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Figure 1. An example of an image where part detectors based

solely on strong contours and edges will fail to detect the upper

and lower parts of the arms.

Abstract

We propose a novel approach for human pose estimation
in real-world cluttered scenes, and focus on the challenging
problem of predicting the pose of both arms for each per-
son in the image. For this purpose, we build on the notion
of poselets [4] and train highly discriminative classifiers
to differentiate among arm configurations, which we call
armlets. We propose a rich representation which, in addi-
tion to standard HOG features, integrates the information of
strong contours, skin color and contextual cues in a princi-
pled manner. Unlike existing methods, we evaluate our ap-
proach on a large subset of images from the PASCAL VOC
detection dataset, where critical visual phenomena, such
as occlusion, truncation, multiple instances and clutter are
the norm. Our approach outperforms Yang and Ramanan
[26], the state-of-the-art technique, with an improvement
from 29.0% to 37.5% PCP accuracy on the arm keypoint
prediction task, on this new pose estimation dataset.

1. Introduction
Suppose our goal is to find the arms and hands of the

two gentlemen in Fig 1. We might aim to do so by fitting

a stick figure model in one of its numerous manifestations

[1, 7, 9, 19, 20] by detecting rectangles in the upper and

lower parts of the arms. But are there any contours there?

It seems clear enough that how we detect the arm configu-

rations of these people is from the position of the head and

the hands. And that information is enough to generate a

very crisp prediction of the various joint locations.

This perspective, pose estimation as holistic recognition,

can be found in papers from nearly a decade ago. Mori and

Malik [16] matched whole body shapes of figures to ex-

emplars using shape contexts and then transferred keypoint

locations from exemplars to the test image. Shakhnarovich

et al. [22] recovered the articulated pose of the human up-

per body by defining parameter-sensitive hash functions to

retrieve similar examples from the training set. Our posi-

tion is that these approaches were philosophically correct,

but their execution left much to be desired. The classi-

fiers used were nearest neighbors and we have evidence that

discriminative classifiers such as support vector machines

(SVMs) typically outdo nearest neighbor approaches [15].

The features used were simple edges, and again over the last

decade we have seen the superiority of descriptors based

on Histograms of Oriented Gradients (HOG) [5] in dealing

with clutter and capturing discriminative information while

avoiding early hard decisions.

We therefore revisit pose estimation as holistic recogni-

tion using modern classifier and feature technology. Fig. 2

presents an overview of our approach. During training, we

partition the space of keypoints and train models for arm

configurations, or armlets, using linear SVMs. Given a test

image, we apply the trained models and use the mean pre-

dictions of the highest scoring activation to estimate the lo-

cation of the joints. To train the armlets we extract features

that could capture the necessary cues for accurate arm key-

point predictions. In Fig. 3 we show our choice of features.

To capture the strong gradients in the image, we construct

HOG features from local gradient contours [5] and gPb con-

tours [2]. Another significant cue is the position, scale and

orientation of the hands and of the rigid body parts, such as

head, torso and shoulders. We cannot assume that we have

perfect body part predictions. However, poselets [4] pro-

vide a soft way of capturing the contextual information of
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Figure 2. Our approach during training and testing. Top. We par-

tition the keypoint space into arm configurations. For each con-

figuration, we extract features and train linear SVMs using nega-

tive examples members of other configurations. The output of the

training procedure, which we call armlets, consists of the SVM

weights and predictions of the mean relative locations for all the

keypoints. Bottom. Given the trained armlets and an image, we

consider the highest scoring armlet activation assigned to each in-

stance. From the predictions computed during training, we esti-

mate the locations of the arm keypoints.

