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Abstract

In computer vision there has been increasing interest
in learning hashing codes whose Hamming distance ap-
proximates the data similarity. The hashing functions play
roles in both quantizing the vector space and generating
similarity-preserving codes. Most existing hashing methods
use hyper-planes (or kernelized hyper-planes) to quantize
and encode. In this paper, we present a hashing method
adopting the k-means quantization. We propose a novel
Affinity-Preserving K-means algorithm which simultane-
ously performs k-means clustering and learns the binary
indices of the quantized cells. The distance between the
cells is approximated by the Hamming distance of the cell
indices. We further generalize our algorithm to a produc-
t space for learning longer codes. Experiments show our
method, named as K-means Hashing (KMH), outperforms
various state-of-the-art hashing encoding methods.

1. Introduction

Approximate nearest neighbors (ANN) search is wide-
ly applied in image/video retrieval [27, 11], recognition
[28], image classification [23, 2], pose estimation [25], and
many other computer vision problems. An issue of partic-
ular interest in ANN search is to use compact representa-
tions to approximate the data distances (or their ranking
orders). Studies on compact encoding are roughly in two
streams, categorized by their ways of distance computa-
tion: Hamming-based methods like locality sensitive hash-
ing (LSH) [9, 1, 28] and others [31, 14, 29, 5, 19, 16, 15],
and lookup-based methods like vector quantization [7] and
product quantization [10, 11, 3].

We observe these compact encoding methods common-
ly involve two stages: (i) quantization - the feature space
is partitioned into a number of non-overlapping cells with a
unique index (code) for each cell; and (ii) distance com-
putation based on the indices. Existing Hamming-based
methods (mostly termed as hashing) quantize the space us-
ing hyperplanes [1, 13, 29, 5, 19] or kernelized hyperplanes
[31, 14, 15]. One hyperplane encodes one bit of the code
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Figure 1: Compact encoding methods. A black line denotes
a partition boundary, a circle denotes a k-means center, and
a cross denotes a sample vector. Here d denotes Euclidean
distance, and dh denotes Hamming-based distance. The in-
dices are denoted in binary forms.

and is often determined by the sign of one hashing function.
The distance between two samples is approximated by the
Hamming distance between their indices (Fig. 1(a)): this
computation can be extremely fast in modern CPUs with
merely two instructions1.

On the other hand, lookup-based methods [7, 10, 11, 3]
quantize the space into cells via k-means [18]. K-means is
a more adaptive quantization method than those using hy-
perplanes, and is optimal in the sense of minimizing quan-
tization error [7]. The distance between two samples is ap-
proximated by the distance between the k-means centers
(Fig. 1(b)), which can be read from pre-computed lookup
tables given the center indices. The product quantization
[7, 10] is a way of applying k-means-based quantization for
a larger number of bits (e.g., 64 or 128).

Both Hamming-based methods and lookup-based meth-
ods are of growing interest recently, and each category has
its benefits depending on the scenarios. The lookup-based
methods like [3, 10] has been shown more accurate than
some Hamming methods with the same code-length, thanks

1The Hamming distance is defined as the number of different bits be-
tween two binary codes. Given two codes i and j, it is computed by
popcnt(i ˆ j) in C++, where ˆ is bitwise xor and popcnt is the in-

struction counting non-zero bits. This commend takes about 10−9 s.
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to the adaptive k-means quantization and the more flexi-
ble distance lookup. However, the lookup-based distance
computation is slower than the Hamming distance compu-
tation2. Hamming methods also have the advantage that the
distance computation is problem-independent: they involve
only an encoding stage but no decoding stage (i.e., index-
based lookup). This property is particularly favored, e.g., in
mobile product search [8] and built-in-hardware systems.

