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Abstract

Unlike traditional images which do not offer information
for different directions of incident light, a light field is de-
fined on ray space, and implicitly encodes scene geometry
data in a rich structure which becomes visible on its epipo-
lar plane images. In this work, we analyze regularization
of light fields in variational frameworks and show that their
variational structure is induced by disparity, which is in this
context best understood as a vector field on epipolar plane
image space. We derive differential constraints on this vec-
tor field to enable consistent disparity map regularization.
Furthermore, we show how the disparity field is related to
the regularization of more general vector-valued functions
on the 4D ray space of the light field. This way, we de-
rive an efficient variational framework with convex priors,
which can serve as a fundament for a large class of inverse
problems on ray space.

1. Introduction

In 2006, Marc Levoy, computer graphics professor at

Stanford university and one of the leading experts in com-

putational imaging, predicted in a survey article that “in 25

years, most consumer photographic cameras will be light

field cameras” [9]. Whether or not he will ultimately be

right, the first plenoptic cameras are now commercially

available [12, 13], and several new technologies to cap-

ture light fields are under development. We believe that it

is therefore time to thoroughly investigate the possibilities

of light fields from the point of view of computer vision,

in order to keep the theoretical research ahead and help to

guide hardware development towards systems whose mode

of recording is well suited for later analysis and process-

ing. Because of their structure, light fields are particularly

well suited to variational methods - indeed, we believe that

variational methods might be key to getting the most out

of this kind of data. The goal of this work is therefore to

systematically develop theory and algorithms of a flexible

and efficient variational framework which is built upon the

concept of light fields instead of traditional 2D images.

noisy input view single view denoising light field denoising

Figure 1. Regularization which leverages the variational structure
of the light field leads to superior results in inverse problems like
denoising and inpainting as well as multi-label segmentation.

Light fields and computational imaging

For the purpose of this paper, the 4D light field of a scene

can be understood as a collection of views of a scene with

densely sampled view points, see figure 2. With the large

amount of data available, it is not surprising that a wide

array of applications has been developed. In image-based

rendering, novel views of the scene are generated by means

of a re-sampling of the light field [7, 10]. The selling point

of the first consumer plenoptic camera is refocusing of the

light field to different depth planes [12]. Camera arrays can

in a sense be treated as a single plenoptic camera with a very

wide aperture and allow synthetic aperture rendering, which

allows to view through obstacles such as dense foliage [17].

Since plenoptic cameras trade off sensor resolution for

capturing multiple views, it is not surprising that super-

resolution techniques are a focus of research in light field

analysis. They have been investigated using priors regard-

ing statistics of natural images [2] as well as modified imag-

ing hardware [11]. The problems of view interpolation and

super-resolution have recently been solved jointly by min-

imizing a convex variational energy on the domain of the

novel view [15]. This requires depth information, which can

be recovered very reliably from plenoptic camera images.

While the reconstruction can be based on traditional stereo

matching techniques [2], recent works exploit the structure

of light fields and epipolar plane images directly to estimate

disparity [14]. Their underlying assumptions are adopted in

this paper and will be explained next.
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Figure 2. One way to understand a 4D light field is as a collection of images of a scene, where the focal points of the cameras lie in a 2D
plane. The rich structure becomes visible when one stacks all images along a line of view points on top of each other and considers a cut
through this stack (denoted by the green border above). The 2D image in the plane of the cut is called an epipolar plane image (EPI).

The structure of light fields

The fundamental difference between having a light field and

just a simple collection of views of a scene available is that

the view points in a light field lie much closer together and

form a specific, usually simply rectangular pattern. In fact,

it becomes possible to assume that the space of view points

forms a continuous space, and for example, take derivatives

of the light field with respect to the viewing direction. In

order to fully exploit this new possibility, it is thus natural

to work with variational methods, which allow to incorpo-

rate this differential structure into the problem formulation.

