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Abstract

Computing accurate and robust organizational patterns
of chromosome territories inside the cell nucleus is critical
for understanding several fundamental genomic processes,
such as co-regulation of gene activation, gene silencing, X
chromosome inactivation, and abnormal chromosome re-
arrangement in cancer cells. The usage of advanced fluo-
rescence labeling and image processing techniques has en-
abled researchers to investigate interactions of chromosome
territories at large spatial resolution. The resulting high
volume of generated data demands for high-throughput and
automated image analysis methods. In this paper, we intro-
duce a novel algorithmic tool for investigating association
patterns of chromosome territories in a population of cells.
Our method takes as input a set of graphs, one for each cell,
containing information about spatial interaction of chromo-
some territories, and yields a single graph that contains es-
sential information for the whole population and stands as
its structural representative. We formulate this combinato-
rial problem as a semi-definite programming and present
novel techniques to efficiently solve it. We validate our ap-
proach on both artificial and real biological data; the ex-
perimental results suggest that our approach yields a near-
optimal solution, and can handle large-size datasets, which
are significant improvements over existing techniques.

1. Introduction
Cell is the fundamental building block of living organ-

isms. It is a highly complicated system containing the

genome and the entire information required for the con-

struction and functioning of the organism. Chromosome
Territories (CTs) are distinct regions within the cell nu-
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cleus where genetic material is confined. Chromosome ter-

ritories constitute a staple feature of nuclear architecture

and are in constant dynamic interaction with other compo-

nents of cell nucleus. Recent studies show influence of ar-

rangements of chromosome territories on some fundamen-

tal cell molecular processes (e.g. gene expression, forma-

tion of cancer-promoting chromosome translocations etc.)
[3, 9]. For decades, determining how chromosomes are or-

ganized inside the cellular nucleus was a technically chal-

lenging process largely relying on manual measurements

and observation of experts (see Fig. 1a). Thus, obtaining ac-

curate and robust chromosome interaction patterns from cell

nucleus images will significantly facilitate analysis and im-

prove overall understanding of molecular processes in cell

nucleus [5, 6, 8, 10].

An effective way of representing high level chromosome

territory organization in each cell is to use a graph data

structure, where every vertex is an individual chromosome

territory and every edge represents the association (spatial

proximity) of a pair of neighboring chromosome territo-

ries. We call this graph as a pair graph. In a pair graph,

each chromosome territory is associated with a chromo-

some number, and each chromosome number has multiplic-

ity of two (one for each chromosome homolog). For exam-

ple, in Fig. 1a, each chromosome number has two chromo-

some homologs which share the same color. A graph that

can be seen as representative for the set of pair graphs is

called a Chromosome Association Pattern (CAP).

Despite recent developments in microscopy imaging,

and labeling techniques, our abilities to calculate CAP for

a given cell population are still limited. The highly hetero-

geneous nature of association graphs (due to cell dynam-

ics, imperfect synchronization, or various noise introduced

in nucleus image processing) and the difficulty of identify-

ing the corresponding chromosome homolog among cells
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(a) (b) (c) (d)

Figure 1: 1a shows an image obtained by superimposition along z-direction from a set of 3D microscopic nucleus images.

1b is the segmentation of 1a. 1c is the k-pair association graph for 1a. 1d is a label differentiation for 1c.

in the input complicate the problem. However, the main

bottleneck lies in the inherent hardness of the CAP prob-

lem itself (since it is closely related to the subgraph match-

ing/isomorphism problem [2] which is notoriously hard for

approximation). This suggests that deriving any quality

guaranteed solution for CAP is challenging.