In this paper, we focus on learning binary compact codes
with Hamming distance computation. We propose a novel
scheme: we partition the feature space by k-means-based
quantization, but approximate the distance by the Hamming
distance between the cell indices (Fig. 1(c)). We desire
the Hamming distances to preserve the Euclidean distances
between the k-means centers. A naive solution would be
first to quantize the space using k-means and then assign
distance-preserving indices to the cells. But this two-step
solution can only achieve suboptimal results, and the as-
signment problem is not feasible in practice.

To this end, we propose a novel quantization algorith-
m called Affinity-Preserving K-means which simultaneous-
ly takes both quantization and distance approximation into
account. This algorithm explicitly preserves the similari-
ty between Euclidean and Hamming distances during the
k-means clustering stage. This algorithm can be naturally
generalized to a product space for learning longer codes.
Our method, named as K-means Hashing (KMH), enjoys
the benefits of adaptive k-means quantization and fast Ham-
ming distance computation.

We notice a method called “k-means locality sensitive
hashing” [22] has been proposed as an inverted file system
[27]. We point out that the terminology “hashing” in [22]
refers to the classical hashing strategy of distributing data
into buckets so that similar data would collide in the same
bucket. In this paper we follow the terminology in many
other recent papers [1, 31, 14, 29, 19, 15] where “hash-
ing” refers to compact binary encoding with Hamming dis-
tance computation. A discussion on the two terminologies
of “hashing” can be found in [24].

2. Affinity-Preserving K-means

2.1. Basic Model

Our basic model is to quantize the feature space in a k-
means fashion and compute the approximate distance via
the Hamming distance of the cell indices.

Following the classical vector quantization (VQ) [7],
we map a d-dimensional vector x ∈ R

d to another vector
q(x) ∈ C = {ci | ci ∈ R

d, 0 ≤ i ≤ k − 1}. The set C
is known as a codebook [7], ci is a codeword, and k is the
number of codewords. Given b bits for indexing, there are

2In our experiments, it is 10-20 times slower per distance computation
in product quantization than in hashing methods.

at most k = 2b codewords. VQ assigns any vector to its
nearest codeword in the codebook. Usually the codewords
are given by the k-means centers, as they provide minimal
quantization error [7].

VQ approximates the distance between any two vectors
x and y by the distance of their codewords:

d(x,y) � d(q(x), q(y)) = d(ci(x), ci(y)), (1)

Here we use d(x,y) = ‖x − y‖ to denote the Euclidean
distance between two vectors , and i(x) denotes the index of
the cell containingx. The above notation highlights that the
distance computation solely depends on the indices: it can
be read from a k-by-k pre-computed lookup table d(·, ·).

To get rid of the lookup tables and take advantage of
fast Hamming distance computation, we approximate the
lookup-based distance using the Hamming distance:

d(ci(x), ci(y)) � dh(i(x), i(y)) (2)

where dh is defined as a Hamming-based distance between
any two indices i and j:

dh(i, j) � s · h 1
2 (i, j). (3)

Here s is a constant scale, h denotes the Hamming distance,
and h

1
2 is its square root. The square root is essential: it re-

lates our method to orthogonal hashing methods (Sec. 2.4),
and it enables to generalize this approximation to longer
codes (Sec. 3.1). The usage of s is because the Euclidean
distance d can be in arbitrary range, while the Hamming dis-
tance h is constrained in [0, b] given b bits. We will discuss
how to determine s in Sec. 2.4.

In sum, given a codebook C we approximate the distance
d(x,y) through dh(i(x), i(y)) (see Fig. 1(c)). It is obvious
that the indexing of the codewords affects the approximate
distance.

2.2. A Naive Two-step Method

A naive two-step solution to the above model would be:
first quantize via k-means with k = 2b codewords, and then
assign optimal indices to the codewords. We term an index-
assignment I = {i0, i1, ..., ik−1} is a permutation of the in-
tegers {0, 1, ..., k−1}. Given a fixed sequence of codewords
{ci} leaned from k-means, we consider an optimal index-
assignment as the one minimizing the error introduced by
the Hamming approximation in Eqn.(2):

min
I

k−1∑
a=0

k−1∑
b=0

(d(cia , cib)− dh(ia, ib))
2
. (4)

This equation minimizes the difference between two k-by-k
affinity matrices d(·, ·) and dh(·, ·).