With this paper, we follow the philosophy of the earliest

works on the analysis of epipolar volumes [3]. They rely

on the fact that 3D scene points project to lines in epipo-

lar plane images, see figure 2, which can be more robustly

detected than point correspondences [3, 5]. The proposed

methods will further embrace these ideas, in that they allow

to systematically leverage the differential light field struc-

ture in complex inverse problems.

Contributions

From a technical point of view, we will construct convex

priors for light fields which are designed in a way that they

preserve the epipolar plane image structure, and solutions

satisfy constraints related to object depth and occlusion or-

dering. In this way, they enable the regularization of ar-

bitrary vector-valued functions on ray space while respect-

ing the light field geometry. Furthermore, we contribute an

optimization framework for inverse problems on ray space

which makes use of these priors, and show a number of ex-

amples, in particular light field denoising, inpainting, and

in a related work [16], ray space labeling. As far as we are

aware, this is the first time a systematic way to deal with

inverse problems on ray space has been proposed, and we

believe that it can serve as a solid foundation for the future

development of light field analysis.

2. Disparity in a light field
In a rectified stereo pair, disparity is the coordinate dif-

ference of the two projections of a 3D scene point. In a

light field, where a scene point is visible in many views,

this would not make a very useful definition, since its value

would depend on the pair of views chosen. Furthermore, in

a light field, the space of view points is a continuous space,

so it makes more sense to think of disparity as a differential
quantity: the infinitesimal shift of the projection under an

infinitesimal shift of the view point. Thus, disparity should

be described as a derivative. In the following, we will sys-

tematically introduce what we call the disparity field.

Ray space

A 4D light field or Lumigraph is defined on a ray space R,

the set of rays passing through two planes Π and Ω in R
3,

where each ray can be uniquely identified by its two inter-

section points. For the sake of simplicity, we assume that

both planes are parallel with distance f > 0, and equipped

with 2D coordinate systems which are compatible in the

sense that the base vectors are parallel and the origins lie

on a line orthogonal to both planes.

The parametrization for ray space we choose is slightly

different from the standard one for a Lumigraph [7], and

inspired by [3]. A ray R[x, y, s, t] is given by a point

(s, t) ∈ Π and (x, y) ∈ R
2. The twist is that (x, y) is

not a coordinate pair in Ω (as in the two-plane parametriza-

tion), but in the local coordinate system of the pinhole pro-

jection through (s, t) with image plane in Ω. This means

that R[s, t, 0, 0] is the ray which passes through the focal

point (s, t) and the center of projection in the image plane,

i.e. it is perpendicular to the two planes, see figure 3. In the

following, coordinates (x, y) are always relative to a base

point (s, t). We assume that the coordinate system of the

pinhole view is chosen such that x is aligned with s and y
is aligned with t, respectively.
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Light fields and epipolar plane images

A light field L can now simply be defined as a function

on ray space, either scalar or vector-valued for gray scale

or color, respectively. Of particular interest are the images

which emerge when ray space is restricted to a 2D plane. If

we fix for example the two coordinates (y∗, t∗), the restric-

tion Ly∗,t∗ is the map

Ly∗,t∗ : (x, s) �→ L(x, y∗, s, t∗), (1)

other restrictions are defined in a similar way. Note that

Ls∗,t∗ is the image of the pinhole view with center of pro-

jection (s∗, t∗). The images Ly∗,t∗ and Lx∗,s∗ are called

epipolar plane images. They can be interpreted as hori-

zontal or vertical cuts through a horizontal or vertical stack

of the views in the light field, see figure 2, and have a

rich structure which looks like it consists mainly of straight

lines. The slope of the lines is linked to disparity, as we will

explore now.

Disparity of a 3D point

Let P ∈ R
3 be a scene point. The pinhole projections of

P onto Ω under two different centers of projection (s1, t)
and (s2, t) will have different x1 and x2 coordinates. We

are interested in the rate of change of x as a function of s.