1.1. Related Works
Several models in literature are applicable to finding

chromosome territories association patterns. The most pop-

ular one is median graph [16], which has received consid-

erable attentions in recent years [11, 12, 14, 15]. Given a

set of input graphs with possible labels associated with ver-

tices, the objective of a median graph problem is to com-

pute a new graph, called median graph, that has the min-

imum distance to the input graphs. Distance between two

graphs is usually defined as their edit distance. A variant,

called Generalized Median Graph (GMG) [18], uses a gen-

eralized distance function that considers both vertex labels

and edge weights, and produces near optimal solutions in

polynomial time. In the context of finding association pat-

terns of chromosome territories, GMG, as well as any other

median graph method, has two major limitations. Firstly,

due to its emphasis on finding the structural similarity be-

tween graphs, the GMG tends to match vertices with sim-

ilar degrees. A possible outcome is that the GMG could

match two vertices with different labels. While this is in

accordance with the edit distance definition, it gives mis-

leading semantic interpretation in our biological application

where vertex labels denote chromosome territories. Sec-

ondly, GMG requires graphs with unique predefined label-

ing, this is in direct contrast with the uncertainty that we are

facing in dealing with chromosome territory homologs. Re-

cently, a suitable model based upon integer programming

was proposed by Stojkovic et al. [20]. Although, it gives

better experimental results than GMG in [18], its exponen-

tial running time (due to the nature of integer programming

formulation) limits its application to only small-size input

data sets.

Semi-definite programming is a well know model for

solving optimization problems, especially for some NP-

hard problems. Goemans and Williamson [13] introduce the

breakthrough for Max-Cut problem via Semi-definite pro-

gramming. Recently, Arora [1] provides a good survey on

approximation algorithms and Semi-definite programming.

1.2. Our Model
Aiming to fix the aforementioned problems in existing

approaches, we first enumerate 2k labeled graphs for each

k-pair association graph, with each labeled graph corre-

sponding to a permutation of the original k-pair graph. Note

that k is normally a small constant no more than 9 (this is

due to the limitation of current labeling techniques in cell

biology). For any two labeled graphs, we compute their

Jaccard distance. Then we map the 2kn labeled graphs to

points in some metric space, such that the pairwise dis-

tance of any two points is equal to the Jaccard distance

between the corresponding two labeled graphs. Finally,

we reduce the Chromosome Association Pattern problem to

finding a new geometric structure called Chromatic Median
in the metric space. Although this problem looks similar

to some graph optimization problems which minimize (or

maximize) the sum of correlations, e.g., correlation cluster-

ing [4], the major difference is that those problems do not

consider the “chromatic” requirement, which is an essential

requirement and a major source of difficulty for our prob-

lem.

To solve the chromatic median problem, we first give a

Quadratic Integer Programming model, then relax it to a

Semi-definite Programming (SDP) problem, and propose a

multi-level rounding technique to solve the SDP problem. It

should be pointed out that although several rounding tech-

niques exist for SDP [1, 13], the multi-level rounding tech-

nique is new, to the best of our knowledge. The technique

is naturally applicable to the Chromatic Median model. In

this paper, we also show that using adaptive sampling as a

speedup tool, it is possible to significantly reduce the run-

ning time and still preserving the quality of solutions.

2. Preliminaries
In this section, we introduce some definitions which will

be used throughout the paper.

Definition 1 (k-Pair Association Graph). Let IM be a
nucleus image that includes k pairs of chromosomes. An
unweighed graph I = (V,E) is a k-pair association graph
for IM, if it satisfies

1. V has k pairs of vertices, {V1, · · · , Vk}, with each Vi

containing exactly two vertices sharing the same index
i.

2. Any two vertices from V are connect by an edge if the
corresponding two chromosome territories are close
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enough to each other in 3D space (based on some bio-
logical threshold).

Figure 1c shows the k-pair association graph, where k =
8, for the nucleus image given in Figure 1a.

Definition 2 (Label Differentiation). Given a k-pair as-
sociation graph I = (V,E), V =

⋃
1≤i≤k Vi, the label of

each vertex pair Vi is differentiated if one vertex in Vi is
labeled as i a©, and the other is labeled as i b©. The graph
after Label Differentiation is denoted as L(I).

From the above definition, it is easy to see that every k-

pair association graph has 2k different label differentiations.

Fig. 1d shows an example.
Definition 3 (Jaccard Distance (JD)). For any two given
graphs G1 = (V,E1) and G2 = (V,E2) with the same
labeled vertex set V , the Jaccard Distance between them is
defined as

JD(G1, G2) = 1− |E1

⋂
E2|

|E1

⋃
E2| . (1)

Definition 4 (Chromosome Association Pattern (CAP)).
Given n k-pair association graphs {I1, · · · , In} with each
corresponding to a different cell, the chromosome associ-
ation pattern problem is to find a new graph Gcap and a
proper label differentiation Li for each Ii, so as to minimize
the average Jaccard distance to {L1(I1), · · · , Ln(In)}.
The graph Gcap is called the CAP-graph.