where the head or torso are in the image. Skin colored pix-

els are an additional cue to typically unclothed parts of the

body, such as face and hands. The combination of all those

four features gives an accuracy of 48.9% for upper arm and

23.6% for lower arm, according to the PCP metric [11], on

a new dataset collected from the PASCAL VOC dataset [8]

and the H3D dataset [4]. More details about the dataset can

be found in Section 3. To further refine an armlet’s joint

location prediction we train shoulder, elbow and wrist de-

tectors that are able to localize the joints more concretely,

conditioned on an armlet activation. This improves perfor-

mance, resulting in 49.7% PCP accuracy for upper arm and

25.2% for lower arm. Our approach is almost trivially sim-

ple compared to the complexity that one finds in the most

recent elaborations of the stick figure fitting/pictorial struc-

ture paradigm. Yet our results are state-of-the-art, signifi-

cantly outperforming Yang and Ramanan (Y&R) [26], the

leading technique, who achieve 37.9% for upper arm and

20.1% for lower arm. We also tested the same PASCAL

trained model “out-of-the-box” on the LSP dataset of sports

figures [13, 14], where it performs creditably but is not the

best, which is not suprising because of the dataset bias [24].

2. Related Work
The direction of representing the human body pose us-

ing stick figures was initially explored by Nevatia and Bin-

ford [18], where the body parts were modelled using gen-

eralized cylinders. Fischler and Elschlager [12] were the

first ones to introduce pictorial structures for vision tasks

while Felzenszwalb and Huttenlocher [9] presented a prob-

abilistic framework for the same problem, which they called

Figure 3. Our features. Far left: Each cell is HOG with local

gradient contours. Left: Each cell is HOG with gPb. Right: We

compute the average value of the skin classifier at each cell. Far
right: Our context feature; at each cell we have a poselect activa-

tion feature vector. For each poselet type, we put the maximum of

the scores of all poselet activations of that type whose center falls

in the cell, or zero if no activations are present.

Pictorial Structure Model (PSM). In its original formu-

lation, body parts (limbs) were represented as rectangles

and their spatial relations were captured by tree-structured

graphs. The tree-structure of PSM makes inference on lo-

cation, scale and orientation of the body parts exact and ef-

ficient. However, the naive appearance model requires prior

knowledge of the color of the parts, making PSM as for-

mulated in [9] not applicable to real images. In subsequent

work, more sophisticated appearance models have been ex-

plored. Ramanan [19] iteratively exploits image specific

cues based on color and edge information. Andriluka et al.
[1] build stronger generic part detectors based on shape con-

text, while Eichner et al. [7] build stronger appearance mod-

els and exploit the similarity in appearance between parts.

More recent work extends both the appearance models

and the training framework. Ramanan and Sminchisescu

[20] explore the benefits of using discriminative models, in

particular Conditional Random Fields, compared to the gen-

erative framework used in PSM. Yang and Ramanan [26]

augment PSM by defining mixtures of templates for each

part, for capturing relations between them. Desai and Ra-

manan [6] enhance the model in [26] by training models for

occluded parts. Johnson and Everingham [14] replace a sin-

gle PSM with a mixture model of PSMs, for capturing pose-

specific appearance terms corresponding to more informa-

tive pose priors. Sapp et al. [21] allow for richer appear-

ance models, including contour and segmentation cues, by

learning a cascade of pictorial structures of increasing pose

resolution, which progressively filter the pose state space.

Tiang et al. [23] explore a hierarchical model using mix-

ture of parts and intermediate latent nodes to capture spatial

relationships among them.

The approach presented in this work revisits the holistic

recognition paradigm, initially explored by Mori and Malik

[16, 17] and Sakhanarovich et al. [22], but using modern

feature design and learning methods. Specifically, we build

on poselets introduced by Bourdev et al. [3, 4]. Poselets are

detectors corresponding to relatively large body parts (e.g.

head & shoulders, torso) and capture contextual relation-

334133413343



ships between them, such as orientation, scale and aspect.

Wang et al. [25] use a hierarchy of poselets for human

parsing. Their model consists of 20 different poselets and

relates the parts in a graph with loops, thus making exact

inference intractable. Our work is close to [25], since we

also partition the keypoint configuration space to extract

parts that are subsequently trained and used for recognition.

However, we propose an augmented feature representation

including richer information than standard HOG. In addi-

tion, our method replaces inexact inference on a graph with

a simple but powerful feed forward network.

3. Datasets
Commonly used datasets for human pose estimation

from 2D images, the Parse dataset [19], the Buffy dataset

[11] and the PASCAL stickmen dataset [7], suffer from two

significant problems: size and limitation of annotations.

