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Abstract

We present a novel stochastic framework for non-blind
deconvolution based on point samples obtained from ran-
dom walks. Unlike previous methods that must be tailored
to specific regularization strategies, the new Stochastic De-
convolution method allows arbitrary priors, including non-
convex and data-dependent regularizers, to be introduced
and tested with little effort. Stochastic Deconvolution is
straightforward to implement, produces state-of-the-art re-
sults and directly leads to a natural boundary condition for
image boundaries and saturated pixels.

1. Introduction
Image deconvolution or deblurring has applications in

astronomy, microscopy, GIS and photography among other

disciplines. As such it has seen considerable research in

graphics and vision.

This paper presents Stochastic Deconvolution, a new

framework for non-blind image deconvolution based on

stochastic random walks. Stochastic Deconvolution is

based on an adaptation of a recent stochastic optimiza-

tion method for solving computed tomography problems [6]

to the problem of deconvolution. The resulting algorithm

amounts to a variant of coordinate-descend optimization,

where the descent direction is chosen using a random walk

that utilizes spatial coherence. By solving the image deblur-

ring problem in this fashion, the Stochastic Deconvolution

framework directly addresses several issues inherent in de-

veloping deconvolution algorithms:

• Ease of Implementation. Both the basic algorithm and

its regularized variants are very straightforward to im-

plement, and is based on only two very simple opera-

tions: splatting of the point spread function (PSF) and

point-evaluation of the regularization term.

• Regularization Research. Because of the simplicity of

implementing new regularizers, Stochastic Deconvolu-

tion enables research into new regularization terms and

image priors for deconvolution through rapid experi-

mentation. We demonstrate that the methods works

for a large array of regularizers, including ones that

are smooth, non-smooth but convex, non-convex, dis-

continuous, and even data-dependent.

• Boundary Conditions. When capturing blurred im-

ages, information is propagated into the captured im-

age where no data is captured. Deblurring in these re-

gions requires some condition on scene content out-

side the captured region. An additional benefit of

Stochastic Deconvolution is that it naturally handles

these boundary conditions and can use a near-identical

process to deal with saturated regions.

• Shift-variant Kernels. Finally, Stochastic Deconvolu-

tion generalizes naturally to deblurring problems with

spatially varying kernels such as the synthetic camera

shake example depicted in Figure 1.

The remainder of this paper is structured as follows: in

the next section we discuss related work while providing

an introduction to the deconvolution problem. We then in-

troduce Stochastic Deconvolution in Section 3. Results are

presented in Section 4 after which we conclude with a dis-

cussion of future research directions in Section 5.

2. Background and Related Work
In this section, we introduce the notation for the decon-

volution problem and summarize the optimization frame-

work from Stochastic Tomography [6], which we modify to

solve deconvolution problems.

2.1. Image Deconvolution

Image deconvolution attempts to remove the blurs intro-

duced when images are captured with real optical systems,

including motion blur (e.g. [4, 15, 21, 21, 8, 7]) and depth-

of-field blur (e.g. [12, 9, 3]). These artifacts are effectively

captured by a point-spread-function (PSF) k that measures

the projection of a point-light source on the captured image

for a fixed set of camera parameters.

In general, the PSF is a function of the projected co-

ordinate of the source x, the distance of the source from

the camera d, and the chromaticity of the image point (i.e.

k = k(x, d, λ)). However in many scenarios the PSF is as-

sumed to be spatially invariant, (i.e. independent of image

position). The captured image q is then represented as the

intrinsic (deblurred) image p convolved with the PSF:
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Figure 1. Left: Snapshot of the algorithm in progress showing stochastic random walks that form the basis of Stochastic Deconvolution.