From similar triangles and the intercept theorem in figure 3,

dx

ds
(s1) = lim

Δs→0

(
x1 +

f
ZΔs

)
− x1

Δs
=

f

Z
, (2)

where Z is the distance of P to the plane Π, which we call

the depth of P . The rate of change ρ(P ) := f
Z is indepen-

dent of the choice of s1, we call it the disparity of P . It is

easy to see that it is numerically the same as
dy(P )
dt (t) for

all t. Intuitively, the above shows that a scene point P is

projected onto a line with slope ρ(P ) onto the (x, s)- and

(y, t)-planes. This is the reason for the linear structures we

observe in the epipolar images. Note that (2) shows that

disparity in our sense is indeed a derivative.

3. Disparity maps and their constraints
For stereo pairs, it is customary to compute disparity

maps, i.e. assign a shift to each pixel. In light fields, we

need to assign a disparity to each ray. As in the stereo case,

this only makes sense if the surfaces in the scene are opaque,

as we will assume in the following.

In the case of opacity, to each ray R[x, y, s, t] can be as-

signed a closest point P (x, y, s, t) where the ray intersects

the scene. We define the disparity map ρ as a function on

ray space via

ρ(x, y, s, t) := ρ(P (x, y, s, t)). (3)

P = (X, Y, Z)

x1
t

Π

Ω

y

f

s1

s2

x2

Δs

x2 − x1 =
f
Z
Δs

Figure 3. Light field parametrization. Each camera location (s, t)
in the view point plane Π yields a different pinhole view of the

scene. The two thick dashed black lines are orthogonal to both

planes, and their intersection with the plane Ω marks the origins

of the two different (x, y)-coordinate systems for the views (s1, t)
and (s2, t), respectively.

Unlike the definition of disparity for a single (virtual) 3D

point, the disparity map depends on the scene geometry. As

we will see later, disparity and regularization of maps on

ray space are intimately linked to each other. In particu-

lar, this shows that 3D scene reconstruction from light field

data is actually a pre-requisite to correctly deal with inverse

problems on ray space.

Like any map on ray space, one can restrict the disparity

map to epipolar plane images. We will now investigate the

constraints on this map, i.e. the question of which maps

are valid disparity maps. A global constraint can be derived

from occlusion ordering of scene surfaces. For this, we fix

an EPI with coordinates (y∗, t∗). In the remainder of this

section, all 4D fields are considered to already be restricted

to this EPI to not clutter notation. Let (x0, s0) be a fixed

point on this EPI. From its disparity ρ0 = ρ(x0, s0), one

can compute the scene point P which projects onto (x0, s0)
by means of (2). This point P also projects onto the line

(x0 + ρσ, s0 + σ), σ ∈ R on the EPI. Since it occludes

everything behind it, this means that at no point on this line,

the disparity can be smaller than ρ0. In particular,

ρ(x0+ ρ(x0, s0)σ, s0+ σ) ≥ ρ(x0, s0) for all σ ∈ R. (4)

Because in this way, the disparity in a point restricts the

disparity at arbitrarily far away locations, it is prohibitively

expensive to enforce this constraint globally. However,

from (4) one can immediately conclude a weaker local con-

straint.

Proposition. A valid disparity map satisfies the local

constraints

∇±d ρ(x0, s0) ≥ 0 for all (x0, s0), (5)

where the disparity vector field d is defined as a unit vec-

tor field in direction [ρ 1]T , and ∇±d are the directional
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derivatives in direction +d or −d, respectively. Note

that since ρ is not necessarily differentiable, its directional

derivatives in opposite directions might be different.

Local vs. global constraints

Unfortunately, the local constraint (5) does not imply the

global one (4), a counterexample is shown in figure 4. How-

ever, it implies consistency along connected line segments

where visibility remains unchanged. Thus, it is sufficient to

enforce the local constraints if a point is not temporally oc-

cluded and then unoccluded again when moving through all

the view points. In particular, if the total baseline is small,

like e.g. in plenoptic cameras, this case is unlikely.

