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Figure 1: The goal of this work is to localize a query photograph (left) by finding other images of the same place in a large

geotagged image database (right). We cast the problem as a classification task and learn a classifier for each location in

the database. We develop a non-parametric procedure to calibrate the outputs of the large number of per-location classifiers

without the need for additional positive training data.

Abstract

The aim of this work is to localize a query photograph
by finding other images depicting the same place in a large
geotagged image database. This is a challenging task due
to changes in viewpoint, imaging conditions and the large
size of the image database. The contribution of this work
is two-fold. First, we cast the place recognition problem as
a classification task and use the available geotags to train
a classifier for each location in the database in a similar
manner to per-exemplar SVMs in object recognition. Sec-
ond, as only few positive training examples are available for
each location, we propose a new approach to calibrate all
the per-location SVM classifiers using only the negative ex-
amples. The calibration we propose relies on a significance
measure essentially equivalent to the p-values classically
used in statistical hypothesis testing. Experiments are per-
formed on a database of 25,000 geotagged street view im-
ages of Pittsburgh and demonstrate improved place recog-
nition accuracy of the proposed approach over the previous
work.
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1. Introduction
Visual place recognition [7, 13, 27] is a challenging task

as the query and database images may depict the same 3D

structure (e.g. a building) from a different camera view-

point, under different illumination, or the building can be

partially occluded. In addition, the geotagged database

may be very large. For example, we estimate that Google

street-view of France alone contains more than 60 million

panoramic images.

Similar to other work in large scale place recogni-

tion [7, 13, 27] and image retrieval [20, 21, 28], we build on

the bag-of-visual-words representation [6, 28] and describe

each image by a set of quantized local invariant features,

such as SURF [1] or SIFT [17]. Each image is then repre-

sented by a weighted histogram of visual words, called the

“tf-idf vector” due to the commonly used tf-idf weighting

scheme [28]. The vectors are usually normalized to have

unit L2 norm and the similarity between the query and a

database vector is then measured by their dot product. This

representation has some desirable properties such as robust-

ness to background clutter and partial occlusion. Efficient

retrieval is then achieved using inverted file indexing.

Recent work has looked at different ways to improve

the retrieval accuracy and speed of the bag-of-visual-words

model for image and object retrieval. Examples include: (i)

learning better visual vocabularies from training examples

with matched/non-matched descriptors [19, 23]; (ii) devel-

oping quantization methods less prone to quantization er-
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rors [11, 22] or (iii) combining results from multiple query

images depicting the same scene [4, 5].

While in image retrieval databases are typically unstruc-

tured collections of images, place recognition databases are

usually structured: images have geotags, are localized on a

map and depict a consistent 3D world. Knowing the struc-

ture of the database can lead to significant improvements

in both speed and accuracy of place recognition. Examples

include: (i) building an explicit 3D reconstruction of the

scene [10, 15, 16]; (ii) constructing an image graph [24, 30],

where images are nodes and edges connect close-by images

on the map [29], or (iii) using the geotagged data as a form

of supervision to select local features that characterize a cer-

tain location [13, 27] or re-rank retrieved images [32].

In this work, we also take advantage of geotags as an

available form of supervision and investigate whether the

place recognition problem can be cast as a classification

task. While visual classifiers were investigated for land-

mark recognition [14], where many photographs are avail-

able for each of the landmarks, in this work we wish to train

a classifier for each location on the map in a similar man-

ner to per-exemplar classification in object recognition [18].

This is beneficial as each classifier can learn which features

are discriminative for a particular place. The classifiers are

learnt offline. At query time, the query photograph is local-

ized by transferring the GPS tag of the best scoring location

classifier.

While learning classifiers for each place may be appeal-

ing, calibrating outputs of the individual classifiers is a crit-

ical issue. In object recognition [18], it is addressed in a

separate calibration stage on a held-out set of training data.

This is not possible in the place recognition set-up as only a

small number, typically one to five, of positive training im-

ages are available for each location (e.g. street-view images

viewing the same building facade). To address this issue,

we propose a calibration procedure inspired by the use of p-

values in statistics and based on ranking the score of a query

image amongst scores of other images in the database.

The rest of the paper is organized as follows: Section 2

describes how per-location classifiers are learnt. Section 3

details the classifier calibration procedure. Implementation

details and experimental results are given in Section 4.