Green points represent energy added while blue correspond to energy subtracted from the reconstruction. The algorithm automatically

focuses sampling effort in regions where the largest improvements to the system energy are obtained. Right: Example of deblurring

with a spatially-varying (per-pixel) PSF simulating strong motion-blur. Input image (center-left) and a sampling of per-pixel PSFs at full-

scale (center-right). Deblurred result using Stochastic Deconvolution algorithm (right). The Stochastic Deconvolution algorithm naturally

handles PSFs with strong spatial variation, including rotations around the optical axis, without resorting to patch-based approximations.

q = k ⊗ p. (1)

The goal of deconvolution is to invert Equation 1 to obtain

an estimate of the intrinsic image. In this paper, we are

focusing on the non-blind version of this problem, where

the PSF is assumed to be provided either by calibration or

some form of PSF estimation (e.g. [4, 10]).

Traditional methods for solving deconvolution problems

include Fourier-space division, the Wiener Filter [18], as

well as iterative methods such as Richardson-Lucy [16, 14].

All these methods produce significant artifacts in cases

where certain image frequencies are completely eliminated

by the blur, which is common especially in defocus blur.

Although the results can be improved significantly

with variations of the original Richardson-Lucy algorithm

(e.g. [21, 22, 5]), most state-of-the art deconvolution meth-

ods take a slightly different approach. The basic problem

from Equation 1 can be seen as an linear inverse problem

that is usually ill-posed, since the PSF filters outs some fre-

quency components. General deconvolution methods de-

fine a quadratic fitting energy (either in the Fourier or im-

age domain) that is minimized when the solution estimate

convolved by the PSF equals the captured image, e.g. when

defined in the image domain:

Ffit = ||q − k ⊗ p||22 (2)

Since the system is ill-posed, infinitely many solutions

weakly minimize the fit energy (Equation 2). To address

this, a prior or regularizer Γ(p) is typically added, weighted

by λ, to give the system energy, Equation 3.

F = Ffit + λΓ(p) (3)

The regularizer penalizes solutions that do not conform to

prior expectations on the solution such as smoothness or

sparsity. Good regularizers suppress ringing and noise with-

out introducing other undesirable artifacts.

However a problem arises because the regularizer typi-

cally changes the mathematical structure of the problem. In

particular, priors favoring piecewise smooth solutions can-

not be expressed as linear systems, making it necessary

to develop highly specialized, regularizer-specific solvers

(e.g. [12, 11, 19]). Developing such solvers is a demand-

ing task, complicated further by problems with millions of

unknowns.

The goal of our work is to design a simple, reasonably

efficient, general-purpose deconvolution algorithm capable

of handling effectively arbitrary priors. To do so, we adapt

the random walk optimization strategy from Stochastic To-

mography [6] and modify it to solve deconvolution prob-

lems. The result is a straightforward method for image de-

convolution that allows the use of arbitrary priors with no

change to the underlying algorithm. Another benefit of our

method is natural handling of boundary conditions and sat-

urated pixels.

2.2. Review of Stochastic Tomography

Recently, Gregson et al. [6] presented a stochastic ran-

dom walk algorithm for solving tomographic reconstruction

problems. The method minimizes a convex objective func-

tion F by continuously placing discrete point samples in

a volume that each improve the objective. The change to

the objective can be evaluated efficiently due to the small

support of each sample. A local sample mutation strat-

egy inspired by Metropolis-Hastings then focuses the sam-

pling efforts in regions with high payoff, i.e. regions where

samples have recently been placed successfully, leading to

a method that makes many (107-109) low-cost incremen-

tal solution updates. However, as their work pointed out,

the method deviates from Metropolis-Hastings in a number

of key ways, including the fact that the random walk de-

pends on the full history of the sampling process and does

thus not represent a Markov Chain, but rather a stochas-
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tic coordinate-descent method that employs a Metropolis-

Hastings style heuristic for picking the next coordinate axis

to descend along. The final result of the tomographic re-

construction is given by the volume density of the placed

samples. Algorithm 1 reproduces the full method for com-

pleteness sake.