4. Regularization on ray space

Scene point labeling vs. labeling of rays

When we compute a disparity map, we label rays with a

quantity which is ultimately a property of scene points. The

above constraints will ensure that the labeling is consistent,

in that all projections of the same point are labeled with

the same disparity value. In image processing applications,

many more labelings are of interest. For a start, a light field

itself is an assignment of a color to each ray. For Lamber-

tian surfaces, this means that all rays which correspond to

the same scene point must be assigned the same color for

the labeling to be consistent. This restriction holds for all

properties which are independent of viewing direction, like

surface material, texture, object class labels and others.

The question is therefore how we can enforce this con-

sistency for vector-valued maps U : R → R
n on ray space.

We assume that U encodes a property of a scene surface

which is independent of viewing direction, all scene sur-

faces are opaque and the disparity map ρ on ray space is

known.

Constraints and EPI regularization

The disparity vector field d can be interpreted in a slightly

different way as a transport field. At each point of an EPI, it

denotes in which direction the projection of the correspond-

ing scene point moves under variations of the view point. In

particular, the function U should be constant in the direc-

tion of d, except at disparity discontinuities.

We encourage this form of smoothness by regularizing

with an anisotropic total variation on the epipolar plane im-

ages. As in the previous section, we fix an epipolar plane

image with coordinates (y∗, t∗), and define for the restric-

tion Uy∗,t∗ the regularizer

∫
Ω

√
∇uTDρ∇u dx (6)

d0

d1

d2

Figure 4. Local constraints on the EPIs are in general not suffi-
cient to enforce global consistency. Although the transitions from

d0 to d2 and d1 to d2 are both valid, occlusion constraints are

violated in the red area since d0 corresponds to closer points than

d1. However, for all scene points which are only visible on a con-

nected line on the EPI, local constraints are equivalent to the global

ones.

which encourages smoothing in the correct direction by

means of the metric tensor [8]

Dρ := g2
(
α(I − ddT ) +

3− α

2
ddT

)
. (7)

A expression similar to (6) defines the regularizer

Jρ(Ux∗,s∗) for the horizontal slices. The additional weight

function g is optional, and can for example be used to de-

crease the penalty at disparity discontinuities. In our ex-

periments, we leave it at g = 1. The constant α controls

the degree of anisotropy, small values imply that smoothing

is focused into the direction of the disparity field d. Since

the ray space regularizer defined later already explicitly in-

cludes regularization in the spatial domain, we set α = 0
in all experiments. For more details and properties of the

anisotropic total variation we refer to [8], similar regular-

izers have also been discussed in [18]. The work [14] pre-

sented a consistent disparity regularization framework on

EPIs based on labeling, but it requires discretization of dis-

parity values and is prohibitively slow.

Regularization of vector-valued functions

The final regularizer Jλμ(U) for a vector field U : R →
R

n on ray space can now be written as the sum of contri-

butions for the regularizers on all epipolar plane images as

well as all the views,

Jλμ(U) = μJxs(U) + μJyt(U) + λJst(U)

with Jxs(U) =

∫
Jρ(Ux∗,s∗) d(x∗, s∗)

Jyt(U) =

∫
Jρ(Uy∗,t∗) d(y∗, t∗)

Jst(U) =

∫
JV (Us∗,t∗) d(s∗, t∗),

(8)

where λ > 0 and μ > 0 are user-defined constants which

adjust the amount of smoothing on the separate views and
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epipolar plane images, respectively. The spatial regular-

izer JV for the individual views can be chosen arbitrarily,

but should be convex and closed. A reasonable choice is for

example a vectorial total variation [6].

The ray space regularizer defined in (8) gives a means to

tackle any inverse problem on ray space. In the following,

we will show how to use it in optimization problems and

then give several examples for possible applications.