If we optimize (4) by exhausting all possible assignments
I, the problem is combinatorially complex: there are (2b)!
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possibilities with “!” denoting factorial3. Only when b ≤ 3
bits this problem is feasible. When b = 4 it takes over one
day for exhausting, and if b > 4 it is highly intractable.

More importantly, even with the above exhaustive opti-
mization we find this two-step method does not work well
(evidenced in Sec. 4). This is because the k-means quanti-
zation would generate an affinity matrix d(·, ·) of arbitrary
range. Even optimally fitting such a matrix would possi-
bly lead to large error, because the Hamming distance only
takes a few discrete values in a limited range.

2.3. Affinity-Preserving K-means

The above discussion indicates a two-step method could
only achieve a suboptimal solution. The affinity fitting error
as in (4) is a quantity not concerned in the first-step k-means
quantization. This motivates us to simultaneously minimize
the quantization error and the affinity error.

The classical k-means algorithm [18] minimizes the av-
erage quantization error Equan of the training samples:

Equan =
1

n

∑
x∈S

‖x− ci(x)‖2, (5)

where S is the training set with n samples. In the clas-
sical k-means this error is minimized by an Expectation-
Maximization (EM) alike algorithm: alternatively assign
the sample indices i(x) and update the codewords {ci}.

We also want to minimize the error due to the distance
approximation in Eqn.(2). We consider the affinity error
Eaff between all sample pairs:

Eaff =
1

n2

∑
x∈S

∑
y∈S

(
d(ci(x), ci(y))− dh(i(x), i(y))

)2
.

The computation is infeasible because it has n2 terms. For-
tunately, it is easy to show that Eaff can be written as:

Eaff =

k−1∑
i=0

k−1∑
j=0

wij (d(ci, cj)− dh(i, j))
2
, (6)

Here wij = ninj/n
2, and ni and nj are the number of sam-

ples having index i and j. Intuitively, Eaff is the weighted
difference between two k-by-k affinity matrices d(·, ·) and
dh(·, ·).

Putting the quantization error and affinity error together,
we minimize the following objective function:

E = Equan + λEaff, (7)

where λ is a fixed weight (in this paper we use 10). We
minimize this function in an alternating fashion:

3If only considering distinct affinity matrices, we can prove there are
(2b-1)!/b! possibilities.

Assignment step: fix {ci} and optimize i(x). This step is
the same as the classical k-means algorithm: each sample x
is assigned to its nearest codeword in the codebook {ci}.
Update step: fix i(x) and optimize {ci}. Unlike the classi-
cal k-means algorithm, the update of any codeword depends
on all the others due to the pairwise affinity d(ci, cj) in (6).
So we sequentially optimize each individual codeword cj
with other {ci}i�=j fixed:

cj = argmin
cj

(
1

n

∑
x;i(x)=j

‖x− cj‖2

+2λ
∑
i;i�=j

wij (d(ci, cj)− dh(i, j))
2). (8)

This problem can be solved by the quasi-Newton method
[26] (we use the Matlab commend fminunc for simplici-
ty). We update each codeword once in this step.

Initialization. The above iterative algorithm needs to ini-
tialize the indices i(x), codebook C, and scale s in (3).
In practice we initialize the indices using the binary codes
learned by PCA-hashing [29, 5]. To obtain the correspond-
ing codebook C and the scale s, we need to build a relation
between existing hashing methods and our method. We dis-
cuss this problem in Sec. 2.4.

We name the above algorithm as Affinity-Preserving K-
means. A pseudo-code is in Algorithm 1. Empirically the
algorithm converges in 50-200 iterations.

