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Abstract

We propose to leverage multiple sources of information
to compute an estimate of the number of individuals present
in an extremely dense crowd visible in a single image. Due
to problems including perspective, occlusion, clutter, and
few pixels per person, counting by human detection in such
images is almost impossible. Instead, our approach re-
lies on multiple sources such as low confidence head de-
tections, repetition of texture elements (using SIFT), and
frequency-domain analysis to estimate counts, along with
confidence associated with observing individuals, in an im-
age region. Secondly, we employ a global consistency con-
straint on counts using Markov Random Field. This caters
for disparity in counts in local neighborhoods and across
scales. We tested our approach on a new dataset of fifty
crowd images containing 64K annotated humans, with the
head counts ranging from 94 to 4543. This is in stark con-
trast to datasets used for existing methods which contain not
more than tens of individuals. We experimentally demon-
strate the efficacy and reliability of the proposed approach
by quantifying the counting performance.

1. Introduction

The problem of counting the number of objects, specif-

ically people, in images and videos arises in several real-

world applications including crowd management, design

and analysis of buildings and spaces, and safety and secu-

rity. In certain scenarios, obtaining the people count is of

direct importance, e.g., in public rallies, marathons, public

parks, and transportation hubs, etc. The manual counting of

individuals in very dense crowds is an extremely laborious

task, but is performed nonetheless by experienced personnel

when needed [18].

Computer vision research in the area of crowd analysis

has resulted in several automated and semi-automated solu-

tions for density estimation and counting. Practical appli-

cation of most existing techniques however, is constrained

Figure 1: This figure shows five arbitrary images from the

dataset used in this paper. On average, each image in the

crowd counting dataset contains around 1280 humans. The

bottom row shows four patches from different images at

original resolution.

by two important limitations: (1) inability to handle crowds

of hundreds or thousands (Fig. 1) rather than a few tens of

individuals [4, 5]; and (2) reliance on temporal constraints

in crowd videos [20], which are not applicable to the more

prevalent still images.

Most existing methods can be categorized by the appli-

cation scenario and experimental setup. Some methods pro-

posed in literature for crowd detection perform image seg-

mentation without actual counting or localization [1], while

others simply estimate the coarse density range within local

regions [24]. In terms of experimental data, most of the ex-

isting algorithms for exact counting have been tested on low

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.329

2545

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.329

2545

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.329

2547



to medium density crowds, e.g., USCD dataset with density

of 11 − 46 people per frame [4], Mall dataset with density

of 13−53 individuals per frame [5], and PETS dataset con-

taining 3 − 40 people per frame [9]. In contrast to these

images and videos, our algorithm has been tested on still

images containing between 94 and 4543 people per image,

with an average of 1280 people over fifty images in the

dataset. Such high density implies that an individual may

occupy so few pixels that it can neither be detected, nor can

its presence be verified given the location, which are key

requirements in existing techniques.

The proposed approach is motivated by the fact that in

extremely dense crowds of people, no single feature or de-

tection method is reliable enough to provide an accurate

count due to low resolution, severe occlusion, foreshorten-

ing, and perspective. Indeed even the state-of-the-art hu-

man, head, or face detectors perform poorly in such sce-

narios. We observe however that densely packed crowds of

individuals can be treated as a texture, albeit irregular and

inhomogeneous at a coarse scale. And this texture begins

to correspond to a harmonic pattern, as is the case in regu-

lar textures, at a finer scale. Furthermore, there does exist a

spatial relationship that is expected to constrain the count-

ing estimates in neighboring local image regions in terms of

similarity of counts.

We also observe that, in derived intensity spaces such as

image derivative, or edges, groups of individuals are likely

to exhibit an increased level of similarity. Therefore, in ad-

dition to supervised training of human or head detectors, ap-

pearance based feature descriptors like SIFT are also useful

to estimate the so called texture elements or textons [25].

This observation has been used successfully for crowd de-

tection in [1], although not for counting or localization.

Our goal in using appearance based descriptors for local-

ized patches is to estimate repeating structures in the image,

but with the important distinction that such image patches

are not expected to fully contain a person, rather the textons

can represent a single part of a person, multiple parts, or

multiple people and their parts.

Another main contribution of the proposed framework

is the use of frequency-domain analysis in crowd counting.

Fourier transform has been used extensively in texture anal-

ysis [2], and specifically in crowd analysis [17]. Given geo-

metrically arranged texture elements, the Fourier transform

can provide reliable estimates of the texton counts [14]. In

the domain of crowd counting however, the application of

frequency analysis is severely limited due to two main rea-

sons: (1) the spatial arrangement of texture elements is very

irregular; and (2) the Fourier transform is not useful in lo-

calizing the repeating elements.