Algorithm 1 Stochastic Optimization Algorithm, from [6]

// Start the walk from a random point

x0 ← random()
for k = 1 to N do

// New sample from xk−1 using

// transition PDF t(xk|xk−1)
xk ← sample(xk−1, t(xk|xk−1))
a← ΔF (xk)/ΔF (xk−1)
if ΔF (xk−1) < 0 or random() ≤ a then

// Record only samples that reduce the objective fn.

if ΔF (xk) > 0 then
// Incorporate the sample into the output

record(xk)
end if

else
// Keep exploring space from previous sample

xk = xk−1

end if
end for

A key advantage of Stochastic Tomography over other

tomographic solvers is that the objective function F may

contain arbitrary convex regularizers without a change in

the fundamental algorithm, allowing for easy experimen-

tation and testing of new priors and regularizers. Using

L1 regularizers on several captured and synthetic examples,

Gregson et al. demonstrated that Stochastic Tomography

can be an effective method for regularized tomographic re-

construction.

One of the contributions of our work is to recognize that

this framework for stochastic optimization with a random

walk is in fact more general, and can be adapted to inverse

problems other than tomography. This is significant since

frequency content in measured quantities can differ signifi-

cantly between deblurring and tomography, leading to more

aggressive, often non-convex priors that are more difficult

to optimize. The key features required of problems is to

have i) a strong geometric structure in which many degrees

of freedom can be explored by walks in a low dimensional

space, and ii) to have small stencils, so local updates can be

performed efficiently.

Deconvolution fits this definition nicely since the PSF

links the intrinsic and captured images geometrically in 2D

and has relatively compact support allowing efficient local

updates. To apply this random walk framework, we only

need to derive problem-specific functions for sample mu-

tation, i.e. a transition probability t(xk|xk−1) for choos-

ing sample xk based on the previous sample location xk−1,

a method for keeping track of the change ΔF (xk) of the

objective function when placing a new sample xk, and fi-

nally a method for accepting and recording a new sample

record(xk). The next section describes how to derive meth-

ods for these tasks in the case of deconvolution problems.

3. Stochastic Deconvolution
Stochastic Deconvolution begins from Equation 2, which

is used as the data-fitting term of the system objective func-

tion (Equation 3), and from an initial estimate of the p(0) of

the intrinsic image. We create a random walk of pixel loca-

tions xk at which we add or remove an energy quantum ed,

thus generating a sequence p(k) of estimates of the intrinsic

image:

p(0) = q (4)

p(k) = p(k−1) ± ed · δxk
, (5)

where δxk
is the characteristic function (Kronecker Delta)

for pixel xk. Both positive and negative energies are tested

for each sample location xk in Algorithm 1 but only the sign

causing the greatest improvement kept.

Evaluating ΔF . The quantity ΔF (xk) measures the

change in the objective function if a given sample xk with

value±ed were to be accepted and added to the solution. In

order to efficiently compute ΔF (xk), we also keep track of

a second sequence of images q(k) = k ⊗ p(k), which rep-

resents the observed image we would expect if p(k) was the

intrinsic image. q(k) can be efficiently updated during the

random walk:

q(0) = k ⊗ p(0) = k ⊗ q (6)

q(k) = q(k−1) ± ed (k ⊗ δxk
) (7)

In other words, q(k) can be updated by splatting k⊗δxk
, a

shifted and mirrored copy of the PSF at the sample location

xk. With this second image, the change in the data term

Ffit can be computed efficiently through local updates.

The change in the regularization energy is evaluated in an

analogous manner, but is specific to the chosen regularizer.

For example, if the total-variation (TV) function is used,

then the change in λΓ is simply the sum of differences of

affected gradient magnitudes, scaled by λ.

Mutation Strategy. The mutation function generates a

new sample xk from the previously accepted sample xk−1.

We use a simple, symmetric strategy where new samples

are generated by a Gauss-distributed offset from the most

recently accepted sample. The width of the Gaussian is a

user parameter typically set to 50-100% of the PSF width,

with the choice not being critical. Using a Gaussian distri-

bution ensures ergodicity; this ensures the sampling process

does not erroneously ’miss‘ areas.
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We also add a Russian-roulette chain terminating mu-

tation where the sample is simply moved anywhere in the

image domain with uniform probability. This mutation is

applied with 1% probability, leading to sample chains with

expected length of 100. We have found this helps to over-

come any start-up bias while also contributing to ergodicity.