3. Chromatic Median
In this section, we consider a standalone geometric op-

timization problem, Chromatic Median, in metric (e.g., Eu-

clidean) space. In Section 4, we will show how Chromatic

Median can be used to solve the CAP problem.
First, we recall that median point in geometry is also

called Fermat Weber point. For any set of n points
{p1, p2, · · · , pn} in R

d space, its median point is defined
as

Med = arg min
x∈Rd

1

n

n∑

i=1

||x− pi||, (2)

where argmin means the value of x which minimizes

the sum, and || · || denotes the Euclidean distance. There

is no explicit analytical formula for computing the opti-

mal median point. Consequently, median point is often

approximated by using some iterative procedure, such as

Weiszfeld’s algorithm [21]. Now, we consider the Chro-

matic Median.

Definition 5 (Chromatic Median (CMed)). Given n
groups of points in R

d space, P = {P1, · · · , Pn} with
each Pi containing λ points {pi1, · · · , piλ}, the Chromatic
Median of P is defined as

CMed = arg min
x∈Rd

1

n

n∑

i=1

dist{x, Pi}, (3)

where dist{x, Pi} = min{||x− pil|| | 1 ≤ l ≤ λ}.

From the above Definition 5, we know that the Chro-

matic Median of a given P can be obtained in two steps

(see Figure 2a): Firstly, select a proper point pili from each

Pi ∈ P; secondly, compute the geometric median point of

{p1l1 , p2l2 , · · · , pnln}, which is the Chromatic Median of P .

Thus, the main difficulty of Chromatic Median is how to

find the proper pili from each Pi. In Section 5, we present a

semi-definite programming formulation, which helps us to

identify each pili and yields a 2-approximation solution for

Chromatic Median, where the approximation ratio is over

the cost function (3).

4. Formulation: from cap to chromatic median
To solve the chromosome association pattern (CAP)

problem, we use the following reduction from CAP to the

Chromatic Median problem.

1. For each of the n nucleus images IMi, build a k-

pair association graph. Let Ii denote the corresponding

graph.

2. Enumerate the 2k possible Label Differentiations for

each Ii, and generate the corresponding 2k labeled

graphs {Ii1, · · · , Ii2k}. Note that k is usually a small

number no larger than 9.

3. For any two labeled graphs Ii1s and Ii2t , we compute

the Jaccard distance between them. Since the Jac-

card distance satisfies triangle inequality [7], we map

the 2kn labeled graphs to 2kn points in some metric

space. For each group of labeled graphs {Ii1, · · · , Ii2k},
we denote the corresponding points set as Pi =
{pi1, · · · , pi2k}. Let P = {P1, · · · , Pn}.

4. Find the n points {p1l1 , · · · , pnln} by the semi-definite

programming model given in Section 5, where each pili
is the nearest point to Chromatic Median among Pi.

5. Output the Median Graph under Jaccard Distance (see

Section 4.1) for {I1l1 , · · · , Inln}.
Mapping graphs into points: In Step 3 of the above re-

duction, we need to map all labeled graphs into points in

some metric space. A natural question is how to con-

struct the space. Our idea is not to explicitly build the

metric space; instead, we formulate the Chromatic Me-

dian problem as a semi-definite programming (in Section

5) which only requires the pairwise distances among the set

of mapped points (i.e., the Jaccard Distances among the la-

beled graphs) to achieve an approximate solution.

4.1. Median Graph under Jaccard Distance

Next, we introduce Median Graph under Jaccard Dis-
tance, which is used in the above reduction (Step 5).

Definition 6 (jd-MG). For a given set of labeled graphs
{G1, G2, · · · , Gn} with all Gi = (V,Ei) sharing the same
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(a) (b) (c)
Figure 2: 2a shows a Chromatic Median problem, where points in each group share the same color. 2b shows an example of

the column graph corresponding to the 0-1 Quadratic Programming, where the vertices sharing the same color belong to the

same column of vertices. 2c is an illustration of the variable matrix.

labeled vertex set V , its Median Graph under Jaccard Dis-
tance, jd-MG, is defined as G̃ = (V, Ẽ), which minimizes
the following cost function,

1

n

n∑

i=1

JD(G̃,Gi), (4)

where JD(·) denotes the Jaccard Distance between two
graphs (see Definition 3).