Algorithm 1 Affinity-Preserving K-means.
Input: a training set S = {x}, the bit number b
Output: an ordered set C = {ci | i = 0, 1, ..., 2b − 1}

1: Initialize i(x), C, s.
2: repeat
3: Assignment: for ∀x ∈ S update i(x) by x’s nearest

codeword’s index.
4: Update: for j = 0 to 2b−1, update cj using (8).
5: until convergence

2.4. Relation to Existing Methods

Our method would become classical vector quantization
methods or hashing methods if we relax or strengthen some
constraints. Actually, our method trades off these two kinds
of methods.

Vector Quantization [7].

If we allow to use pre-computed lookup tables d(·, ·),
we can remove the affinity error term Eaff in (7) by setting
λ = 0. As a result, the update step in (8) is simply solved by
the sample mean. Thus our method degrades to the classical
k-means algorithm.
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PCAH ITQ Ours
Equan (×103) 28.7 8.6 8.2
Edist (×103) 29.4 16.2 16.1

(a) PCAH (b) ITQ (c) Ours

PCAH ITQ Ours
Equan (×103) 7.72 4.51 4.31
Edist (×103) 8.11 7.35 7.14

Figure 3: A geometric view of Hamming distance: (a) PCAH, (b) ITQ, (c) ours. A circle denotes a codeword, and a line
linking two circles means their Hamming distance is 1. A dot denotes a data point, with different colors indicating different
encoded indices. Two synthetic datasets are shown here. Each database consists of 3 randomly selected principal components
from the SIFT1M datasets [10]. This figure is best viewed in color version.

d(ci, cj) �  dh(i, j)

c10 c11

c00 c01

s r1

r0

Figure 2: Relation between vector quantization and orthog-
onal hashing. The vertexes of a hyper-cube are used as
codewords. In this 2-d example the hyper-cube is a square.
The partition boundaries of the cells are orthogonal hyper-
planes (lines in 2-d).

Orthogonal Hashing and Iterative Quantization [5].

If we set λ = ∞ in (7) so d(·, ·) and dh(·, ·) must be i-
dentical, minimizing (7) is equivalent to the hashing method
called Iterative Quantization (ITQ) [5].

For simplicity we suppose that the data are b-
dimensional (e.g., via PCA as in [5]). If the two lookup
tables d(·, ·) and dh(·, ·) are identical, the k = 2b code-
words must be taken from the vertexes of a b-dimensional
hyper-cube. The 2b-word codebook is given by:

Ccube = {c | c ∈ R
b, c·rt = ±1

2
s, ∀t = 0, 1, ..., b−1}, (9)

where s is the side-length of the hyper-cube, and the vectors

{rt} are b-dimensional orthogonal bases (Fig. 2). It is easy
to see that the partition boundaries of the resulting cells are
orthogonal hyperplanes (e.g., the two orthogonal lines in
the 2-d example in Fig. 2). The Euclidean distance between
any two codewords equals to the Hamming-based distance:
d2(ci, cj) = s2 ·h(i, j) = d2h(i, j). It is easy to see this fact
in Fig. 2. The above equivalence was noticed by [5].

Suppose the data have been zero-centered. The only
freedom in (9) is a rotational matrix R whose columns are
{rt}. As a result, minimizing the objective function in (7)
with λ = ∞ is equivalent to minimizing the quantization
error w.r.t. a rotational matrix R. This is exactly the same
cost function as ITQ [5].

This relation suggests a way of determining s in Eqn.(3).
We initialize the codebook by Ccube, using the PCA bases as
{rt}. Putting (9) into (5), it is easy to show that Equan is a
quadratic function on s. We initial s by minimizing Equan

with respect to s. We fix s after initialization. Theoreti-
cally we can update s after each iteration, but we observe
marginal influence in practice.

2.5. A Geometric View

As discussed above, any orthogonal hashing method
(e.g., ITQ [5] and PCAH [29, 5]) can be considered as a
vector quantization method using the vertexes of a rotated
hyper-cube as the codewords. Fig. 3 (a) and (b) show the
geometric view when b = 3 bits.