5. Optimization
We will consider general convex minimization problems

of the form

argmin
U∈C

{Jλμ(U) + F (U)} , (9)

where C is a convex set of vector-valued functions U : R →
R

n on ray space, and the functional F is convex and differ-

entiable with Lipschitz-continuous derivative, whose Lip-

schitz constant is L > 0. Note that the regularizer Jλμ for

vectorial functions on ray space, given by (8), is convex and

closed as the sum of convex and closed functionals, but not

differentiable. Thus, one has to employ methods from con-

vex optimization in order to minimize (9).

When choosing an algorithm, the main limitation which

arises is that at reasonable resolutions, each field on ray

space takes up a lot of memory. It is therefore not feasible

to employ a primal-dual scheme on the complete functional,

since storage of the required dual variables would exceed

the memory of current GPUs, which are the target architec-

ture. We therefore employ a subgradient descent scheme

which is similar to iterative shrinkage and thresholding [1].

Note that according to (8), the complete regularizer

which is defined on 4D space decomposes into a sum of

regularizers on 2D images - the epipolar plane images and

individual views, respectively. Each of these 2D regular-

izers is convex and closed, and corresponds to a compara-

tively small problem. Now for any convex functional f , an

implicit subgradient descent step can be computed with the

proximity operator, which amounts to solving the L2 model

proxτf (u) = argmin
v

{
‖v − u‖22

2τ
+ f(v)

}
. (10)

The above computes a subgradient descent step for f start-

ing from u with step size τ , and is guaranteed to get closer

to the minimizer of f .

For optimization of the model (9), we iterate descent of

the regularizer components and the data term as detailed in

figure 5. Each application of a proximity operator amounts

to solving a standard L2-denoising problem in 2D with the

corresponding regularizer component, which can be per-

formed efficiently with e.g. primal-dual schemes [4]. Note

that all subproblems for each epipolar plane image and view

To solve the inverse problem (9) on ray space, we initial-

ize the unknown vector-valued function with U = 0 and

iterate the following steps:

• data term descent: U ← U − 1
L
∇F (U),

• EPI regularizer descent:

Ux∗,s∗ ← proxL−1μJρ
(Ux∗,s∗) for all (x∗, s∗),

Uy∗,t∗ ← proxL−1μJρ
(Uy∗,t∗) for all (y∗, t∗),

• spatial regularizer descent:

Us∗,t∗ ← proxL−1λJV
(Us∗,t∗) for all (s∗, t∗).

Figure 5. Algorithm for the general inverse problem (9).

are completely independent. Typically, the computation

time until convergence is around 10 to 30 seconds, depend-

ing on the number of dimensions of U and type of data term

chosen, on an nVidia GTX 580 GPU.

6. Applications

The model (9) is sufficiently general to enable a wide

range of interesting applications. In the following, we show

how to perform a number of archetypical tasks in image

analysis. We have also investigated ray space multi-labeling

as a more involved application, which we explore in detail

in a related paper [16]. Source code and data sets will be

published online on our web page1.

Light field denoising

We first show how to perform denoising of light field data.

This is important in the context of plenoptic cameras, which

aim for a very large sensor resolution and are thus particu-

larly prone to noise. For this, let F be a vector-valued func-

tion on ray space which is degraded with Gaussian noise of

standard deviation σ independently for each ray. The corre-

sponding MAP estimate is of the form (9), where Jλμ acts

as a prior and the data term is given by

F (U) =
1

2σ2
‖U − F ‖22 . (11)

Results can be observed in figure 6, see also figure 1 for fur-

ther close-ups. Denoising on ray space leads to significantly

better quality than denoising of single views. Note that the

L2-denoising model above is equivalent to the proximity

operator for Jλμ, so having an efficient solver available can

be useful for more complex applications.