If we consider each Gi as one point in some metric space,

and the distance in the space is defined as the Jaccard Dis-

tance, then jd-MG is similar to the geometric median point

of the point-sets {G1, G2, · · · , Gn}. Thus, we can use a

method similar to Weiszfeld’s algorithm to achieve an ap-

proximate jd-MG.

For each Gi = (V,Ei) (note that Gi is a labeled graph),

we denote each Ei as a binary vector νi of length
(|V |

2

)
,

where each coordinate indicates the existence of the cor-

responding edge. That is, if the corresponding edge ex-

ists in Ei, the value of the coordinate is 1, or 0 other-

wise. Compute the median point of {ν1, ν2, · · · , νn} us-

ing Weiszfeld’s algorithm (see Section 3), and denote it

by ν̃. Note that ν̃ is not necessarily a binary vector, in-

stead, the value of each coordinate could be fractional,

i.e., between 0 and 1. For any threshold ρ ∈ [0, 1], de-

note the rounded binary vector by ν̃(ρ), where the value

of each coordinate of ν̃(ρ) is assigned to be 1 if the cor-

responding coordinate value of ν̃ is larger than or equal to

ρ, or 0 otherwise. Correspondingly, denote the graph as

G̃(ρ) = (V, Ẽ(ρ)), where the edges set Ẽ(ρ) is indicated

by ν̃(ρ). We can search the proper threshold ρ0 from [0, 1],
such that ρ0 = argmin0≤ρ≤1

1
n

∑n
i=1 JD(G̃(ρ), Gi). Fi-

nally, output G̃(ρ0) as an approximate jd-MG.

5. Semi-definite Model for Chromatic Median
In this section, we show that it is not necessary to find

the exact chromatic median CMed. Instead, it is suffi-

cient to first find the n points {p1l1 , · · · , pnln}, where each

pili is the nearest to CMed among all the points in Pi,

and then output the Median Graph under Jaccard Distance

for {I1l1 , · · · , Inln} using the idea described in Section 4.1.

Since it is hard to find the embedding space for the points

[17], we do not explicitly compute CMed. Instead, we min-

imize the total pairwise distance,
∑n

i=1

∑n
j=1 ||pjlj − pili ||,

so as to avoid finding CMed. The following lemma shows

the relation between the total distance to CMed and the to-

tal pairwise distance.

Lemma 1.

1 ≤
1
n

∑n
i=1

∑n
j=1 ||pjlj − pili ||∑n

i=1 ||CMed− pili ||
≤ 2 (5)

Proof. We prove the two sides of (5) separately.
Since CMed is the geometric median point of

{p1l1 , · · · , pnln}, by (2), we know that for any 1 ≤ j ≤ n,

n∑

i=1

||CMed− pili || ≤
n∑

i=1

||pjlj − pili ||. (6)

Averaging the right hand side of (6) over j, we have

the left side of (5), i.e.,
∑n

i=1 ||CMed − pili || ≤
1
n

∑n
i=1

∑n
j=1 ||pjlj − pili ||.

Meanwhile, by triangle inequality, for any 1 ≤ i, j ≤ n,
we have

||pjlj − pili || ≤ ||pjlj − CMed||+ ||pili − CMed||. (7)

Summing both sides of (7) over i and j, we have

n∑

i=1

n∑

j=1

||pjlj − pili ||

≤
n∑

i=1

n∑

j=1

(||pjlj − CMed||+ ||pili − CMed||). (8)

Meanwhile, for the right side of (8), we have

n∑

i=1

n∑

j=1

(||pjlj − CMed||+ ||pili − CMed||)

=

n∑

i=1

n∑

j=1

||pjlj − CMed||+
n∑

i=1

n∑

j=1

||pili − CMed||

= n

n∑

j=1

||pjlj − CMed||+ n

n∑

i=1

||pili − CMed||

= 2n

n∑

i=1

||CMed− pili ||. (9)

From (8) and (9), we immediately have the right

side of inequality (5), i.e., 1
n

∑n
i=1

∑n
j=1 ||pjlj − pili || ≤

2
∑n

i=1 ||CMed− pili ||. This completes the proof.
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From Lemma 1, we get the following lemma.