Our method allows to “stretch” the hyper-cube while ro-
tating it, as in Fig. 3 (c). The stretching distortion is con-
trolled by Eaff. Although ITQ has the minimal quantization
error Equan among orthogonal hashing methods, our method
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achieves smaller Equan thanks to the stretching, as shown in
the tables in Fig. 3. We also evaluate the empirical mean
distance error Edist:

Edist =
1

n2

∑
x∈S

∑
y∈S

(d(x,y) − dh(i(x), i(y)))
2
. (10)

The tables in Fig. 3 show our method has the smallest Edist.
Notice the scale s impacts in measures in the tables in

Fig. 3. Here for each dataset we use the same s among
all methods, with s computed as in Sec. 2.4 using the PCA
bases. We observe similar comparisons if we initialize the
s using the bases of ITQ.

Each dataset in Fig. 3 consists of 3 randomly selected
principal components in the SIFT1M dataset [10]. Inter-
estingly, we notice that in the first dataset (Fig. 3 top, con-
taining the largest principal component of SIFT) there are
roughly two clusters. Though the methods are given 3 bits
and at most 23=8 clusters, both ITQ and our method divide
the data into roughly two clusters (colored in Fig. 3 top).
The codewords of these two clusters are on the diagonal of
the hyper-cube, having the max possible Hamming distance
(=3 here). Although it seems inefficient to use 3 bits to en-
code two clusters, it is worthwhile if preserving distance is
the concern. On the contrary, though PCAH divides the da-
ta into 8 more balanced clusters, the Euclidean distance is
harder to be preserved by the Hamming distance. The table
in Fig. 3 (top) shows it has the largest Edist.

3. Generalization to a Product Space

Like classical k-means, the Affinity-Preserving K-means
is not practical if the bit number b is large, because the algo-
rithm needs to compute and store 2b codewords. The prod-
uct quantization (PQ) method [10] addresses this issue by
separately training k-means in the subspaces of a product
space. We show that our algorithm can be naturally gener-
alized to a product space.

3.1. From Product Quantization to Hamming Dis-
tance Approximation

The PQ method in [10] decomposes the space R
D in-

to a Cartesian product of subspaces. Specifically, a vec-
tor x ∈ R

D is represented as a concatenation of M sub-
vectors: x = [x̂1, ...x̂m, ..., x̂M ], where the superscrip-
t m in x̂m denotes the m-th subvector. A sub-codebook
Ĉm with k=2b sub-codewords is independently trained in
the m-th subspace. Any codeword c in the product space
R

D is a concatenation of M sub-codewords drawn from
the M sub-codebooks. In this way, there are essentially
K = kM = 2Mb distinct codewords in R

D, indexed by
B = Mb bits. But the algorithm only needs to compute and
store M ·2b sub-codewords.

As in VQ (c.f . Eqn.(1)), PQ approximates the distance
between two vectors by the distance between codewords4:

d(x,y) � d(q(x), q(y))

=

√√√√ M∑
m=1

(d(qm(x̂m), qm(ŷm)))
2
, (11)

where qm denotes the quantizer in the m-th subspace. In
PQ the distance in (11) is computed through M separate
k-by-k lookup tables .

Driven by the same motivation as Eqn.(2) in Sec. 2.1,
we approximate the lookup-based distance in Eqn.(11) by
Hamming distance:

d(q(x), q(y)) �
√√√√ M∑

m=1

(
dh (̂im(x̂m), îm(ŷm))

)2

, (12)

where the notation îm indicates this index is from the m-th
sub-codebook Ĉm. Putting Eqn.(2) into (11), we have:

d(q(x), q(y)) �
√√√√ M∑

m=1

s2 · h(̂im(x̂m), îm(ŷm))

= s ·
√
h(i(x), i(y)). (13)

The equality holds if the index i(x) is a concatenation of M
sub-indices.