Convergence. In each iteration, the Stochastic Deconvo-

lution framework picks a single pixel in the image and

checks if the objective can be improved by depositing en-

ergy in this pixel. This corresponds to picking a single

degree-of-freedom and descending along that axis, mak-

ing it a form of Coordinate Descent. What distinguishes

Stochastic Deconvolution from other Coordinate Descent

methods [13, 17] is that we use the random walk process

to exploit spatial coherence in the deconvolution problem,

and focus the computational effort on regions with sharp

edges, where most work is to be done in deconvolution.

Coordinate Descent methods provably converge for

smooth objective functions for a fixed step length so long

as all possible descent directions (i.e. pixels) are examined

with a finite probability. In our framework, this condition is

met by the ergodicity of the sampling process in the limit of

number of samples.

For general, non-smooth objectives, no proof of con-

vergence is available for Coordinate Descent, although

convergence has been shown for specific, separable L1-

regularized problems such as basis pursuit [17, 13]. In this

paper, we show empirical evidence of the convergence of

Stochastic Deconvolution for convex objectives, in particu-

lar a total variation (TV) regularized deconvolution problem

(Section 4).

As with other optimization strategies, no theoretical re-

sults are available for the use of non-smooth, non-convex

objectives with Coordinate Descent. Our results in Sec-

tion 4 empirically show that Stochastic Deconvolution is

competitive for such regularizers and even for a simple dis-

continuous and data-dependent prior.

Boundary Conditions and Saturated Pixels. The issue

of boundary handling is difficult in deconvolution algo-

rithms, since the process of capturing an image necessar-

ily cuts off some of the data needed to deconvolve at the

image boundaries. Stochastic Deconvolution naturally han-

dles this situation by padding the input image by the PSF

width and creating a mask that indicates which pixels are

from the captured region versus from the boundary region.

During the sampling process, samples are allowed to be

placed anywhere within the image or padded regions, but

when evaluating the change in system energy due to a sam-

ple, only samples flagged as interior have their data-fitting

term Ffit evaluated, since the saturated and padding pixels

have no valid captured value.

The same strategy can be used for other pixels where the

measurements in the observed image are invalid, for exam-

ple excessively bright pixels, where the image sensor has

been saturated. Ignoring the data term for these regions

while enforcing the regularization term causes the method

to perform a simple form of inpainting in the padded and

saturated regions to improve the fit to the valid measure-

ments.

Choosing ed. To choose the deposition energy ed, an ini-

tially large value is assigned, e.g. ed = 0.05 (assuming

pixel values in [0, 1]). An outer iteration of the sampling

procedure from Listing 1 is then started with a total of one

mutation per-pixel, and the percentage of accepted samples

computed. If this value falls below 7.5%, ed is scaled by

0.75 before starting the next outer iteration. Outer iterations

are continued in this manner until a set number of iterations

is exhausted or convergence stalls. This simple adaptive

choice for ed works well in practice and frees the user from

specifying a specific value.

Comparison with Stochastic Tomography. While

Stochastic Deconvolution uses the same basic random walk

as Stochastic Tomography [6], there are also a number of

differences that are worth pointing out. First, adapting the

method to deblurring requires very specific modifications

to handle boundaries and saturation, while switching from

continuously placed samples to discrete pixel locations.

Perhaps more significantly, deblurring can be thought of

as redistributing the energy from the blurred image to form

the sharp intrinsic image. This makes the need for nega-

tive energy samples obvious since both negative and posi-

tive samples are needed near edges. For Stochastic Tomog-

raphy, such samples were only needed to prevent the algo-

rithm from stalling due to startup-bias.

3.1. Regularization

We have implemented a host of different regularization

strategies in the Stochastic Deconvolution framework but

summarize here several that highlight the flexibility of the

method.