Lemma 2. Let {p1l′1 , p
2
l′2
, · · · , pnl′n} be the n points minimiz-

ing the total pairwise distances with each pil′i
∈ Pi, and

Med′ be their geometric median point. Then,
n∑

i=1

||Med′ − pil′i || ≤ 2

n∑

i=1

||CMed− pili ||. (10)

Proof. Firstly, we have the following two inequalities:
n∑

i=1

||Med′ − pil′i || ≤
1

n

n∑

i=1

n∑

j=1

||pj
l′j
− pil′i ||; (11)

1

n

n∑

i=1

n∑

j=1

||pj
l′j
− pil′i || ≤

1

n

n∑

i=1

n∑

j=1

||pjlj − pili ||, (12)

where (11) is obtained in a similar manner as the left side of

(5), and (12) follows from the fact that {p1l′1 , p
2
l′2
, · · · , pnl′n}

minimize the total pairwise distances. Furthermore, by

combining (11) and (12), we have
∑n

i=1 ||Med′ − pil′i
|| ≤

1
n

∑n
i=1

∑n
j=1 ||pjlj − pili ||. By combining this inequality

and the right side of (5), we have (10), i.e.,
∑n

i=1 ||Med′ −
pil′i
|| ≤ 2

∑n
i=1 ||CMed− pili ||.

The above lemma suggests that minimizing the total

pairwise distances enables us to obtain a 2-approximation

for chromatic median. Next, we introduce a quadratic pro-

gramming model for finding the desired n points which

minimize the total pairwise distances.

Let {p1l′1 , p
2
l′2
, · · · , pnl′n} be the n points minimizing the

total pairwise distances with each pil′i
∈ Pi. We have

an indicator variable xi
j for each point pij . xi

j is equal

to 1 if j = l′i (i.e., pij = pil′i
), or 0 otherwise. For any

i1 �= i2 and any 1 ≤ s, t ≤ λ, we compute the coefficient

wi1,i2
s,t = ||pi1s − pi2t ||. We have the following 0-1 Quadratic

Programming model. For ease of understanding, we can

imagine that there is a column graph built for the model

(see Figure 2b).

1. For each i, 1 ≤ i ≤ n, there is a corresponding column

of vertices, where each indicator variable xi
j denotes

one vertex in the column.

2. For any two vertices from different columns, connect

them with an edge, where the weight is wi1,i2
s,t .

3. Finally, the 0-1 Quadratic Programming is to find a

subgraph of the column graph with minimum total

weight, where the subgraph contains exactly one ver-

tex from each column.

0-1 Quadratic Programming

min f =

n∑

i1=1

n∑

i2=i1+1

λ∑

s=1

λ∑

t=1

wi1,i2
s,t xi1

s xi2
t (13)

xi
j ∈ {0, 1}, ∀1 ≤ i ≤ n, 1 ≤ j ≤ λ (14)

λ∑

j=1

xi
j = 1, ∀1 ≤ i ≤ n (15)

The above 0-1 quadratic programming indicates that if

we compute its optimal solution, we immediately ob-

tain exactly one indicator variable, say xi
l′i

, from each

{xi
1, x

i
2, · · · , xi

λ} with value 1. Let pil′i
be the correspond-

ing point. Then by Lemma 2, we know that the geometric

median point of {p1l′1 , p
2
l′2
, · · · , pnl′n} is a 2-approximation of

Chromatic Median of P over the cost function (3). Thus,

we immediately have the following theorem.

Theorem 1. The optimal solution of the above 0-1
quadratic programming yields a 2-approximation for the
chromatic median problem.

5.1. Semi-definite Programming Model

Since the 0-1 quadratic programming is challenging to

solve optimally [19], we convert it to a semi-definite pro-

gramming model. We first build an equivalent 0-1 semi-

definite programming (SDP), and then use rounding tech-

nique to solve it. There are two steps for constructing the

0-1 SDP model.

• Firstly, we build the variable matrix X ∈ R
nλ×nλ.