The Parse dataset contains around 300 instances, Buffy

around 1000 and PASCAL stickmen around 500. These are

relatively few examples given the range of human pose vari-

ation. The other fundamental problem with these datasets is

that the joints are annotated in the image coordinate sys-

tem, meaning that a joint is labeled as ‘left’ if it is leftmost

in the image and not if it is the left joint of the person in

question. The algorithms evaluated on those datasets are

not required to discriminate between frontfacing and back-

facing instances, which is another challenge in the task of

human pose estimation.

In view of the great popularity of the PASCAL VOC

challenge [8], which has driven contemporary research on

classification, detection and segmentation, we thought that

the collection of people images in the PASCAL dataset

would constitute a very representative set for training and

testing pose estimation algorithms. Our training set consists

of the PASCAL VOC 2011 main dataset for the person cat-

egory (excluding val ’09), the PASCAL VOC action recog-

nition dataset as well as the H3D dataset [4]. Our training

set consists of 5208 images with 9593 instances. We use the

validation set of VOC 2009 as our test set, which consists of

1446 images with 2996 instances. The keypoints are anno-

tated in the object coordinate system, requiring discrimina-

tion between frontfacing and backfacing poses. There are

on average 2 instances per image, with a maximum of 18

instances per image, and 22.4% of the instances in the test

set are non frontfacing. The dataset is publicly available.

We regard our dataset as complementary to the other

“big” dataset for human pose estimation, the Leeds Sports

Pose dataset [13, 14]. The extended LSP dataset contains

10000 training images of people performing sports, such as

parkour, gymnastics and athletics, with one annotated in-

stance per image. The test set consists of 1000 images with

the same properties.

The algorithm developed in this paper is oriented to-

wards the PASCAL dataset. Here we have people in rel-

atively stereotyped poses but with significant amount of oc-

clusion from other objects, people etc. The LSP dataset on

the other hand has people performing athletic activities and

tackles strong variations in pose. The person is typically

fully visible but the poses are very unusual. It is not clear

that the same techniques will perform equally well on both

of these different datasets which pose different challenges.

4. Training armlets
In this section, we describe the procedure for selecting

and training highly discriminative poselets to differentiate

arm configurations. We also explain the choices of features.

Fig. 2 shows our approach during training and testing.

4.1. Partioning of the Configuration Space

We create lists of positive examples by partitioning the

arm configuration space. The space consists of the keypoint

configuration of one arm, as well as the position of the op-

posite shoulder. This configuration space captures both the

arm configuration as well as the 3D orientation of the torso.

For example, an arm stretched downwards can be described

by the location of the arm keypoints and the relative loca-

tion of the opposite shoulder captures whether the person is

front or back facing.

By defining a distance function d(p, q) for p, q in the

configuration space, we can quantitatively measure the sim-

ilarity of two arm configurations. We define our distance

function to be the euclidean distance of the centered and

normalized x, y-positions of the keypoints for the two con-

figurations, i.e. if p = {(xp
i , y

p
i ), i = 1, ...,K} and q =

{(xq
i , y

q
i ), i = 1, ...,K}, where K is the number of key-

points that define the configuration space, then

d(p, q) =

√√√√ K∑
i=1

(x̂p
i − x̂q

i )
2 + (ŷpi − ŷqi )

2 (1)

(x̂p
i , ŷ

p
i ) =

(
(xp

i , y
p
i )− (x̄p, ȳp)

)
/σp (2)

σp =

√√√√ 1

K

K∑
i=1

(xp
i − x̄p)2 + (ypi − ȳp)2 (3)

where (x̄p, ȳp) is the point around which we center the key-

points in p. Eq. 2 and Eq. 3 hold similarly for q.

We partition the configuration space in a greedy fashion.

We iteratively pick a configuration p from the training set.

If it falls within ε distance from the center of a configura-

tion component, i.e. d(p, centeri) < ε for some i, then p is

assigned to the i-th component. If no such i exists, then p
forms the center of a new component. This is repeated until

all the training instances have been picked. After the par-

titions have been formed, we reinitialize the center of each
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Figure 4. Examples of four different arm configurations resulting

from the partitioning of the right arm configuration space.

component by the configuration that minimizes the distance

to all other members in that component.