Total Variation. Total variation (TV) regularizers corre-

sponds to an assumption of sparse gradients, that is, of

piecewise-smooth solutions with occasional step disconti-

nuities. This is incorporated by adding the one of the fol-

lowing regularization energies at each pixel:

ΓTV (x) = ||∇p(x)||2 (8)

ΓATV (x) = ||∇p(x)||1 (9)

ΓMTV (x) = ‖
3∑

i=1

(
‖∇p(i)(x)‖22

)
‖2 (10)
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where Equation 8 is the standard TV, Equation 9 is a sim-

ple, anisotropic variant and Equation 10 is an anisotropic

adaptation to color images [20]. The gradient terms are

evaluated with first-order finite differences. TV regulariz-

ers are simple and generally effective regularizers that have

the benefits of being convex.

Sparse 1st and 2nd Order Derivatives. We have also im-

plemented a version of the regularizer introduced by Levin

et al. [12] , which uses a fractional (0.8) norm to enforce a

heavy-tailed distribution for first and second order deriva-

tives. We refer to that paper and the code posted on the

corresponding project page for details.

Gamma-corrected Sum of Absolute Differences. Fi-

nally, we introduce a new regularizer that is designed to bet-

ter deal with dark image regions. A standard problem with

deconvolution algorithms is that the deconvolution has to be

performed in linear intensity space, but the results have to

be gamma corrected for viewing. The gamma curve, how-

ever, stretches the low intensity regions of the image dis-

proportionately, thus amplifying noise in the solution. To-

gether with the already low signal values, this results in poor

signal-to-noise ratio in dark image regions.

Our approach is to introduce a regularizer that minimizes

the data term in linear space, but ensures sparse gradients

in the gamma-corrected image. To achieve this, we apply

an gamma curve to the signal before evaluating a sum of

absolute differences (SAD) regularizer in a 3 × 3 window

W centered at x:

Γ(x) =
∑

i∈W (x)

|p(xi)
1
γ − p(x)

1
γ |, (11)

with γ ≈ 2 to simulate a regular display gamma.

This regularizer is non-convex and would be non-trivial

to design and implement a custom solver for, but is easily

added to the Stochastic Deconvolution framework.

Discontinuous and Data-Dependent Regularizers. In

Section 4 we demonstrate the flexibility of the Stochastic

Deconvolution framework by experimenting with a data-

dependent regularizer.

4. Results

The following sections present results comparing differ-

ent regularization strategies and objective functions, as well

as comparing to several existing methods. Runtimes vary

based on PSF and image size but are typically only a few

minutes. As an example, a 0.7 megapixel monochrome im-

age with a 21x21 PSF took 126 seconds with our unopti-

mized implementation.

Comparison with Existing Methods. Figures 2 and 3

show comparisons with the Coded Exposure Photography

method of Raskar et al. [15] . With the addition of pri-

ors, Stochastic Deconvolution produces results with less

noise and chromatic artifacts. However we note that this

is expected given that their method is effectively unregu-

larized. To illustrate the effect of different regularizers we

show results for an enlarged area of the train image using

the convex Total-Variation (TV) prior, the prior from Levin

et al. [12] , as well as the Gamma prior described in Sec-

tion 3.1.

All three priors reduce the noise and chromatic artifacts

present in the original results, however the two non-convex

priors, (Figure 2(d) and 2(e)), provide the smoothest results.

We note that our Gamma prior accomplishes its intended

aim of reducing noise levels in darker regions, as can be

seen by zooming in on the window and roof regions of Fig-

ures 2(d) and 2(e). We stress that it was straightforward

to implement all of these priors in our common framework,

while developing specialized solvers for each method would

have taken significantly more effort.

(a) Stochastic Deconvolution, Gamma prior

(b) Raskar et. al. (c) SD, TV prior

(d) SD, Levin prior (e) SD, Gamma prior

Figure 2. Comparison of Raskar et. al. (left) vs. Stochastic De-

convolution (right) using the regularizer of Levin et. al. Incor-

poration of the regularizer significantly reduces the noise in the

reconstructed image while preserving image detail.
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Figure 3 shows a comparison between Raskar et al. and

Stochastic Deconvolution for the white-car image. We use

the Gamma prior which reduces the noise and chromatic

artifacts in dark regions such as the wheels and windows,

while slightly improving the legibility of the text on the cab.

