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Abstract

The graph Laplacian operator, which originated in

spectral graph theory, is commonly used for learning

applications such as spectral clustering and embedding. In

this paper we explore the Laplacian distance, a distance

function related to the graph Laplacian, and use it for

visual search. We show that previous techniques such as

Matching by Tone Mapping (MTM) are particular cases

of the Laplacian distance. Generalizing the Laplacian

distance results in distance measures which are tolerant

to various visual distortions. A novel algorithm based on

linear decomposition makes it possible to compute these

generalized distances efficiently. The proposed approach

is demonstrated for tone mapping invariant, outlier robust

and multimodal template matching.

1. Introduction

Distance and similarity measures are fundamental in

computer vision. Functions with different invariance and

robustness properties are required in order to overcome

different visual distortions depending on the application

and acquisition conditions. Common distortions are

noise, illumination change, different camera parameters,

occlusion and geometric transformation. In many cases

efficient algorithms are also required for fast computation

of the desired distance functions.

In this paper we introduce the Generalized Laplacian

Distances (GLDs), a family of distance functions related

to the graph Laplacian operator. The graph Laplacian,

which is studied in spectral graph theory [3], has been

used for machine learning problems such as spectral

clustering [13, 10, 15] and dimensionality reduction [1, 11].

These have been applied in computer vision for image

segmentation [13] and face recognition [6]. However, so

far, the Laplacian operator has not been used for the design

of sophisticated distance functions.

The Laplacian distance LD(v, x) is a property of the

graph Laplacian that can be interpreted as an asymmetric

cross distance between two vectors v,x ∈ R
M . The graph

edge weights are determined by v, wij = w(vi, vj); then

the Laplacian distance of x from v is defined as

LD(v,x) =
1

2

∑
ij

w(vi, vj)(xi − xj)
2 (1)

The Laplacian distance is small where small squared

differences (xi−xj)
2 correspond to large weights w(vi, vj).

Assigning large weights to pairs (vi, vj) with close values

(e.g. e−(vi−vj)
2

), the Laplacian distance is small iff (xi, xj)
are close wherever (vi, vj) are close. In this sense, the

Laplacian distance captures the pairwise proximity of v. An

illustration is shown in Figure 1.

We extend the concept of the Laplacian distance to

develop a rich family of distance functions, Generalized

Laplacian Distances (GLDs). In this family the squared

difference used by LD (Equation 1) is replaced with a

general dissimilarity function, fij , depending on (xi, xj)
and possibly also (vi, vj).

The proposed generalization makes it possible to replace

the squared difference with a more robust dissimilarity fij
such as the absolute difference |xi − xj |. An even greater

advantage can be achieved by changing both the weight

function wij and the dissimilarity fij . By careful selection

of w and f , GLDs can be designed to capture various

types of similarity. For example, the GLDsign distance

(Section 5.1) captures the order in each pair. This distance

is small for vectors x,v for which xi ≤ xj iff vi ≤ vj ; an

illustration is shown in Figure 2.

We demonstrate the advantage of GLD by an application

to template matching. A template p is sought in a

large image which may be distorted by noise, captured in

different illumination conditions, or even from different

modality (e.g. visual vs. infrared). Usually the best

match to p in the image is found by minimizing a distance
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Figure 1. Illustration of a Laplacian distance between v = p

and x = q. Left: the graph G(v = p). The weights wij

are large (thick lines) where pi and pj (intensity values) are

similar. Middle: the dissimilarities fij are defined as (qi − qj)
2).

Right: the weighted dissimilarity of each pair, wij · fij . The

Laplacian distance is the sum of these weighted dissimilarities,

which preserves the pairwise proximity of p.

d(p,q) over all possible candidate windows q in the image.

An appropriate distance should be tolerant to the possible

distortions between the template and the searched image.

Additionally, the location of the best match should be

computed efficiently.

Matching a template over an image can be performed

efficiently by common measures such as the Euclidean

distance, the sum of absolute differences (SAD) or the

normalized cross correlation (NCC, a.k.a. the correlation

coefficient) [8, 2, 9, 12]. However, treating combinations

of distortions such as illumination change and outliers, or

matching noisy mutlimodal data, is more difficult.

Recently, Hel-Or et al. proposed the Matching by

Tone Mapping (MTM) technique [7]. This is an efficient

template matching algorithm based on a distance function

invariant to an arbitrary tone mapping of the image values.