We also considered clustering techniques, such as ag-

glomerative clustering. The results of those methods were

very similar to our partioning, as expected since the con-

figuration space is rather continuous. In addition, our tech-

nique is O(N2) which is faster than agglomerative cluster-

ing, which scales as O(N2logN), where N is the number

of training examples.

We collect patches of arm configurations by partioning

the configuration space as described above. We center the

patch of a configuration p around the location of the elbow

and scale it by 2σp, where σp is defined in Eq. 3. We sort the

examples in each armlet according to the distance function

in Eq. 1 having as reference the center of the configuration

cluster, which we call the seed patch.

We obtain 25 different arm configurations for each arm

after partitioning the corresponding configuration space.

Fig. 4 shows four right arm configurations out of the 25.

4.2. Features

In this subsection, we explore the various choices of fea-

tures, as illustrated in Fig. 3.

HOG with local gradient contours. Histograms of ori-

ented gradients after convolving the image with tap filter

[5] captures high frequency information. The HOG of lo-

cal gradient contours captures the orientation of gradients

while allowing for small deformations. We choose 16× 16
pixel blocks of four 8 × 8 pixel cells, and 9 bins for orien-

tation. For a 96 × 64 pixel patch, the dimensionality of the

HOG-tap feature is 2772.

HOG with gPb contours. Histograms of oriented gradi-

ents of the gPb output of an image [2] will capture only the

contours that emerge from strong brightness, color and tex-

ture gradients. We choose 16×16 pixel blocks of four 8×8
pixel cells, and 8 bins for orientation. For a 96 × 64 pixel

patch, the dimensionality of the HOG-gPb feature is 2464.

Skin color. Information about the location of skin in the

image is an important cue for arm-specific detectors. Strong

responses of a skin detector indicate where the head and the

hands of a person in an image are likely to be located and

thus eliminate the large number of possible arm configura-

tions. Our skin detector is a Gaussian Mixture Model with

five components which operates in LAB space. We gen-

erated our training data from skin patches using the H3D

dataset [4]. We bin the skin information using 8 × 8 pixel

cells, where each cell contains the average probability of

existence of skin inside the cell. For a 96× 64 pixel patch,

the dimensionality of the skin color feature is 308.

Context. The location of the head, the torso, their

orientation and scale is significant in detecting an arm

configuration. For example, it is much easier to detect

where the right arm is if we know where the head is, where

the torso is and whether the person is facing front or back.

To encode that information, we use generic poselets [4],

trained for the purpose of person detection. We will call

them detection-specific poselets. For our purpose, we use

N detection-specific poselets (N=30). For each 8 × 8
pixel cell, we define a N -dimensional activation vector

that contains in its i-th entry the score of the i-th detection

specific poselet, if the center of the activation is located

within radius r (r=8) from the center of the cell, and 0
otherwise. For a 96× 64 pixel patch, the dimensionality of

the context feature is 2310.

Fig. 3 shows an example of our features. We show the

local gradient and the gPb contours used to construct the

HOG features, the output of the skin detector and detection-

specific poselet activations used to encode context.

4.3. Classifier Training

The top panel of Fig. 2 describes the pipeline of our train-

ing procedure.

We construct the feature vector for every patch and

train linear SVM classifiers. Since we want our armlets

to be discriminative and fine-grained, we use negative im-

ages coming from people but with different arm config-

urations. An instance with keypoint configuration q is

considered as a negative example for an armlet α with a

seed patch of configuration centerα, if d(centerα, q) >
2 · max

i∈{1,...,Nα}
d(centerα, pi) where pi is the i-th member

of armlet α consisting of Nα members.

For each armlet α, we model the distribution of the loca-

tion of each joint J by fitting a gaussian. The distribution

of the location x for joint J conditioned on an activation αi

of armlet α is given by

Pm(x| αi) = N (
x |μ(α)

J , Σ
(α)
J

)
(4)
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where μ
(α)
J is the mean location of J and Σ

(α)
J is the co-

variance matrix, conditioned on activation αi. Both param-

eteres are ML estimates from the positive examples of α.