We conclude that the Gamma prior is effective for preserv-

ing details and improving overall image quality.

(a) Raskar et. al.

(b) SD, gamma prior

Figure 3. Comparison of Coded Exposure Photography (Raskar

et al.) (top) to Stochastic Deconvolution (bottom). Addition of a

prior helps to suppress noise and chromatic artifacts present in the

original results, while improving the legibility of the text.

Figure 4 shows a comparison of deconvolution results

using the method of Fergus et al. [4] with Stochastic De-

convolution. Stochastic Deconvolution produces sharper re-

sults with reduced ringing. Stochastic Deconvolution is also

able to reconstruct the entire image right up to the image

boundary through the use of the stochastic boundary condi-

tion.

Finally, we show a comparison of deconvolution results

between the relatively recent method for large-blur removal

of Xu and Jia [19] with Stochastic Deconvolution using

Levin et al.’s prior. Our results are very comparable for

this challenging dataset; both methods show minor artifacts

throughout the image, however the results are very similar

in terms of overall quality. Figure 6 highlights the effect of

the stochastic boundary condition for inpainting plausible

content in boundary regions, including additional windows

and staircase details.

Defocus Blur and Lens Aberrations. We have also ap-

plied Stochastic Deconvolution to remove defocus blurs and

lens aberrations in images taken with standard SLR cam-

eras. Results comparing Stochastic Deconvolution using the

Levin prior to the method of Levin et al. are shown in Fig-

ure 7. As expected, the results are very similar.

Figure 8 shows a color image blurred by a synthetic,

wavelength dependent PSFs. Deblurring using the MTV

(a) Fergus et. al.

(b) Stochastic Deconvolution

Figure 4. Comparison with the method of Fergus et. al. (top). The

Stochastic Deconvolution result (bottom) shows substantially re-

duced ringing as well as much-improved handling of image bound-

aries due to the use of the Stochastic boundary condition.

(a) input (b) Xu and Jia

(c) Method of Levin et

al.

(d) SD, Levin prior

Figure 5. Non-blind deconvolution comparison with Xu and Jia

(using kernels estimated by Xu and Jia) for the Roma image.

regularizer results in a slightly sharper image with reduced

chromatic artifacts. Optimizing for such priors has been the

focus of several papers, e.g. [20, 1], however they are easily

implemented within our framework.

Spatially Varying PSFs. Due to the local nature of

Stochastic Deconvolution, the deblurring problem can be

relaxed from deconvolution to deblurring with spatially

varying kernels. While many other deconvolution methods

require subdividing the image into tiles with approximately

constant PSF, in Stochastic Deconvolution every pixel can

have its own distinct PSF. Figure 1 shows a synthetic ex-

ample for deblurring results of a strong, spatially varying

motion blur with rotational components about the optical
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(a) boundary inpainting (b) detail

(c) Method of Levin et al. (d) SD, Levin prior

Figure 6. Top row: inpainted details from the stochastic boundary

condition, windows are added to a building on the boundary (red

outline) and staircase details outside the image are introduced (yel-

low outline). Zoom in to the top-left figure for additional features.

Bottom row: the method of Levin et al. rings for highly saturated

pixels, while masking these from the reconstruction produces con-

siderably smaller artifacts.

(a) Blurred input. (b) SD, Levin prior (c) SD, Levin prior

Figure 7. Comparison of method of Levin et al. with Stochastic

Deconvolution for defocus blur from a standard SLR.

(a) SD, TV prior (b) SD, MTV prior

Figure 8. Comparison of per-channel TV (top) with the multichan-

nel MTV prior (bottom) for a blur kernel with chromatic aberra-

tion. Image sharpness is slightly improved and color artifacts re-

duced around the tree branches.

axis. For real motion blur, one could obtain spatially vary-

ing PSFs either using estimation methods such as the one by

Hirsch et al. [7] , or using IMU sensors that are becoming

increasingly available in cellphones and cameras [8].