For any 1 ≤ i1, i2 ≤ n, we denote the sub-matrix

formed by ((i1 − 1)λ + 1)-th to (i1λ)-th row and

((i2 − 1)λ + 1)-th to (i2λ)-th column as Xi1i2 . We

also denote the entry in s-th row and t-th column of

Xi1i2 , where 1 ≤ s, t ≤ λ, as Xi1i2(s, t). We let

Xi1i2(s, t) = xi1
s xi2

t . Since for each 1 ≤ i ≤ n, we

just select one of {xi
1, x

i
2, · · · , xi

λ} to be 1, and all oth-

ers to be 0, we can assign each diagonal sub-matrix

Xi,i to be diagonal matrix, and the trace to be 1. See

Figure 2c.

• Secondly, we build the coefficient matrix W ∈
R

nλ×nλ. For any 1 ≤ i1, i2 ≤ n, we denote the sub-

matrix formed by ((i1 − 1)λ + 1)-th to (i1λ)-th row

and ((i2 − 1)λ + 1)-th to (i2λ)-th column as Wi1i2 .

We also denote the entry in the s-th row and the t-th
column of Wi1i2 (where 1 ≤ s, t ≤ λ) as Wi1i2(s, t).
We let Wi1i2(s, t) = wi1,i2

s,t .

Through the above construction for variable matrix X
and coefficient matrix W , we have the following model.
0-1 Semidefinite Programming

min f = tr(WX) (16)

X � 0, X ∈ R
nλ×nλ

(17)

(14) is rewritten as Xi,j(s, t) = 0, 1 for ∀i, j, s, t, and (15)

is rewritten as Xi,i(s, t) = 0 for s �= t, and tr(Xi,i) =
1. From Theorem 1, we immediately have the following

theorem.
Theorem 2. The optimal solution of the above 0-1 semi-
definite programming is equivalent to the optimal solution
of the 0-1 quadratic programming. Consequently, it yields
a 2-approximation for the chromatic median problem.
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5.2. Multilevel Rounding Algorithm

If we solve the semi-definite programming on the model

builded in Section 5.1, the output will be a positive semi-

definite matrix X ∈ R
nλ×nλ. Since X is not necessarily a

0-1 matrix, to obtain a feasible solution to CAP, we need to

perform a rounding procedure on X to convert it into a 0-1
matrix. An intuitive idea for this is that, for each sub-matrix

Xi,i, 1 ≤ i ≤ n, round the largest diagonal elements to

1, and others to 0. A main issue with this approach is that

it could cause a significant loss on the quality of solution.

Below, we introduce a multiple-level rounding algorithm to

achieve a better solution.

Algorithm overview: Our algorithm performs log λ
rounding steps iteratively. At each iteration, for each Xi,i,

the algorithm first forms an index set, Indi, which corre-

sponds to the smaller half of the nonzero diagonal elements.

Then the algorithm rounds this half of diagonal elements to

0, and puts these as constraints in the next iteration. Fi-

nally, after log λ iterations, there is only one positive num-

ber among the diagonal elements for each Xi,i, which is the

final rounding result.

Multilevel Rounding Algorithm
1. Initialize n index sets {Ind1, · · · , Indn} with each

Indi = ∅, and λ̄ = λ.

2. Perform the following steps log λ times, and then out-

put the final X .

(a) Solve the 0-1 SDP via some SDP solver, and out-

put the semi-definite matrix X ∈ R
nλ×nλ.

(b) For each sub-matrix Xi,i, 1 ≤ i ≤ n, exclud-

ing the indices from Indi, find the λ̄
2 indices that

have the smallest diagonal elements. Add the in-

dices into Indi.

(c) Add the following constraints to the 0-1 SDP: For

each 1 ≤ i ≤ n, the elements in the j-th row and

j-th column of Xi,i are equal to zero, if j ∈ Indi.

(d) Set λ̄ to be λ̄
2 .

5.3. Speedup via Adaptive Sampling
Obviously, directly solving a large-size SDP is extremely

computationally expensive. Thus, we introduce a speedup

technique using Adaptive Sampling.