4.4. Keypoint prediction at test time

To get the armlet activations for an input image, we ap-

ply the trained model at multiple scales and keep the acti-

vations with non negative scores. For the task of keypoint

prediction, we cluster the activations to the instances in the

image. We assume that the torso bounds of all instances

in the image are known. We associate an activation to the

instance with the biggest overlap with the predicted torso

bounds and if that is greater than 0.4. Subsequently, for ev-

ery instance in the image we consider the activation with

the highest score assigned to that instance and use its mean

prediction for the location of the arm keypoints. In other

words, if β∗
i is the activation with the highest score, which

is of armlet type β, then the final prediction for joint J is

given by μ
(β)
J .

5. Results using armlets
In this section we report the performance of armlets and

compare it with Yang and Ramanan [26]. For performance

evaluation, we use the PCP metric [11], which is the most

commonly used metric in the literature for reporting results

on the pose estimation task. According to this metric, a part

of the stick figure is predicted correctly if the predicted loca-

tions of its endpoints are within 0.5 of the part length from

the ground truth locations of the corresponding endpoints.

Feature evaluation. We present an ablation study to com-

pare the performance of our method with respect to the dif-

ferent features used to train armlets. In Table 1 we present

our results according to the PCP metric on the PASCAL

VOC dataset for different combination of features. For

computational efficiency, we perform non max suppression

on the activations.

The performance of our complete system (LSCG) is

47.8% for the Upper Arms and 23.0% for the Lower Arms,

compared to 44.5% and 19.8% respectively for standard

HOG (L). It is clear that our approach of using gPb con-

tours, skin and detection-specific poselets for context leads

to a significant improvement over the standard HOG.

One can get additional insight from the ablation study,

where we removed each of the cues in turn from the full

system, as shown in Table 1.

Due to the combination of all the features, we get sparser

activations and thus we can remove NMS. The performance

of our algorithm with and without NMS is shown in Table 2.

Comparison with baseline. We compare our method

with the state of the art method by Y&R [26]. To ensure

PCP L LCG LSC LSG SCG LSCG

R UpperArm 44.8 45.9 46.5 46.7 47.1 48.1
R LowerArm 20.0 21.1 22.3 22.5 19.7 23.2
L UpperArm 44.1 46.0 46.9 47.7 44.2 47.5

L LowerArm 19.5 21.0 21.1 23.6 18.7 22.7

Average 32.1 33.5 34.2 35.1 32.4 35.4

Table 1. Part localization accuracy on the PASCAL VOC dataset.

L is the standard HOG feature based on local gradient contours, G

is the HOG feature based on the gPb countours, C is the context

feature and S is the skin color feature (with NMS on the activa-

tions).

PCP LSCG NMS LSCG noNMS Y&R

R UpperArm 48.1 49.4 38.9

R LowerArm 23.2 23.5 21.0

L UpperArm 47.5 48.3 36.9

L LowerArm 22.7 23.7 19.1

Average 35.4 36.2 29.0

Table 2. Part localization accuracy on the PASCAL VOC dataset

with (first column) and without NMS (second column) using all

the features (LSCG). The perfomance of Y&R [26] on our test set

(third column).

a fair comparison, we gave Yang and Ramanan our data and

asked them to train on our training set and evaluate on our

test set. See Table 2. Note that even with the vanilla HOG

detector (column L in Table 1) we achieve 32.1% PCP ac-

curacy which outperforms Y&R, who achieve 29.0%. If

we give Y&R the benefit of using image coordinates, their

performance goes up slightly (41.1% for Upper Arm and

21.5% for Lower Arm) but is still below us.

We also evaluated our out-of-the-box model trained on

PASCAL on the LSP test set, obtaining PCP accuracy of

35.6% and 19.2% for Upper and Lower Arms respectively.

These numbers are below the state-of-the-art on LSP [14]

53.7% for Upper Arm and 37.5% for Lower Arm. This is

not surprising in view of the dataset bias [24]; people in

LSP are in unusual athletic poses compared to those in the

PASCAL dataset.

6. Augmented Armlets
The armlets described above are trained to discriminate

among different arm configurations. To capture the appear-

ance of smaller areas around the joints we train three differ-

ent poselets to detect the shoulder, the elbow and the wrist,

specific to each of the 50 arm configurations. Below we

explain how these models are trained and are used to make

keypoint predictions.