2. Per-location classifiers for place recognition
We are given tf-idf vectors dj , one for each database im-

age j. The goal is to learn a score fj for each database

image j, so that, at test time, given the descriptor q of the

query image, we can either retrieve the correct target image

as the image j∗ with the highest score

j∗ = arg max
j

fj(q) (1)

or use these scores to rank candidate images and use geo-

metric verification to try and identify the correct location

in an n-best list. Instead of approaching the problem di-

rectly as a large multiclass classification problem, we tackle

the problem by learning a per-exemplar linear SVM classi-

fier [18] for each database image j. Similar to [13], we use

the available geotags to construct the negative set Nj for

each image j. The negative set is constructed so as to con-

centrate difficult negative examples, i.e. from images that

are far away from the location of image j and at the same

time similar to the target image as measured by the dot prod-

uct between their feature vectors. The details of the con-

struction procedure will be given in section 4. The positive

set Pj is represented by the only positive example, which is

dj itself.

Each SVM classifier produces a score sj which is a priori

not comparable with the score of the other classifiers. A

calibration of these scores will therefore be key to convert

them to comparable scores fj . This calibration problem is

more difficult than usual given that we only have a single

positive example and will be addressed in section 3.

Learning per-location SVM classifiers. Each linear

SVM classifier learns a score sj of the form

sj(q) = wT
j q + bj (2)

where wj is a weight vector re-weighting contributions of

individual visual words and bj is the bias specific for im-

age j. Given the training sets Pj and Nj , the aim is to find

a vector wj and bias bj such that the score difference be-

tween dj and the closest neighbor from its negative set Nj

is maximized. Learning the weight vector wj and bias bj is

formulated as a minimization of the convex objective

Ω(wj , bj) = ||wj ||2 + C1

∑

x∈Pj

h(wT
j x+ bj)

+ C2

∑

x∈Nj

h(−wT
j x− bj), (3)

where the first term is the regularizer, the second term is the

loss on the positive training data weighted by scalar parame-

ter C1, and the third term is the loss on the negative training

data weighted by scalar parameter C2. This is a standard

SVM formulation (3), also used in exemplar-SVM [18]. In

our case h is the squared hinge loss, which we found to

work better in our setting than the standard hinge-loss. wj

and bj are learned separately for each database image j in

turn. In our case (details in section 4), we use about 1-5

positive examples, and 200 negative examples. As the di-

mensionality of w is 100, 000 all training data points are

typically support vectors.
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Expanding the positive set. A typical geotagged

database may contain several images depicting a particu-

lar location. For example, neighboring street-view panora-

mas depict the same store front from different viewpoints.

However, a specific place is often imaged only in a small

number (2-5) of neighboring panoramas. If such images are

identified, they may provide a few additional positive exam-

ples for the particular place and improve the quality of that

per-location classifier. Moreover, treating them erroneously

as negatives is likely to bias the learnt classifier. We auto-

matically identify such images as geo-graphically close-by

images to the location j. These images can be further ver-

ified using geometric verification [21] and included in the

positive training data for location j. Details are given in

section 4.

3. Non-parametric calibration of the SVM-
scores from negative examples only

Since the classification scores sj are learned indepen-

dently for each location j, they cannot be directly used as

the scores fj from eq. (1). As illustrated in figure 2, for a

given query q, a classifier from an incorrect location (b) can

have a higher score (2) than the classifier from the target lo-

cation (a). Indeed, the SVM score is a signed distance from

the discriminating hyperplane and is a priori not compara-

ble between different classifiers. This issue is addressed by

calibrating scores of the learnt classifiers. The goal of the

calibration is to convert the output of each classifier into a

probability (or in general a “universal” score), which can be

meaningfully compared across classifiers.

Several calibration approaches have been proposed in the

literature (see [9] and references therein for a review). The

most known consists of fitting a logistic regression to the

output of the SVM [25]. This approach, however, has a ma-

jor drawback as it imposes a parametric form (the logistic

a.k.a. sigmoid function) of the likelihood ratio of the two

classes, which typically leads to biased estimates of the cal-

ibrated scores. Another important calibration method is the

isotonic regression [31], which allows for a non-parametric

estimate of the output probability. Unfortunately, the fact

that we have only a single positive example (or only very

few of them, and which are all used for training) essentially

prevents us from using any of these methods. However,

given the availability of negative data, it is easy to estimate

the significance of the score of a test example compared

to the typical score of (plentifully available) negative ex-

amples. Intuitively, we will use a large dataset of negative

examples to calibrate the individual classifiers so that they

reject the same number of negative examples at each level

of the calibrated score. We will expand this idea in detail

and use concepts from hypothesis testing to propose a cali-

bration method.

