in indoor

images are hard to detect because of clutter and heavy oc-

clusions. Tables and chairs are an example, since they often

occlude each other, like the chair behind the table in Figure

2. However, this problem can be addressed by consider-

ing contextual relationships between objects in a top-down

fashion. Here, we bias the sampler to propose for chairs

around detected tables, as shown in Figure 7. Given a ta-

ble hypothesis (shown in blue), we look for chairs in the

red areas in the Figure, whose size and position is defined

relatively to the table, by making sure that the backrest of
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Figure 7. Using context to find chairs around tables. Given a table

hypothesis (seen from above in blue, top left), we propose chairs

around it. We consider the red areas around each side of the table,

and propose a chair centered at each of the yellow dots shown. For

each chair we then briefly sample over its continuous parameters,

and accept it or reject it using the Metropolis-Hastings acceptance

formula. Chairs found with the help of this procedure are shown

above in yellow. Best viewed in color.

Table 1. Room layout error on Hedau and UCB datasets.

no color color state-of-the-art

HEDAU 13.7 12.7 12.8 [14]

UCB 14.2 14.0 18.8 [10]

the chair is facing the table. This allowed us to find the

chairs drawn in yellow in Figure 7, that were missed by in-

ference without context cues. This strategy can easily be

introduced in other cases where contextual cues are strong

hints of where to look to make inference more efficient.

4. Results and discussion

All our experiments were performed on the Hedau

dataset [2] (104 color images) and the UCB dataset [17]

(340 black and white images). We first evaluate the quality

of the room box estimation [2, 7, 10, 11], by comparing the

projection of the estimated room against the ground truth,

where each pixel was labeled according to the surface of

the room box it belongs to. The score is computed as the ra-

tio between the pixels correctly labeled and the total number

of pixels, averaged over the entire dataset. Results in Table

1 show the benefits of using color, which increased perfor-

mance on the two standard data sets. With it, we were able

to exceed available state-of-the-art values.

We then evaluate object recognition, which is more in-

dicative of our goal of full scene understanding. We are

trying to identify eight object classes that belong to two

very distinct categories: frames (doors, windows and pic-

ture frames), and furniture (beds, cabinets, chairs, couches

and tables). We first measure how many objects we cor-

rectly identified for each of the two main categories, even if

there is confusion within the subcategories (e.g. when we

label a table as a couch, or a window as a door) [10]. We

provide precision and recall scores based on this criterion.

Second, we measure the accuracy we achieved within

Table 2. Precision, recall, and subcategory classification accuracy

on the Hedau (left) and UCB (right) datasets.

Furniture p r sc p r sc

no color 50.4 25.8 49.3 35.9 28.6 47.5

color 53.9 35.7 57.3 38.9 32.0 52.5
Del Pero [10] 32.5 20.3 50.0 31.0 20.1 38.0

With chairs p r sc p r sc

no context 53.8 26.2 58.6 37.8 22.0 52.5

context 54.9 28.3 61.3 38.1 22.2 53.4
Frames p r sc p r sc

no color 36.2 33.7 69.6 27.6 37.4 63.3

color 44.9 41.8 69.3 33.3 42.4 63.6
Del Pero [10] 33.1 18.7 70.3 27.7 19.7 60.0

each of the two categories, as the percentage of objects that

were assigned to the correct subcategory. To decide whether

an object was correctly identified, we measure the intersec-

tion between the projection of the estimated object and its

ground truth position [10]. If the intersection is larger than

50% of the union of this two areas, we consider the object as

a correct detection. The ground truth masks used for these

experiments are available on our website1.

We first compare with our previous results on object

recognition [10], where the same furniture and frames cat-

egories are used, except for chairs. For proper comparison,

we do not include chairs when computing precision and re-

call, and evaluate with chairs separately. Also, we consider

beds with headrest and beds without headrest as both part

of the category “bed”. Table 2 shows that we improve on all

measures. We also report the benefits of using color, which

are less evident on the black and white dataset.

In general, there is a trend showing a better precision

for furniture with respect to frames. We explain this differ-

ence by considering that frames are supported by edges and

color only, whereas furniture is detected using a more robust

set of features including geometric context and orientation

maps. Detailed geometry also allows us to improve on sub-

category classification for furniture, as precise topology is

a strong hint for distinguishing among categories such as

couches and tables. Our color model improves precision

and recall for both furniture and frames, as it helps segment

objects from the background and from each other. For furni-

ture, color also improves subcategory recognition indirectly

by improving object geometry fitting. However, in the case

of frames, the geometry is the same for all three types, so

while global precision and recall are improved with color,

distinguishing among the sub-types is not.

When we also consider chairs, precision and subcategory

classification improve, despite the task being harder due to a

larger number of categories (compare row two and row five

in Table 2). However, recall suffers, as chairs are relatively

small and often heavily occluded. Nonetheless, we notice

1http://kobus.ca/research/data/CVPR 13 room
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the benefits of using context for proposing, which improves

all measures, and is a promising step towards dealing with

heavy occlusion and scarce image evidence using top-down

information. In the case of the Hedau dataset, context al-

lowed us to identify seven more chairs at the cost of one

false positive. Qualitative results on using context to find

chairs are shown in Figure 7, while full scene reconstruc-

tions are shown in Figure 1, 2 (bottom right), and 8, which

also includes some typical failures.

Discussion. The experimental results confirmed that the

proposed 3D representation indeed has advantages. A very

important one is that variation within instances of an ob-

ject category is reduced because the camera does not con-

tribute to it, and also defining parts relatively to an object’s

size instead of absolute values further reduces the variabil-

ity among classes. Consider for example the table model,

where we do not impose tables to be any particular height,

but the relative amount for the legs part versus the top part

is kept within a small learned range (roughly 92% for the

legs). Interestingly, we found that most part parameters,

such as the leg width ratio, tend to have little variability.

In fact, despite keeping them within a small range, learned

from a small amount of training data, we could detect a va-

riety of tables in the test data, ranging from small coffee

tables (Fig. 8, bottom left) to dining tables (Fig. 7, bot-

tom left). Additionally, since we encode the key structure

of an object, minor variations in the object parts do not nec-

essarily create problems. For example, in Fig. 5 a table is

detected even if the predicted top is too thick (bottom right).

The experiments also showed that the proposed inference

can handle complex 3D models, which introduce a larger

(and unknown) number of variables, without being too sen-

sitive to local optima. This is enabled by the fact that objects

only interact with others in minimal ways via occlusion and

space occupancy constraints. Hence proposing a complex

alternative to a bounding box is like an independent local

part of the inference, unless it changes what is occluded

with what, like switching a block into a table so that chairs

can be tucked underneath. However, truly complex objects,

such as an exuberant indoor plant, will require additional

and potentially quite different approaches.
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