6.1. Training augmented armlets

Each armlet can be considered as a root filter and the

shoulderlet, the elbowlet and the wristlet are connected to
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Figure 5. HOG templates for the shoulderlet, the elbowlet and the

wristlet for armlet 3 superimposed on a positive example of that

armlet.

the root forming a star model (tree of depth one), similar

to [10]. However, the position of the corresponding joints

w.r.t. the armlet activation is observed, in contrast to [10]

where the location of the parts is treated as a latent variable.

We extract rectangular patches from the positive exam-

ples of each armlet type. The patches are centered at the

keypoint of interest and at double the scale of the original

positive example. Since the patches come from similar arm

configurations, defined by the armlet type, they are aligned,

allowing for the use of rigid features such as HOG.

Each patch is described by a local gradient HOG descrip-

tor as well as the skin color signal. The patches are 64× 64
pixels and we use 16×16 pixel blocks of 8×8 pixel cells for

both features which are constructed as in Section 4.2. We

use instance specific skin color models, which are GMMs

with 5 components fitted on the LAB pixel values corre-

sponding to the predicted face region of each instance as

dictated by the detection specific poselet activations.

Subsequently, we learn a linear SVM using as negatives

64 × 64 sized patches coming from the positive armlet ex-

amples but not centered close to the joint in reference. Af-

ter the first round of training, we re-estimate the positive

patches by running the detector in a small neighborhood

around the original keypoint location. This allows for some

small variations in the alignment of the examples coming

from the armlet clustering and results in a better alignment

of the actual parts to be trained. A new model is trained

with the improved positive examples. Fig. 5 shows an ex-

ample of an armlet along with the HOG templates for the

shoulderlet, the elbowlet and the wristlet.

6.2. Augmented armlet activations

We can use the activations of the shoulderlet, the el-

bowlet and the wristlet to rescore the original armlet acti-

vations. Strong part activations might indicate that the right

armlet has indeed fired while weak part activations indicate

a false positive activation.

Recall that for each armlet α, we computed the mean

relative location and the standard deviation of the three arm

keypoints from the positive examples of that armlet. Given

an activation of that particular armlet, these locations give a

rough estimate of where the joints might be located within

the bounding box of the activation. We define an area of

interest for each keypoint centered at the mean location and

extending twice the empirical standard deviation. For each

part, we detect its activations within the area of interest and

record the highest scoring activation. In other words, each

armlet activation αi is now described by its original detec-

tion score sαi
as well as the three maximum part activa-

tion scores s
(J)
αi , J = 1, 2, 3 corresponding to the three arm

keypoints. Let us call vαi
the part activation vector which

contains those four scores of the armlet activation αi.

For each armlet α, we can train a linear SVM wα with

positives Pα = {vαi
| i ∈ TP (α)} where TP (α) is the

set of true positive activations of armlet α and negatives

Nα = {vαi | i ∈ FP (α)} where FP (α) is the set of false

positive activations of armlet α. An armlet activation αi has

subsequently an activation score σ
(
wT

αvαi

)
, where σ(·) is

a logistic function trained for each armlet α.

6.3. Using the augmented armlets for keypoint pre-
dictions

The activations of the shoulderlets, the elbowlets and the

wristlets can also be used for improved predictions of the

location of the corresponding joints.

Assume α is an armlet and αi is the i-th activation of that

armlet in an image I . The prior probability that joint J is

located at x is given by Eq. 4.

The score of a part activation at location x of the trained

model for joint J , after fitting a logistic on the SVM scores,

can be interpreted as the confidence of the part model at that

location. In other words, if LJ is a binary random variable.

indicating whether joint J is present, then the probability of

joint J being present at location x

P
(
LJ | I, αi,x

)
=

1

1 + exp(−γJ
αs

(J)
αi − δJα)

(5)

where {γJ
α , δ

J
α} are the trained parameters of the logistic

and s
(J)
αi the SVM score of the part model for joint J at x.