Main idea: We first randomly select a small number

(i.e., m	 n) of point-sets P ′ from P , which is denoted as

{Pi1 , · · · , Pim}, and then find the approximate chromatic

median CMed′ for P ′ using the SDP introduced in Section

5.1. Using CMed′, for each Pi we can remove a large sub-

set which is far away from CMed′. Thus, the size of P can

be reduced significantly. Finally we get the solution for the

whole P . The key step is how to select the small sample P ′.
Intuitively, the m point-sets need to be well separated in the

space so as to preserve the distribution of P . Our strategy is

to select the sample adaptively: select the m point-sets iter-

atively; in each iteration, choose the one that has the largest

distance to those already selected point-sets.

6. Evaluations
We present our experimental results in two subsections.

In the first part we evaluate the performance of our method

on synthetic datasets, with each dataset consisting of a num-

ber of randomly generated k-pair association graphs. In the

second part, we apply our method for gauging the associa-

tions of chromosome territories in a population of cells be-

longing to WI 38 human lung fibroblast cell line. All of the

experimental results are obtained on a 2.4GHz Linux work-

station using SDPT3 as the SDP solver.

6.1. Synthetic Datasets
Data generation method. For each synthetic dataset,

we randomly generate a k-pair association graph, I =
(V,E), as the ground truth. Then we generate a set of k-

pair association graphs based on the ground truth with some

percentage of input noise. For example, if the input noise

percentage is 0 ≤ p ≤ 1, we randomly delete p|E| edges

from E, and add p|E| new edges for each graph. According

to Definition 3, the expected Jaccard distance to the ground

truth graph for each input graph would be 1− 1−p
1+p = 2p

1+p .

Moreover, we regard it as the expected objective value for

the CAP-graph obtained by our method. Throughout this

section we denote the number of (chromosome territory)

pairs as k, the number of input k-pair association graphs

in each dataset as n, and the input noise percentage as p.

Experimental Results. In order to show that our method

scales well, we measure its performance on the datasets,

which have significantly larger size than the previously

available techniques, i.e., varying n from 100 to 1000, and

k from 6 to 12. In addition, to show the robustness of

our method, we test it on different levels of noise, i.e.,
p ∈ {5%, 10%, 15%, 20%}. We compute the Jaccard dis-

tance between the CAP-graph generated by our method and

the corresponding ground truth. For each data size, we run

10 times and take the average result. The average output

results respect to different noise levels are given in Table

1 . The presented values of Jaccard distance is very close

to the expected value of the objective function (i.e., 2p
1+p ).

Moreover, we note that our method performs well on larger

datasets compared to [20], which has input size n = 45.

Table 1: Results for the multi-level rounding

Noise Level 5% 10% 15% 20%

Output 0.1146 0.1933 0.2507 0.3197

Expect 0.0952 0.1818 0.2609 0.3333

Multilevel vs Single Rounding. To determine the per-

formance of the multilevel rounding technique, we show its

comparison with the results obtained by single level round-
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Figure 3: In 3a, the three curves are the average objective

value generated by multilevel rounding, the average objec-

tive value by single level rounding, and the expected value
2p
1+p respectively. In 3b, the two curves are for adaptive

sampling, and uniform sampling respectively.

ing on the same input set. Figure 3a shows the result. The

Jaccard distance values for multilevel rounding are signifi-

cantly lower than those obtained by single level rounding.

Adaptive vs Uniform sampling. To speedup our algo-

rithm, we have introduced the adaptive sampling procedure

in Section 5.3. This step can be considered as a part of pre-

processing phase. To evaluate the advantage of the adaptive

sampling strategy, we give a comparison with the results

obtained by uniform sampling. The results are shown in

Figure 3b, where the results by adaptive sampling are sig-

nificantly better than those by uniform sampling.

Comparison with previous results. We compare our

method with the reported evaluation results for MAG [20]

on synthetic datasets. In our experimental settings, we have

taken datasets with ranging data size n from 100 to 1000.

Also, for generating noise, we perform both insertion and

deletion operations on the edges from the ground truth.

On the contrary, MAG’s performance is only evaluated on

comparatively smaller input (n = 45) for the case when

only deletion operation on edges is considered. In order to

compare with MAG, we additionally generate 3 synthetic

datasets mimicking the procedure described in [20], i.e.,
k = 6, and p ∈ {15%, 30%, 40%}, where only deletion

of edges is allowed. In order to maintain consistency with

[20], we use Sorenson index as the evaluation parameter.