In Section 2.4 we show that MTM is a particular case

of a Laplacian distance. Moreover, by replacing the

dissimilarity function f we define in Section 4 GLDabs

which is more robust than MTM. GLDabs is computed

efficiently using a novel technique based on a linear

decomposition of non Euclidean distance functions. The

advantage of GLDabs is demonstrated experimentally in

Section 6; An example is shown in Figure 3.

In Section 5 we propose Csign, a robust variant of

the normalized cross correlation (NCC). Maximizing Csign

is equivalent to minimizing GLDsign, a GLD which

preserves the order property for the informative pairs in the

template (see Figure 2). Csign is invariant to monotonic

intensity transformations and robust to outliers. Combining

both advantages, Csign is successful also in cases where

outlier robust methods (e.g. SAD) and methods invariant

to affine illumination transform (e.g. NCC) tend to fail, as

shown by our experimental analysis (Section 6).

2. The Laplacian Distance (LD)

2.1. Definition

Let G(V,W ) be a weighted graph represented by a

matrix W containing the edge weights wij for each node
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order (qi,qj)
weighted error

w(pi,pj) · f (qi,qj,pi,pj)

Figure 2. Illustration of a generalized Laplacian distance,

GLDsign (Section 5.1). Left: the arrows represent the order of

(pi, pj). Large weights are assigned to pairs with distant values

|pi − pj |. Middle: the orders of the corresponding pairs (qi, qj).
Right: the dissimilarity f penalizes pairs (i, j) with opposite

orders in p and q (double-end arrows). fij is multiplied by the

edge weight w(pi, pj). The distance GLDsign(p,q) is the sum of

these weighted dissimilarities.

pair (vi, vj). The Laplacian of G is defined as

L = D −W (2)

where D is a diagonal matrix, di = Dii =
∑

j Wij .

Given a vector x ∈ R
M , the Laplacian has the following

property [3]:

xTLx = xT (D −W )x =
1

2

∑
ij

wij(xi − xj)
2 (3)

There are several variants of normalizing the graph

Laplacian. In this paper we use the left normalized

Laplacian [3], L̃ = D−1L,

xT L̃x = xT (I −D−1W )x =
1

2

∑
ij

wij

di
(xi − xj)

2 (4)

Suppose that the graph G depends on a parameter

vector v ∈ R
M , i.e., the edge weights wij are determined

by a weight function w(vi, vj) (e.g. Gaussian weights

exp(−
(vi−vj)

2

2σ2 ) ). Then Equation 3 defines the following

non symmetric function between v and x:

LD(v,x) = xTL(v)x =
1

2

∑
ij

w(vi, vj)(xi − xj)
2 (5)

We refer to LD(v,x) as the Laplacian distance between

v and x. Similarly, the normalized Laplacian distance

NLD(v,x) is defined by dividing each w(vi, vj) by di.
The distance of x from v is small where the following

property is satisfied: pairs (i, j) with large weights, usually

indicating that vi and vj are close, have close values in x

(i.e. small difference (xi − xj)
2). For pairs (i, j) with

small weights, the proximity of xi and xj is irrelevant.

The normalization by D−1 makes the contribution of

each vi equal, since the sum of the normalized weights∑
j w(vi, vj) is 1 for each i.

2.2. Laplacian distance for template matching

Assume a template (pattern) p of M pixels is sought in

an image. One can represent p by a weighted graph G(p) in
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(a) p and q∗ (b) original image (c) tone-mapped image (d) GLDabs

Figure 3. Template matching with non-monotonic intensity transformation, additive noise σ = 30/255 and 30% outliers (random values

in random locations). (a) The template p (32× 32) and the correct match q
∗. (b) the mapped image. (c) GLDabs distance map.

which each node is associated with a pixel, and the weights

wij depend on grayscale values pi, pj .

Given G(p), the best match to p in the image can be

defined as the window q∗,

q∗ = argmin
q

∑
ij

w(pi, pj)(qi − qj)
2 (6)

i.e., the window q that minimizes LD(p,q). We call this

approach pattern-based (PB), since the graph weights are

determined by the grayscale values of the template p.