Calibration via significance levels. In the following, we

view the problem of deciding whether a query image

matches a given location based on the corresponding SVM

score as a hypothesis testing problem. In particular, we ap-

peal to ideas from the traditional frequentist hypothesis test-

ing framework also known as Neyman-Pearson (NP) frame-

work (see e.g. [2], chap. 8).

We define the null hypothesis as H0 =
{the image is a random image} and the alternative as

H1 = {the image matches the particular location}. The NP

framework focuses on the case where the distribution of

the data under H0 is well known, whereas the distribution

under H1 is not accessible or too complicated to model,

which matches perfectly our setting.

In the NP framework, the significance level of a score

is measured by the p-value or equivalently by the value of

the cumulative density function (cdf) of the distribution of

the negatives at a given score value. The cdf is the function

F0 defined by F0(s) = P(S0 ≤ s), where S0 is the ran-

dom variable corresponding to the scores of negative data

(see figure 3 for an illustration of the relation between the

cdf and the density of the function). The cdf (or the corre-

sponding p-value1) is naturally estimated by the empirical

cumulative density function F̂0, which is computed as:

F̂0(s) =
1

Nc

Nc∑

n=1

1{sn≤s},

where (sn)1≤n≤Nc
are the SVM scores associated with Nc

negative examples used for calibration. F̂0(s) is the frac-

tion of the negative examples used for calibration (ideally

held out negative examples) that have a score below a given

value s. Computing F̂0 exactly would require to store all the

SVM scores for all the calibration data for all classifiers, so

in practice, we only keep a fraction of the larger scores. We

also interpolate the empirical cdf between consecutive dat-

apoints so that instead of being a staircase function it is a

continuous piecewise linear function such as illustrated on

figure 2. Given a query, we first compute its SVM score sq
and then compute the calibrated probability f(q) = F̂0(sq).
We obtain a similar calibrated probability fj(q) for each

of the SVMs associated with each of the target locations,

which can now be ranked.

Summary of the calibration procedure. For each place,

keep Nc scores from negative examples (sn)1≤n≤Nc
used

for calibration together with the associated cumulative

1The notion most commonly used in statistics is in fact the p-value. The

p-value associated to a score is the quantity α(s) defined by α(s) = 1 −
F0(s); so the more significant the score is, the closer to 1 the cdf value is,

and the closer to 0 the p-value is. To keep the presentation simple, we avoid

the formulation in terms of p-values and we only talk of the probabilistic

calibrated values obtained from the cdf F0.
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Figure 2: An illustration of the proposed normalization of

SVM scores for two different database images. In each plot,

the x-axis shows the raw SVM score. The y-axis shows the

calibrated output. For the given query, the raw SVM score

of image (b) is lower than for image (a), but the calibrated

score of image (b) is higher than for image (a).

probability values F̂0(sn). Given the score of the query sq:

1. Find n such that sn ≤ sq < sn+1

2. Compute the interpolated empirical cdf value

F̂0(sq) ≈ F̂0(sn) +
sq − sn

sn+1 − sn
(F̂0(sn+1)− F̂0(sn)).

Discussion. It should be noted that basing the calibration

only on the negative data has the advantage that we privi-

lege precision over recall, which is justified given the im-

balance of the available training data (much more negatives

than positives). Indeed, since we are learning with a sin-

gle positive example, intuitively, we cannot guarantee that

the learned partition of the space will generalize well to

other positives, whose scores in the test set can potentially

drop significantly (this is indeed what we observe in prac-

tice). By contrast, since we are learning from a compara-

tively large number of negative examples, we can trust the

fact that new negative examples will stay in the half-space

containing the negative training set, so that their scores are

very unlikely to be large. Our method is therefore based on

the fact that we can measure reliably how surprising a high

score would be if it was the score of a negative example.

This exactly means that we can control false positives (type

I error) reasonably well but not false negatives (type II error

or equivalently the power of our test/classifier), exactly as

(a)

−6 −5 −4 −3 −2 −1 0 1
0.00

0.25

0.50

0.75

1.00

score s

F
0(s

)

(b)

Figure 3: A figure showing the relation between (a) the

probability density of the random variable S0 modeling the

scores of the negative examples and (b) the corresponding

cumulative density function F0(s) = P(S0 ≤ s).

in the Neyman-Pearson framework. An additional reason

for not relying on positive examples for the calibration in

our case is that (even if we had sufficiently many of them)

the positive examples that we collect using location and ge-

ometric verification from the geotagged database typically

have illumination conditions that are extremely similar to

each other and not representative of the distribution of test

positives which can have very different illuminations. This

is because of the controlled nature of the capturing process

of geotagged street-level imagery (e.g. Google street-view)

used for experiments in this work. Close-by images are typ-

ically captured at a similar time (e.g. on the same day) and

under similar imaging conditions.