1http://lightfield-analysis.net
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(a) Gaussian noise σ = 0.2, PSNR 11.92 (b) Single view denoising, PSNR 23.44 (c) Light field denoising, PSNR 25.27

(d) Gaussian noise σ = 0.2, PSNR 14.66 (e) Single view denoising, PSNR 22.61 (f) Light field denoising, PSNR 24.46

Figure 6. L2-denoising schemes which respect the light field structure are superior to single view denoising. For the spatial regularizer,

we use the vectorial total variation based on the operator norm of the Jacobian [6]. Top: light field recorded with a Raytrix plenoptic

camera, bottom: synthetic light field rendered with Blender. Figures (b,e) show the results for optimal parameter choice using spatial

regularization only, and figures (c,f) the optimal results for a denoising scheme on ray space, as described in section 6. Optimal parameters

were determined using brute force search, the disparity map was estimated from the input light field using the algorithm in [14].

Light field inpainting

As a second example, we discuss inpainting on ray space.

Let Γ ⊂ R be a region in ray space where the input light

field F is unknown. The goal is to recover a function U
which restores the missing values. For this, we find

argmin
U

Jλμ(U) such that U = F on Ω \ Γ. (12)

Inpainting is particularly interesting because of two reasons.

First, the inpainted regions show the raw results of regu-

larization without presence of a data term. Second, a new

situation arises when disparity is also unknown in the in-

painting domain. In the latter case, the regularizer on the

epipolar plane images is undefined. We will discuss how

to infer unknown disparity fields in the next section. For

the light field inpainting experiments presented in figures 7

and 8, we assumed disparity to already be reconstructed.

In general, light field inpainting leads to much improved

results with visually sharper boundary transitions. Note that

figure 8 also demonstrates that light field inpainting can be

considered as a novel method for view interpolation.

Disparity map regularization

If disparity itself is the unknown field to be recovered, then

the general model (9) is not convex anymore, since the reg-

ularizer in turn depends on knowledge the disparity field.

Thus, one needs to resort to an iterative scheme. If possible,

we start with a reasonable initialization, in the case of view
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(a) Damaged input (b) Spatial inpainting (TV) (c) Light field inpainting

(d) After 5 iterations (e) After 10 iterations (f) After 15 iterations (g) After 20 iterations

Figure 7. Light field inpainting for repairing damaged regions. The same (x, y)-domain was marked as damaged in all of the input views.

Using the inpainting scheme, it is possible to recover almost all of the missing information from neighbouring views, which demonstrates

the power of the regularization framework. In comparison, pure spatial inpainting is of course unable to restore anything close to the real

data in the damaged regions. The bottom row of images shows the progress of convergence of the algorithm.

interpolation this can for example be a disparity field ob-

tained by linear interpolation. Otherwise, we initialize with

a disparity of zero or close to the expected median of dispar-

ity values. We then iteratively solve (9) for a new disparity

field, and update the regularizer with the new disparity field

after every iteration. Of course, this process can only reach

a local optimum.

Further improvements are possible if one includes the

local constraints (5) on the disparity field. We include this

non-linear set of constraints in the energy minimization us-

ing Lagrange multipliers in order to optimize for a consis-

tent disparity field. Experiments show that this way, it is

possible to obtain better estimates for disparity in e.g. in-

painting applications, see figure 8.

7. Conclusion

For solving inverse problems on ray space, priors are

required which respect the directional structure on epipo-

lar plane images induced by disparity. Since the directions

need to be followed very accurately, a natural tool to use are

continuous methods which allow to model regularizers un-

biased towards an underlying grid structure. In this work,

we introduce a general variational framework for solving

inverse problems on ray space with arbitrary differentiable

and convex data terms, like for denoising, inpainting and

segmentation. We demonstrate that these fundamental ap-

plications in image analysis can be solved more accurately

on a light field structure than individual images. This way,

the proposed method contributes a solid foundation for the

future development of variational light field analysis.
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row, one can compare disparity fields in the unknown regions generated with different methods. In particular, we can see that the optimal

way to infer disparity is via inpainting and additional observation of the local constraints (5). Results obtained via inpainting are generally

sharper than those obtained via interpolation and show less ghosting artifacts.
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