Alternatively, a window based approach (WB) can also

be defined:

q∗ = argmin
q

∑
ij

w(qi, qj)(pi − pj)
2 (7)

In this case the graph weights are determined the grayscale

values of q, and the best match q∗ minimizes LD(q,p).

2.3. Efficiency and weights decomposition

The weight function w strongly influences what is

considered a good match. Moreover, the computational

complexity strongly depends on choosing w which can be

computed efficiently.

A naive computation of Equations 6 and 7 requires

O(M2) operations for each candidate window q which is

time consuming when applying to the entire image. This

can be reduced significantly using low rank decomposition

as follows.

Let w(x, y) be a real function defined on a discrete

bounded domain, w : [1, 2, ...m] × [1, 2, ...m] → R. One

can represent w by an m × m matrix H ∈ R
m×m, where

Hx,y = w(x, y).
Consider the rank-K approximation of H by singular

value decomposition, H = UΣV T where U, V ∈ R
m×K

and Σ ∈ R
K×K . Given two integers (x, y) ∈ [1..m], it

follows that

w(x, y) = Hx,y ≈
K∑

k=1

σkUk[x]Vk[y] (8)

where σk is the kth singular value, and Uk, Vk are the

corresponding eigenvectors. Storing σk, Uk and Vk in

cache, Equation 8 can be computed using lookup tables.

Based on Equation 8, the Laplacian distance can be

rewritten as

LD(p,q) = qTDq−

K∑
k=1

σk

(
Uk[p]

Tq

)(
Vk[p]

Tq

)
(9)

where Uk[p] =
(
Uk[p1]...Uk[pm]

)
. The terms Uk[p]

Tq

and Vk[p]
Tq are computed by 2K convolutions. Note

that D is a diagonal matrix depending on p, which can be

pre-computed. The term qTDq =
∑

i diq
2
i is computed

by a single convolution between diag(D) and the squared

image values. Thus, computing LD(p,q) requires 2K + 1
convolutions, or K + 1 convolutions if w is symmetric

(U=V ). The time complexity in the general case is

therefore O(KN logM). In specific cases the complexity

can be further reduced (Section 2.4).

The computation of the WB variant, LD(q,p) is similar

but now D depends on q and varies between different image

windows. The WB Laplacian distance is

LD(q,p) =

K∑
k=1

σk

(
Uk[q]

Tp2
)(

Vk[q]
T1

)
(10)

−
K∑

k=1

σk

(
Uk[q]

Tp

)(
Vk[q]

Tp

)

where p2 denote the squared template, and 1 is a vector of

ones (box filter). Equation 10 is computed as follows: for

each k = 1...K the entire image is mapped by Uk (denote

IUk ) and by Vk (denote IVk ). The first sum is computed

by convolving IUk with p2, summing IVk in each window

using a box filter, and multiplying the results point-wise.

The second sum is computed by convolving both IUk and IVk
with p, and multiplying the results point-wise. Thus, K box

filters and 3K convolutions are required (or 2k convolutions

if the weights are symmetric).

When w depends only on the value difference (x−y),
a 1D frequency decomposition is also possible. This

approach was suggested in [5] for fast image filtering. The

function w(x−y) is expressed as a linear combination

of cosine frequencies cos(k(x−y)), the discrete

cosine transform (DCT) of w. Following the identity

cos(k(x−y)) = cos(kx) cos(ky) + sin(kx) sin(ky), w
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can be approximated in the same form as Equation 8

by a linear combination of cosine and sine functions

(vectors) weighted by the DCT coefficients. We found

that this approximation is better than SVD in practice (see

Section 4).

2.4. MTM as a Laplacian distance

In [7], Hel-Or et al. proposed a template matching

method which is closely related to the Laplacian distance.

This method, called Matching by Tone Mapping (MTM),

is robust to an intensity transform (tone mapping) of the

sought template. The MTM method has two variants,

pattern-to-window (P2W) and window-to-pattern (W2P).

In the following we show that these variants are particular

cases of the pattern based (PB) and the window based (WB)

Laplacian distance, respectively.

The P2W variant of MTM is defined as follows:

MTM(p,q) = min
β

‖S(p)β − q‖2

var(q)
(11)

Here the grayscale range (e.g. [0..255]) is divided into K
bins, and S(p) ∈ {0, 1}M×K is a matrix that indicates for

each pi whether it falls to the kth bin, k = 1...K. Denoting

by b(x) the bin in which x falls, S(i, k) = δ
(
b(pi)− k

)
.