The predicted location of part J conditioned on the acti-

vation αi is given by

x∗(J) = argmax
x

Pm(x| αi) · P
(
LJ | I, αi,x

)
(6)

7. Results using augmented armlets
We can use the shoulderlets, elbowlet and wristlet trained

for each armlet to rescore the activations on the test set

as well as make keypoint predictions, as described in Sec-

tion 6. Table 3 shows the performance on the test set. The

first column shows the performance after picking the high-

est scoring armlet activation, as described in Section 5. The
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PCP LSCG LSCG augmented LSCG posterior

R UpperArm 49.4 50.2 50.2
R LowerArm 23.5 23.4 25.0
L UpperArm 48.3 49.3 49.2

L LowerArm 23.7 24.5 25.4
Average 36.2 36.9 37.5

Table 3. Part localization accuracy on the PASCAL VOC dataset

using all the features (LSCG) using the mean relative location for

joint predictions of the highest scoring armlet activations (first col-

umn), using the mean relative location for joint predictions of the

highest scoring augmented armlet activations (second column) and

using the posterior probability for joint predictions in Eq. 6 (third

column)

Figure 6. PCP localization accuracy for different values of the

threshold in the metric. The red curves show our performance for

the Upper and Lower Arm (mean across right and left). The blue

curves show the performance of [26]. (best viewed in color)

second column shows the performance after picking the

maximum scoring activation of the augmented armlets to

make predictions for the joints using the mean relative loca-

tions. The third column shows the performance after using

the highest scoring activation of the augmented armlets to

make a prediction using the posterior probability (Eq 6). 1

Fig. 6 shows the PCP localization accuracy of our final

model compared to Yang and Ramanan [26] for different

thresholds for the PCP metric evaluation.

Fig. 7, 8 show examples of correct right and left, respec-

tively, arm keypoint predictions. The bounds of the instance

in question are shown in green. The red stick corresponds to

the upper arm and the blue to the lower arm of that instance.

Fig. 9 shows incorrect keypoint predictions for the right

and left arm corresponding to the instance highlighted in

green.

8. Discussion
We propose a straightforward yet effective framework

for training arm specific poselets for the task of joint po-

sition estimation and we show experimentally that it gives

superior results on a challenging dataset.

1We also cross-checked by using bounding boxes rather than torsos to

determine the ground truth person, and the numbers change only slightly

to 47.5% for Upper and 23.8% for Lower Arms

Figure 7. Examples of correct right arm keypoint predictions. Red

corresponds to the upper arm and blue to the lower arm of the

person highlighted in green. (best viewed in color)

Figure 8. Examples of correct left arm keypoint predictions. Red

corresponds to the upper arm and blue to the lower arm of the

person highlighted in green. (best viewed in color)

Figure 9. Examples of incorrect keypoint predictions for the right

arm (top) and left arm (bottom) . Red corresponds to the upper

arm and blue to the lower arm of the person highlighted in green.

(best viewed in color)

The shortage of data for developing efficient human pose

estimation algorithms has a significant impact on the perfor-

mance for both our and Yang and Ramanan’s approach. Our

knowledge of the ground truth configuration on the test set

enables us to cluster each test instance to one of the armlets.

Thus, we can compute the PCP accuracy per armlet type
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Figure 10. PCP localization accuracy per armlet type for upper arm

(top left) and for lower arm (top right), where red indicates the

performance of our approach while blue the performance by Yang

and Ramanan [26]. The number of training examples per armlet

type is shown in the bottom.

and associate it with the number of training examples for

that armlet. Fig. 10 shows PCP accuracy per armlet type on

the test set for the upper arm (top left) and for the lower arm

(top right), as well as the number of training examples per

armlet type (bottom). These plots show that our approach

dominates Y&R’s for most armlet types on the test set, and

also reveal that both methods are strongly correlated with

the amount of training data. In particular, the Pearson’s

correlation coefficient between the number of training ex-

amples and the PCP accuracy for the upper arm is 0.79 for

our approach and 0.88 for Y&R while for the lower arm it

is 0.75 for our approach and 0.83 for Y&R. Clearly more

training data will be needed to achieve higher pose estima-

tion accuracies. We give the last word to Sherlock Holmes:

“Data! Data! Data!” he cried impatiently. “I can’t

make bricks without clay.”

The Adventure of the Copper Beeches
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