This equation means that we can apply Algorithm 1 in-
dependently to each subspace, and use the concatenation
of the M sub-indices as the final index i(x). In this case
the Hamming distance still approximates the Euclidean dis-
tance. If the ranking of the distances is the only concern,
the scale s and the square root in (13) are ignorable as they
are monotonic operations (i.e., ranking s·√h is equivalent
to ranking h).

Notice that Eqn.(13) requires the scale s to remain the
same across all subspaces. We can initial s via PCAH in
the full space (this is well tractable). But in practice we find
it performs as good when s is independently initialized for
each subspace.

3.2. Decomposing the Product Space

To decompose the space R
D into a product of M sub-

spaces, we adopt the simple criteria as below.
Following the common criterion in [31, 29, 3, 5] that the

bits should be independent, we expect the subspaces in our
method to be independent. To this end, we preprocess the

4More precisely, Eqn.(11) is the Symmetric Distance Computation (S-
DC) in [10]. SDC is solely index-dependent. [10] further proposes the
Asymmetric Distance Computation (ADC). ADC depends on the query
vector as a real-number vector.
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data by PCA projection (without dimension reduction). Fol-
lowing another common criterion in PQ methods [11, 12],
we expect the variance of each subspace to be balanced. We
define variance as the product of the eigenvalues of a sub-
space. We adopt a simple greedy algorithm to achieve bal-
ance: we sort all the principal components in the descend-
ing order of their eigenvalues, and sequentially assign each
of them to one out of M buckets that has the smallest vari-
ance. The principal components in the a bucket will form a
subspace.

This decomposing method is called Eigenvalue Alloca-
tion, with its theoretical foundation in [4].

3.3. Algorithm Summary

With the above subspaces decomposition, we separately
apply Affinity-Preserving K-means to each subspace. This
step generates M sub-codebooks, and each sub-codebook
has 2b D

M -dimensional codewords.
To encode any vector, we first divide it into M sub-

vectors. Each sub-vector will find the nearest sub-codeword
in its sub-codebook. These M sub-indices are concatenated
into a binary code with B=M ·b bits. On-line, the complex-
ity of encoding a query is O(D2 +2bD) = O(D2 +2

B
M D)

where D2 is due to the PCA projection. In practice we use
b ≤ 8 and the encoding cost is ignorable.

We publish the Matlab codes of our algorithm for the
ease of understanding the details5.

4. Experimental Results

We evaluate the ANN search performances on two public
datasets. The first dataset is SIFT1M from [10], containing
1 million 128-d SIFT features [17] and 10,000 independent
queries. The second dataset is GIST1M, containing 1 mil-
lion 384-d GIST features [21] we randomly sample from
the 80M dataset [28] with extra 10,000 randomly sampled
queries. We considered the groundtruth as each query’s K
Euclidean nearest neighbors. We set K=10 in the experi-
ments. We will have a discussion on K later.

We follow the search strategy of Hamming ranking com-
monly adopted in many hashing methods [1, 31, 29, 19,
5, 6]. Hamming ranking is to sort the data according to
their Hamming distances to the query. The first N sam-
ples will be retrieved. Hamming ranking is an exhaustive
linear search method, but very fast in practice: it takes
about 1.5ms to scan 1 million 64-bit codes in a single-core
C++ implementation (Intel Core i7 2.93GHz CPU and 8GB
RAM). Hamming ranking can be further sped up by a recent
method [20]. We evaluate the recall at the first N Hamming
neighbors. The recall is defined as the fraction of retrieved
true nearest neighbors to the total number of true nearest
neighbors.

5http://research.microsoft.com/en-us/um/people/
kahe/
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Figure 4: Comparison with the naive two-step method in
SIFT1M with 64 bits.