S(p)β applies a piecewise constant tone mapping to p

where the optimization parameter, β∈RK , is a vector that

represents piecewise constant tone mapping. Thus, MTM is

the minimal squared Euclidean distance between q and p̃ =
T (p) over all possible piecewise constant tone mappings

T (·). Due to the difference between different windows q,

the distance is normalized by the variance of q.

The authors of [7] derived a closed form solution for

Equation 11,

MTM(p,q) =
qTq−

∑
k

1
nk

(
Sk(p)

Tq

)2

var(q)
(12)

where nk is the number of pixels pi in the kth bin, and

Sk(p) is the kth template slice – i.e., the kth column

of S(p), which is a binary mask. In [7], MTM is

computed efficiently using sparse convolutions [16]. This

is possible since the slices Sk(p) are binary and non

overlapping. Computing MTM(p,q) requires K sparse

convolutions, which sum up to a single convolution. A

similar computation scheme is described in [7] also for the

W2P variant, MTM(q,p).
In the following we rewrite the MTM distance

(Equation 12) in Laplacian form. The graph weights wij

are determined by the delta weight function:

w(x, y) = Hx,y = δ
(
b(x)− b(y)

)
(13)

H is an m×m matrix of rank K and an exact decomposition

H = UUT , where Uk[x] = δ
(
b(x) − k

)
. Thus the kth

template slice, Sk(p), is the result of applying Uk as a

mapping (lookup table) over p values.

We also note that if b(pi) = k then

di =
∑
j

w(pi, pj) =
∑
j

δ
(
b(pj)− k

)
= nk (14)

Rearranging Equation 12 and plugging in the delta weights

and the normalization factors di = nk, we get the following

equivalent formulation for MTM:

MTM(p,q) =
1

2

∑
ij

w(pi, pj)

di
·
(qi − qj)

2

var(q)
(15)

Hence, MTM(p,q) is a pattern-based (PB), left-

normalized Laplacian distance (Equation 4). This distance

is defined by delta weights depending on p and squared

differences depending on q/std(q).
By replacing p and q in Equations 11–15 it follows also

that the W2P variant of MTM is a window-based (WB)

Laplacian distance with delta weights depending on q and

squared differences depending on p.

3. Generalized Laplacian Distances (GLDs)

In the Laplacian distance the dissimilarity between xi

and xj is expressed by the squared difference (xi−xj)
2

(Equation 5). We generalize the concept of the Laplacian

distance by replacing the squared difference with an

arbitrary dissimilarity function fij depending on xi and xj ,

and possibly also on vi and vj . We also omit the factor
1
2 which makes no sense in the pairwise i, j formulation.

The resulting, generalized Laplacian distance (GLD) is

therefore

GLD(v,x) =
∑
ij

wijfij (16)

where wij = w(vi, vj) and fij = f(xi, xj ; vi, vj).
GLD is more general than LD. First, with GLD one can

define dissimilarities, e.g. the absolute difference |xi − xj |
that is more robust than the squared difference. Second,

it is possible to design GLDs that preserve properties other

than value proximity, e.g. the sign of the pairwise difference

Δij . Both these advantages are used below to design novel

distance functions with various robustness properties.

From a computational viewpoint, GLD is more

challenging than LD. The squared difference (xi − xj)
2

used by LD is decomposed to x2
i + x2

j − 2xixj for fast

computation (Equations 9,10). Such a decomposition is

not available for the dissimilarities fij used by GLDs. In

the next sections (4,5) we compute GLDs efficiently by

decomposing the dissimilarity function f using the spectral

methods described in Section 2.3 (SVD and DCT).

4. Robust, Tone Mapping Invariant GLDabs

Based on the Laplacian interpretation of MTM

(Equation 15) we define the following distance:

GLDabs(p,q) =

∑
ij d

−1
i w(pi, pj)|qi − qj |∑

ij |qi − qj |
(17)
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Here the weight function remains as in the original

MTM (Equation 15), i.e. delta weights and di = nk

(where b(pi) = k). The only change is replacing the

squared differences (qi − qj)
2 by absolute differences

|qi − qj |, both in the nominator and denominator (note that

var(q) = 1
2M2

∑
ij(qi − qj)

2 ). The proposed change

significantly improves the performance in noisy scenarios,

as demonstrated in Section 6. Here too, naively computing

GLDabs for the entire image requires O(M2N) operations.