Given two labeled graphs G1 = (V,E1) and G2 = (V,E2),

Sorensen index is defined as
2·|E1∩E2|
|E1|+|E2| . Results are shown

in Table 2, where our method achieves more than 10% im-

provements over all the three datasets, and the improvement

becomes larger when the noise level increases.

Table 2: Performance comparison of MAG

[20] and our method on synthetic datasets

Noise level 15% 30% 40%

Our model 0.94 0.88 0.83
MAG [20] 0.84 0.72 0.62
Improvement 11.90% 22.22% 33.87%

6.2. Biological Data
Cell nucleus image acquisition process. The usage of

advanced fluorescence labeling and image processing tech-

niques has enabled researchers to investigate interactions of

chromosome territories at large spatial resolution. Current

limits of microscopic image acquisition process allow at

most 9 pairs of chromosome territories to be labeled per cell

nucleus. In this experiment, we focus on the study of asso-

ciations of 8 chromosome territory pairs (with chromosome

numbers from 1 to 9, except for 5) in WI 38 human lung

fibroblast cells. We run our algorithm on dataset consisting

of 90 microscope nucleus images. Each raw microscope

image is a set of 2-D slices, where each slice corresponds

to an image of the 3-D cell nucleus acquired at a certain

focal plane. Next, denoising, enhancement, segmentation

(see Figure 1b), and 3-D volume reconstruction of the set of

2-D slices are done. Individual k-pair association graph for

each cell is derived using nearest border to border distances

among chromosome territories.

Comparison with previous results. Like many biologi-

cal problems, there is no ground truth for the CAP-graph on

the cell nucleus images. To alleviate this problem, we take

the average similarity (or dissimilarity) between the gener-

ated CAP-graph and the input dataset as the quality eval-

uation criteria. In order to produce an equal-footing com-

parison of our method with [18] and [20], we provide three

values for our output. The objective of our model is to mini-

mize the average Jaccard distance, while [18] shows Jaccard

similarity, and [20] shows Sorensen index. Table 3 shows

all of the three evaluations. The last row shows the im-

provement of our result (if we denote the Jaccard similarity

(Sorensen index) we obtain as s1, and the Jaccard similarity

(Sorensen index) obtained from [20] or [18] as s2, then the

improvement would be (s1 − s2)/s2). From Table 3, it is

clear that our method outperforms all existing approaches.

Furthermore, Figure 4a shows the CAP-graph obtained by

our algorithm.

Table 3: Performance comparison on

biological dataset

Models JD 1 JS 2 SI 3

Our Model 0.65 0.35 0.52

MAG in [20] - - 0.46

GMG in [18] - 0.27 0.44

Improvement - 29.6% 13%
1 Jaccard distance.
2 Jaccard similarity.
3 Sorensen index.

New association patterns discovered. For the associa-

tion pattern, we compare the edges in our association pat-

tern with those in the graph [22] generated by GMG [18]

using the same dataset. Comparison shows that our method

can discover all edges (or associations) yielded by GMG.

Additionally, our method finds the following new associa-

tion edges, where Table 4 shows them and their frequency

among the dataset. We also label out these new edges in

13001300130013021302



(a) (b)

Figure 4: The CAP-graph obtained is shown in 4a. The labels for the new discovered edges are shown in 4b.

the nucleus image (Figure 4b). Note that since the nucleus

images are in 3D and the association patterns may appear

in different slices, we only show the associations in some

slices. From Figure 4b, it is easy to see that the labeled pairs

of chromosome territories are indeed close to each other,

which also confirms the effectiveness of our approach.
Table 4: Additional association edges discovered

by our method

Edges 4− 6 3− 4 6− 7 7− 2

Frequency 56.1% 53.7% 51.2% 51.2%

7. Summary and Discussion
In this paper we present an efficient method for recog-

nizing the pattern of associations for chromosome territo-

ries in the cell nucleus. Our technique is able to find the

CAP-graph with better quality than existing ones. We val-

idate our approach by evaluating its performance on both

synthetic and real biological datasets. Experiments using

synthetic datasets reveal the scalability and high efficiency

of our method, while the experiment on a cell nucleus im-

age dataset shows the accuracy of our method for finding

the association pattern of human chromosome terrirtories.
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