Data-Dependent Regularizers We now provide a sim-

ple example of a discontinuous data-dependent regularizer.

An image known to consist of only five colors is blurred

and corrupted with noise. Deblurring with a TV regular-

izer yields gives an optimal peak PSNR value of 31.91 dB

among all prior weights tested, however by clustering the

image colors periodically and adding the L1 distance to the

nearest cluster this can be improved by 0.7 dB while simul-

taneously reducing the weight on the TV term by an order

of magnitude. Although something of a contrived exam-

ple, many applications can exploit similar domain-specific

knowledge, an example being magnetic resonance imaging

(MRI) where given tissue types and machine settings pro-

duce gray-values that are known a priori. Exploiting this

knowledge can reduce reliance on heuristic priors, e.g. spar-

sity of gradients, and as illustrated above and in Figure 9,

quantitatively improves reconstruction quality. However,

such discontinuous, discrete-choice regularizers are prob-

lematic to implement effectively in conventional, gradient-

based solvers.

(a) Blurred input (b) TV PSNR:

32.0 dB

(c) DD TV PSNR:

32.7 dB

Figure 9. Simple data-dependent TV regularizer. Adding the L1

RGB distance to the nearest of one of five RGB clusters (computed

by K-means) to a standard TV regularizer improves the best PSNR

values by 0.7 dB over all parameter values

Empirical Convergence As a variant of coordinate-

descent, our method has no theoretical convergence guaran-

tees for general, non-smooth objectives. However, we have

performed empirical convergence tests for the anisotropic

TV regularizer and compared final objective values to the

provably convergent method of Chambolle and Pock [2].

For the blurred image in Figure 10(a), the objective value

computed by Stochastic Deconvolution after 300×Npixels

mutations was 26.42, while the objective value by the

primal-dual method was 26.69. We attribute the minor dis-

crepancy to differences in boundary handling and termina-

tion criteria between the two methods. The objective func-

tion history is shown in Figure 10(c), showing a fast ini-

tial convergence rate that gradually flattens, as might be ex-

pected from a stochastic sub-gradient method. With that

said, visual convergence is in practice very quick; by iter-

ation 50 the gray-values are being adjusted by only 0.08%
of the maximum range and are indistinguishable from the

results at 300 iterations without careful, pixel-level exami-

nation.

5. Conclusions and Future Work
In this paper we have present Stochastic Deconvolution,

a new, general-purpose method for the deconvolution prob-

lem based on stochastic random-walks. Stochastic Decon-

volution is straightforward to implement, easily incorpo-

rates state-of-the-art priors and produces high-quality re-

sults.

The performance of our unoptimized implementation is

currently comparable to other recent methods such as the
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Figure 10. Convergence history of method down to ed < 4 ×
10−9 for anisotropic TV regularizer with weight λ = 10−3.

Note that each Stochastic Deconvolution iteration has an approx-

imately equal computational cost to one gradient-descent step us-

ing image-space convolutions but is able to focus sampling effort

near details, as shown in the sampling histogram.

one by Levin et. al [12] . It is not currently competitive

with methods working in Fourier space, or other highly op-

timized solvers. On the other hand, we gain the flexibility

to not only incorporate arbitrary regularizers, but also to use

spatially varying PSFs and modify the solver at boundaries

and saturated pixels.

We also not that the algorithm as presented has signifi-

cant potential for optimization, including parallelization on

GPUs or multicore CPUs. For blurs with very large sup-

port, one could also adopt a multi-scale approach similar to

Yuan et al. [22] . Since the primary cost of our method is the

splatting of PSFs to update Equation 7, working in an image

pyramid like this could significantly improve performance.

Overall, we believe that Stochastic Deconvolution is an

excellent general-purpose method, particularly for evaluat-

ing the efficacy of new regularization strategies. Prior to

Stochastic Deconvolution, trying a new prior often meant

developing an entirely new solver. With Stochastic Decon-

volution, new priors can be implemented and tested in a

matter of minutes.
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