In the following we present efficient algorithms for both

the PB and WB variants of GLDabs. We will show that

in both cases only few convolutions with the image are

required. The total complexity is O(RMN) where R is

a small approximation rank.

4.1. Pattern based GLDabs

We use the technique described in Section 2.3 in order

to decompose the function h(x, y) = |x − y|. Since the

absolute difference is symmetric, Either the SVD or the

frequency decomposition are of the form

|x− y| ≈

R∑
r=1

λrUr[x]Ur[y] (18)

where λr are either singular values or DCT coefficients.

Decomposing the delta weights (Equation 13) and

the absolute difference (Equation 18), and using the

equality di = nk (Equation 14), the nominator of GLDabs

(Equation 17) can be rewritten as

∑
ij

1

di
w(pi, pj)|qi − qj | (19)

≈
∑
ij

( K∑
k=1

1

nk

Sk[pi]Sk[pj ]

)( R∑
r=1

λrUr[qi]Ur[qj ]

)

=
K∑

k=1

1

nk

R∑
r=1

λr

(∑
ij

Sk[pi]Ur[qi]Sk[pj ]Ur[qj ]

)

=
K∑

k=1

R∑
r=1

λr

nk

(
Sk(p)

TUr(q)
)2

where Sk(p) is the kth column of S(p), and Ur(q) is the

result of assigning the value Ur[qi] for each value qi. i.e.,

Ur is applied as a lookup table on the image values.

Computing Equation 19 requires KR convolutions.

However, sparse convolutions can be used since the

template slices Sk(p) are sparse and non overlapping.

Thus the computational cost is O(RM) operations for each

image window, or O(RMN) totally, which is equivalent to

R full convolutions. This is very useful since increasing

the number of slices K does not increase the execution

time. Additionally, the template size is usually small which

means that direct convolution is faster than many (K) FFT

based convolutions. In our experiments we used R = 4
vectors; in practice, the DCT decomposition was found

to perform better than the SVD (see an illustration of this

approximation in the supplementary material).

The denominator of GLDabs (Equation 17) is

approximated using the same decomposition,

∑
ij

|qi − qj | ≈
∑
ij

R∑
r=1

λrUr[qi]Ur[qj ] (20)

=

R∑
r=1

λr

(∑
i

Ur[qi]
)2

Each of the sums
∑

i Ur[qi] over all the image window

q can be computed by a single box filter [4, 14] with

complexity O(N), where N is the image size. Thus

computing the denominator for all the image windows

requires O(RN) operations.

4.2. Window based GLDabs

Computing the window-based GLDabs is slightly

different. Replacing p and q in Equation 17, the

denominator becomes
∑

ij |pi−pj |which is constant for all

the possible windows q. Hence, minimizing GLDabs(q,p)
requires only the computation of the nominator, that is

K∑
k=1

R∑
r=1

λr

nk(q)

(
Sk(q)

TUr(p)
)2

(21)

Here Ur(p) is the result of applying Ur to the template

values, while Sk(q) is the kth slice of the image (1 for pixels

qi which fall in the kth bin, and 0 otherwise). Again, KR
sparse convolutions are required which are equivalent to R
full convolutions. The terms nk(q), denoting the number

of pixels in q which fall in the kth bin, are computed by

applying a box filter to each of the image slices in O(RN).

5. Robust GLD Based Correlation

One of the most used similarities in computer vision

is the normalized cross correlation (a.k.a. the correlation

coefficient) which is defined as

NCC(p,q) =

∑
i(pi − μp)(qi − μq)

σpσq

(22)

where μp, μq and σp, σq are the means and the standard

deviations of p and q, respectively. NCC is invariant to

affine illumination change both of p and q, and tolerant

to additive Gaussian noise. It is also tolerant to general

monotonic intensity transform, as can be seen from the

formulation:

NCC(p,q) =

∑
ij(pi − pj)(qi − qj)

M2σpσq

(23)

which is equivalent to Equation 22. This means that NCC

does not change a lot by a monotonic increasing transform,
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since the signs of all the differences (qi − qj) are not

changed.