Scheirer et al. [26] propose a method, which is related

to ours, and calibrate SVM scores by computing the cor-

responding cdf value of a Weibull distribution fitted to the

top negative scores. The main difficulty is that the Weibull

model should be fitted only to the tail of the distribution of

the negatives, which is in general difficult to identify. As

a heuristic, Scheirer et al. propose to fit the Weibul model

to false positives (i.e. the negative samples classified incor-

rectly as positives). But in our case, most of the exemplar

SVMs that we are training have 0 false positives in a held

out set, which precludes the application of their method. To

avoid that issue our approach forgoes any parametric form

of the distribution and instead relies directly on a standard

non-parametric estimate of the cumulative density function.

Finally, we should remark that we are not doing here cal-
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ibration in the same sense of the word as the calibration

based on logistic regression (or isotonic regression), since

logistic regression estimates a probability of making a cor-

rect prediction by assigning a new data to class 1, while we

are estimating how unlikely it would be for a negative ex-

ample to have such a high score. The calibration with either

methods yields “universal” scores in the sense that they are

comparable from one SVM to another, but the calibrated

values obtained from logistic regression are not comparable

to the values obtained from our approach.

4. Experiments

In this section we first give implementation details, then

describe the experimental datasets and finally compare per-

formance of the proposed approach with several baseline

methods.

Implementation details. All images are described us-

ing the bag-of-visual-words representation [28]. First,

SURF [1] descriptors are extracted. Second, a vocabulary

of 100k visual words is learnt by approximate k-means clus-

tering [21] from a subset of features from 2,000 randomly

selected images. Third, a tf-idf vector is computed for each

image by assigning each descriptor to the nearest cluster

center. Finally, all tf-idf vectors are normalized to have unit

L2 norm.

To learn the classifier for database image j, the positive

and negative training data is constructed as follows. The

negative training set Nj is obtained by: (i) finding the set of

images with geographical distance greater than 200m; (ii)

sorting the images by decreasing value of similarity to im-

age j measured by the dot product between their respective

tf-idf vectors; (iii) taking the top N = 200 ranked images as

the negative set. In other words, the negative training data

consists of the hard negative images, i.e. those that are very

similar to image j but are far away from its geographical

position, hence, cannot have the same visual content.

The positive training set Pj initially consist of the image

j itself and can be expanded by: (i) finding the adjacent

images (e.g. images located within < 20m of image j), (ii)

identifying adjacent images with the same visual content

using geometric verification, and (iii) adding these verified

images to the positive set Pj .

For SVM training we use libsvm [8]. We set the value

of the regularization parameters to C1 = 1 · nP for positive

data and C2 = 10−3 · nN for negative data where nP and

nN denote the number of examples in the positive and the

negative set, respectively. These parameters were found by

cross-validation and work well on various datasets.

The calibration with significance levels is done for each

classifier in turn as follows: (i) given image j and learnt

SVM we construct a set of images consisting of the whole

database without the positive set Pj ; (ii) for this image set,

SVM scores are computed; (iii) empirical cdf F̂0 is esti-

mated from sorted SVM scores.

To use a reasonable amount of memory, for each classi-

fier, we store only the first 1000 largest negative scores (the

number of negative scores stored could be reduced further

using interpolation).

Image dataset. We performed experiments on a database

of Google Streetview images from the Internet. We down-

loaded panoramas from Pittsburgh (U.S.) covering roughly

an area of 1.3 × 1.2 km2. Similar to [3], we generate

for each panorama 12 overlapping perspective views cor-

responding to two different elevation angles to capture both

the street-level scene and the building façades, resulting in

a total of 24 perspective views each with 90◦ FOV and res-

olution of 960 × 720 pixels. This dataset contains 25,000

perspective images.

As a query set with known ground truth GPS positions,

we use the 8999 panoramas from the Google Streetview re-

search dataset, which cover approximately the same area,

but were captured at a different time, and typically depict

the same places from different viewpoints and under dif-

ferent illumination conditions. For each test panorama, we

generate perspective images as described above. Finally,

we randomly select out of all generated perspective views a

subset of 4k images, which is used as a test set to evaluate

the performance of the proposed approach.

Results. We compare the performance of the proposed

approach (SVM p-val) with the following baseline methods:

(a) Training per-location classifiers without any calibration

step (SVM). (b) Calibrating per-location classifiers using

the standard logistic regression2 as in exemplar SVM [18]

(SVM logistic). (c) The standard bag-of-visual words re-

trieval (BOW) [21]. (d) Our implementation of the con-

fuser suppression approach (Conf. supp.) of [13] that, in

each database image, detects and removes features that fre-

quently appear at other far-away locations (using parame-

ters t = 3.5 and w = 70).