We use cross-validation to choose the parameter b (bit
number per subspace) from {2, 4, 8}. The subspace num-
ber M is then given by B

b with the code length B. Off-line,
the training time of our method when B = 64 bits is about
3 minutes in SIFT1M (b = 4) and 20 minutes in GIST1M
(b = 8), using an unoptimized Matlab code. On-line, the
query encoding time (< 0.01ms) is comparable with other
hyperplane-based hashing methods, and is ignorable com-
pared with the Hamming ranking time (1.5ms for one mil-
lion data).

Comparisons with the naive two-step method
The naive two-step method in Sec. 2.2 can also be ap-

plied to the same product space as our method. We have
implemented this two-step method in Sec. 2.2 for b=4, and
it takes more than one day to train. Fig. 4 shows the com-
parison between this method and our method, in SIFT1M
with 64 bits (M = 16 subspaces).

Fig. 4 shows that the naive method is inferior even it ex-
haustively fits the two affinity matrices. This implies that
the two-step method could only achieve sub-optimality. The
affinity error can be large when fitting an Hamming affinity
matrix to an arbitrary matrix.

Comparisons with state-of-the-arts hashing methods
We compare our k-means hashing (KMH) method with

the follow state-of-the-arts unsupervised hashing method-
s - locality sensitive hashing (LSH) [1], spectral hashing
(SH) [31], principal component analysis hashing (PCAH)
[29, 5], and iterative quantization (ITQ) [5]. We also com-
pare with a semi-supervised method - minimal loss hashing
(MLH) [19], for which we use 10,000 samples to gener-
ate the pseudo-labels. All methods have publicly available
codes and we use their default settings.

Fig. 5 and Fig. 6 show the comparisons in the two
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Figure 5: ANN search performance of six hashing methods on SIFT1M using 32, 64, and 128-bit codes. In this figure, K=10
Euclidean nearest neighbors are considered as the ground truth. Our method uses b=2 in the 32-bit case, and b=4 in the
64/128-bit cases.
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Figure 6: ANN search performance of six hashing methods on GIST1M using 32, 64, and 128-bit codes. In this figure, K=10
Euclidean nearest neighbors are considered as the ground truth. Our method uses b=8 in all cases.

datasets. We have tested B=32, 64, and 128 bits. Our
method consistently outperforms all competitors in all bit
numbers in both datasets. We also notice that besides our
method, there is no method that outperforms the remaining
competitors. ITQ is competitive in most settings, typically
using 64 and 128 bits. This implies that reducing the quanti-
zation error is a reasonable objective. PCAH performs sur-
prisingly well in SIFT1M with 32 bits, but it is inferior in
other cases.

Performance under various K
In a recent paper [30] it has been noticed that when eval-

uating hashing methods, the threshold (like K nearest neigh-
bors in our experiment setting) determining the ground truth

nearest neighbors can be of particular impact. In Fig. 7 we
show the evaluation in a wide range of different K (1 to
1000). Due to the limited space we only show ITQ and
MLH, because we find them superior among the competi-
tors for larger K. In Fig. 7 we see that in a wide range of
K our method consistently performs better. This shows the
robustness of our method.

5. Discussion and Conclusion

We have proposed a k-means-based binary compact en-
coding method. Unlike most hashing methods using hyper-
planes to quantize, our method enjoys the adaptivity of k-

294229422944



0 5000 10000 15000 20000
0

0.2

0.4

0.6

0.8

1

 

 

KMH
ITQ
MLH

N (# of top Hamming neighbors)

GIST1M  64-bit

r
e
c
a
l
l

K=1

K=100

K=1000

Figure 7: Comparisons in GIST1M with 64 bits under dif-
ferent metric of ground truth nearest neighbors (K=1, 100,
1000). The result of K=10 is in Fig. 6.

means. Our Affinity-Preserving K-means algorithm allows
to approximate the Euclidean distance between codewords
without lookup tables, so our method also enjoys the advan-
tages of Hamming distance computation. Experiments have
shown that our method outperforms many hashing methods.
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