On the other hand, NCC is not robust to outlier noise

or partial occlusions of the sought template. Usually,

other distances are used in this case such as sum of

absolute differences (SAD) or M-estimators. However,

these distance functions are sensitive to changes in the

illumination.

One way to overcome both difficulties is to treat p

and q asymmetrically. This is reasonable in the context

of template matching since the given template is usually

clean and informative, while the image might be distorted.

Therefore we define the following non symmetric sign

correlation:

Csign(p,q) =
∑
ij

(pi − pj)sign(qi − qj) (24)

This is a robust modification of Equation 23. Due the use

of the sign function, Csign has two advantages. First, it is

invariant to monotonic increasing transform of the image

values qi. Second, it is robust to outlier noise in the image.

5.1. Csign as a GLD

An interesting perspective of Csign is its close relation to

the generalized Laplacian distance. We define the pattern-

based distance GLDsign by the weights

wij = |pi − pj | (25)

and dissimilarity function

fij = 1− sign(pi − pj)sign(qi − qj) (26)

The dissimilarity fij penalizes opposite orders of (pi, pj)
and (qi, qj). The weights wij imply that pairs with distant

values in the template pi, pj are more important than pairs

with similar values. It can be shown that

argmin
q

GLDsign(p,q) = argmax
q

Csign(p,q) (27)

5.2. Efficient computation

The Csign measure is computed efficiently by

decomposing the sign function using the low rank

technique described in Section 2.3. This makes it possible

to rewrite Equation 24 as

K∑
k=1

σk

(∑
i

piUk[qi]
)(∑

j

Vk[qj ]
)

(28)

−
K∑

k=1

σk

(∑
j

pjVk[qj ]
)(∑

i

Uk[qi]
)

This expression is computed by 2K convolutions (for the

summations over piUk[qi] and pjVk[qj ]) and 2K box filters

(for the summations over Vk[qj ] and Uk[qi]).
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Figure 5. Average execution times for template matching using

Euclidean distance, NCC, MTM, Csign, GLDabs and mutual

information (MI). We note the number of bins (K) used by each

method.

6. Results

We present experimental evaluation of the proposed

GLD based template matching methods, GLDabs and

Csign, compared with other distance and similarity

measures commonly used for template matching. The

experiments have been carried out in various conditions

of intensity change and noise distortion. In order to

compare different methods properly we start with an

evaluation of their execution times. Then we compare the

performance of the relevant methods1 for different intensity

changes ranging from monotonic affine transformation to

multimodal resources. For each of these conditions we also

examine the effect of additive and outlier noise.

6.1. Speed

Figure 5 compares the runtime of the examined methods

while seeking templates with different sizes in a 512× 512
image. The most efficient methods are Euclidean distance,

l1 (SAD) and NCC for which fast algorithms have been

proposed in the literature (see e.g. [8, 9, 12]). Computing

MTM requires slightly more time. Note that the effect of

the parameter K (number of used bins / slices) is almost

negligible, since the total cost is a single full convolution.

Csign is also efficient but the parameter R (number of

eigenvectors) affects the runtime as 2R FFT convolutions

are required (we set R = 5). The GLDabs method requires

R = 4 full convolutions. As in MTM, the number of

bins K has almost no effect on the execution time. The

slowest examined method is mutual information (MI) which

utilizes the joint distribution of p and q values, thus needs

the computation of their joint histogram. This requires K2

sparse convolutions or, equivalently, K full convolutions.

As shown by Figure 5, computing MI with a small number

of bins K is slower than GLDabs with any number of bins.

1The full comparisons are available in the supplementary material.
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(a) Affine transformation + outlier noise
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(b) Gamma correction + 10% Outliers
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(c) General transformation + outlier noise

Figure 4. Template matching with intensity transformations and outlier noise. The template size is fixed (24 × 24). (a) Affine

transformations with increasing amounts of outliers (random values in random locations). (b) Gamma corrections f(x) = xγ , γ = 1

7
...7,

with 10% outliers. (c) Random non-monotonic tone mapping with increasing amounts of outliers.

The time gap is especially significant for small template

size, e.g. 32× 32, which is common in template matching.

6.2. Accuracy

Affine transformation. We compared the tolerance of

various methods to monotonic affine transformation. 200

template locations were sampled randomly in an image

dataset as well as affine transformation parameters. In

order to examine only informative templates we selected

locations with a sum of the absolute values of the Hessian

matrix (second partial image derivatives) larger than a

threshold.