For all methods, we implemented a two-stage place

recognition approach. Given a query image, the aim of the

first stage is to efficiently find a small subset (20) of candi-

dates that are likely to depict the same place as the query

image. In the second stage, we search for restricted ho-

mographies between candidates and the query image using

RANSAC [21]. The candidates are finally re-ranked by de-

creasing number of inliers.

Since the ground truth GPS position for each query im-

age is available, we measure the overall recognition perfor-

2The calibration of SVM scores with logistic regression is based on a

subset of 30 hard negatives from Nj and 1-15 available positive examples

from Pj .
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Method % correct % correct

init. retrieval with geom. verif.
SVM 00.0 12.7
SVM logistic 03.6 10.3
BOW 32.0 53.1
Conf. supp. [13] 36.5 58.1
SVM p-val 41.9 60.8

Table 1: The percentage of correctly localized test queries

for which the top-ranked database image is within 20 meters

from the ground truth query position. The proposed method

(SVM p-val) outperforms the baseline methods. Results are

shown for the initial retrieval (left column) and after re-

ranking the top 20 retrieved images using geometric veri-

fication. Notice that SVM output without calibration gives

0% of correctly localized queries.

mance by the percentage of query test images for which the

top-ranked database image was located within a distance of

20 meters from the ground truth query location. Results are

summarized in table 1 and clearly demonstrate the bene-

fits of careful calibration of the per-location classifiers. In

addition, the proposed per-location classifier method out-

performs the baseline bag-of-visual-word approach [21] in-

cluding confuser suppression [13].

Examples of correctly and incorrectly localized queries

are shown in figure 4. Figure 5 illustrates the weights learnt

for one database image applied to three different query im-

ages.

Scalability. The linear SVM classifiers trained for each

database image are currently non-sparse, which increases

the computational and memory requirements at query time

compared to the original bag-of-visual-words representa-

tion. For a database of 25,000 images, applying all clas-

sifiers on a query image takes currently on average 1.72s.

The method could be further sped-up by, for example: (i)

reducing the dimensionality of the input vectors [12], or (ii)

enforcing additional sparsity constraints on learnt weight

vectors w.

5. Conclusions
We have shown that place recognition can be cast as a

classification problem and have used geotags as a readily-

available supervision to train an ensemble of classifiers, one

for each location in the database. As only few positive ex-

amples are available for each location, we have proposed

a non-parametric procedure to calibrate the output of each

classifier without the need for additional positive training

data. The results show improved place recognition perfor-

mance over baseline methods and demonstrate that careful

calibration is critical to achieve competitive place recogni-

tion performance. The developed calibration method is not

specific to place recognition and can be useful for other per-

exemplar classification tasks, where only a small number of

positive examples are available [18].
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Query image Per-location class. Confuser suppression Bag-of-words

(a) (b) (c) (d)

Figure 4: Examples of query images (gray) correctly (green) and incorrectly (red) localized by different methods.
(a) query image. (b) the top-ranked image retrieved by per-location classifiers (proposed method). (c) the top-ranked

image retrieved by the baseline confuser suppression method [13]. (d) the top-ranked image retrieved by the baseline bag-

of-visual-words method. Bottom two rows: the proposed method is sometimes confused by high-scoring similar repeated

texture patterns on facades.
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Figure 5: A visualization of learnt feature wights for two database images. In each panel: first row: (Right) Target

database image j. (Left) Cumulative density function (or calibrated score) learnt for the SVM scores of the corresponding

classifier fj ; three query images displayed on the second row are represented by their SVM scores and cdf values F0(s),
denoted (a)-(c) on the graph. Third row: A visualization of the contribution of each feature to the SVM score for the

corresponding query image. Red circles represent features with negative weights while green circles correspond to features

with positive weights. The area of each circle is proportional to the contribution of the corresponding feature to the SVM

score. Notice that the correctly localized queries (c) contain more green colored features than queries from other places (b)

and (a). Left panel: Query (b) gets a high score because the building has orange and white stripes similar to the the sun-blinds

of the bakery, which are features that also have large positive weights in the query image (c) of the correct place. Right panel:
Query (b) is in fact also an image of the same location with a portion of the left skyscraper in the target image detected in the

upper left corner and the side of the rightmost building in the target image detected in the top right corner. Both are clearly

detected by the method as indicated by a large quantity of green circles in the corresponding regions.
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