Where the image is noiseless, all the compared methods

perform well except the Euclidean norm and l1 which are

affine variant. While adding Gaussian noise, NCC is the

best performing method and Csign is less affected than

the MTM variants (graph is provided in the supplementary

material). However, when adding outliers (random values

in random locations) Csign performs much better than all

the compared methods (Figure 4(a)).

Monotonic transformation. An important non linear

distortion is the Gamma correction f(x) = xγ . Figure 4

shows the success rate of finding the correct match in

images distorted by γ values ranging from 1/7 to 7.

In the case of distorted images with small additive

Gaussian noise (std σ = 15/255) the best performing

method is NCC with a small gap from Csign (graph

is provided in the supplementary material). Although

NCC is not invariant to Gamma correction, this result

can be explained by the pairwise interpretation of NCC

(Equation 23) since the signs of the pairs (pi−pj), (qi−qj)
do not change. When 10% outliers are added, Csign is the

best performing method with a significant gap from NCC

and the other methods (Figure 4(b). This corresponds to the

invariance and robustness properties of Csign as discussed

in Section 5.

General transformation. We compare the performance

of GLDabs to MTM and MI, which have been shown

in [7] to be very tolerant to general continuous intensity

transformations. 200 tone mapping functions and

informative template locations were sampled randomly and

used for three experiments.

First, we added small Gaussian noise (σ = 15/255) and

examined the performance for different template sizes. The

performance of MTM and GLDabs is similar and slightly

better than MI (graph is provided in the supplementary

material).

Second, templates of size 24×24 were sought in images

with increasing amounts of additive Gaussian noise. Here

the performance of MTM and GLDabs is also similar, and

significantly better than MI with the same execution time

(graph is provided in the supplementary material).

Third, templates of size 24 × 24 were sought in images

with increasing amounts of outliers, i.e. random values in

random locations. The performance of GLDabs and MI are

similar and better than MTM, as shown in Figure 4(c). An

example of template matching with both additive and outlier

noise is shown in Figure 3.

In all these experiments, faster methods such as NCC and

Csign totally fail since they are not designed to overcome

non monotonic intensity change. The P2W variant of MTM

and the PB variant of GLDabs perform better than the W2P

and WB variants (shown in the supplementary material).

The reason is that in the above experiments there exists a

tone mapping T which maps the template to the correct

match (up to noise), but there might be no injective mapping

from the mapped image back to the template.

Multimodal template matching. Finding a small

template in an image from a different source (modality)

is a difficult task. Usually, alignment of two large

multimodal images is performed by maximizing the mutual

information (MI) between them. Template matching is

more challenging since the joint statistics of a small

template and candidate windows are less reliable.

In our experiment, 400 image-template pairs were

sampled randomly from a dataset of aligned multimodal
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Figure 6. Sample images from the multimodal image dataset.
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Figure 7. Results of multimodal template matching. The success

rate of the proposed generalized Laplacian distance (GLDabs)

is comparable with mutual information (MI) in less time (see

Figure 5) .

images (see Figure 6). We compare the performance of

GLDabs with those of MTM and MI. The results are shown

in Figure 7. GLDabs has better performance than MI

with 6 bins which has the same runtime, and comparable

performance with MI with 10 bins that is much slower (see

Figure 5).

In this experiment the W2P variant of MTM and the WB

variant of GLDabs perform better than P2W and PB (see

the supplementary material). Although there is no injective

mapping either from the template to the image or vice versa,

fitting the candidates to the template (as done by W2P and

WB) is more successful than fitting the template to each

candidate window (as done by P2W and PB). Intuitively,

fitting the template to an incorrect window (e.g. flat area)

by a degenerate tone mapping (e.g. a constant mapping)

is more probable than fitting an incorrect candidate to an

informative template where mapping is rarely available.

7. Summary

We introduced the Generalized Laplacian Distances

(GLDs), a distance family related to the graph Laplacian.

The GLD framework makes it possible to capture different

types of visual similarity, which is demonstrated for

template matching in challenging conditions such as

complicated intensity transformations, outlier noise and

multimodal matching. For fast computation of GLDs we

developed a novel algorithm based on linear decomposition

of distance functions. We plan to extend the use of GLD

also for geometrical distortions, as well as for other

computer vision applications.
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