We propose novel solutions to overcome these limita-

tions. First, we employ Fourier analysis along with head

detections and interest-point based counts in local neighbor-

hoods on multiple scales to avoid the problem of irregularity

in the perceived textures emanating from images of dense

crowds. The count estimates from this localized multi-scale

analysis are then aggregated subject to global consistency

constraints. Secondly, in order to leverage multiple esti-

mates from distinct sources, the corresponding confidence

maps need to be comparable and in the same space. For in-

stance, the Fourier transform is not directly useful in this re-

gard since it cannot be combined with count estimate maps

in the image domain. We therefore reconstruct the low to

medium frequency component of image region and the re-

constructed image is then compared with the original image

after alignment. This process provides two important pieces

of information: the estimated count per local region, and a

measure of error relative to the original image.

Combining the three sources, i.e., Fourier, interest points

and head Detection, with their respective confidences, we

compute counts at localized patches independently, which

are then globally constrained to get an estimate of count for

the entire image. Since the data terms are evaluated inde-

pendently at different scales, the smoothness constraint has

to be applicable to spatial neighborhoods as well as imme-

diate neighbors at different scales. We propose a solution

to obtain counts from multi-scale grid MRF which infers

the solution simultaneously at all scales while enforcing the

count consistency constraint.

The organization of the rest of the paper follows. We re-

view relevant literature in §2, present detailed problem for-

mulation and solution in §3, and finally, the experimental

evaluation is reported in §4. The paper is concluded in §5.

2. Related Work
Some of the existing literature relevant to the proposed

approach and application is briefly reviewed in this section.

Person detection for counting individuals, present in an im-

age or video, has been employed in [10, 15]. This category

of methods however is not useful for the kind of images

we deal with, because human, or even head and face detec-

tion in these images is difficult due to severe occlusion and

clutter, low resolution, and few pixels per individuals due to

foreshortening. We demonstrate this fact by reporting quan-

titative results of detection on our crowd image dataset.

Brostow and Cipolla [3] and Rabaud and Belongie [19]

count moving objects by estimating contiguous regions of

coherent motion. Computation of such patterns of motion

were also proposed in [22, 23, 12], but not with explicit

application to the problem of crowd counting. These algo-

rithms require video frames as input, with reasonably high

frame rate for reliable motion estimation, but are not suit-

able to still images of crowds, or even videos if the individ-

uals in the crowd show nominal or no motion, e.g., political

gatherings and concerts.

Another category of techniques proposed for crowd
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counting rely on estimation of direct relationships between

low level or local features and counts, by learning regres-

sion functions. Such a function can be global [4, 6, 11, 21]

where a single function’s parameters are learned for the en-

tire image or video. These methods have the implicit as-

sumption that the density is roughly uniform regardless of

the location where the feature is computed. This assump-

tion is largely invalid in most real world scenarios due to

perspective, changes in viewpoint, and changes in crowd

density.

The problems associated with global feature regression

can be alleviated by relaxing this assumption. Methods such

as [16] propose to divide an image into cells and perform re-

gression individually for each cell. These methods [16, 13]

aim to compensate for problems associated with foreshort-

ening, and local geometric distortions due to perspective.

One key problem with this approach however is that the lo-

cal context, or spatial consistency constraints are ignored as

information across local regions is not shared.

Chen et al [5] have recently proposed that informa-

tion sharing among regions should allow more accurate

and robust crowd counting. They propose a single multi-

output model for joint localized crowd counting based on

ridge regression. Their proposed framework employs inter-

dependent local features from local spatial regions as in-

put and people count from individual regions as multi-

dimensional structured output. The proposed algorithm

however was not applied to scenarios with crowds of more

than a few tens of people.

We now describe our proposed approach in detail which

puts forth several novel ideas to overcome limitations in ex-

isting work. We also collected, annotated, and tested on a

large dataset of real world crowd images.

3. Framework
Given an image, our goal is to estimate the number of

people in the image. The density of people, i.e., the num-

ber of people per unit area, in an arbitrary crowded image

is rarely uniform, and varies from region to region. This

variation in density may be inherent to the scene that the

image captures (different distribution of individuals in dif-

ferent parts of the scene) or it may arise due to the view-

point and perspective effects of the camera. Therefore, a

crowded scene cannot be analyzed in its entirety for count-

ing. Thus, the proposed framework begins by counting in-

dividuals in small patches uniformly sampled over the im-

age. But, even though the density varies across the image, it

does so smoothly, suggesting the density in adjacent patches

should be similar.

We handle the issues of variation in density and smooth

variation separately. When counting people in patches, we

assume the density is uniform but implicitly assume that the

number of people in each patch is independent of adjacent

Figure 2: Results of Head Detection: Image on the left is

one of the few images where head detection gives reason-

able results. False negatives and positives are still evident

in both images.

patches. Once we estimate density or counts in each patch,

we remove the independence assumption and place them in

multi-scale Markov Random Field to model the dependence

in counts among nearby patches.

3.1. Counting in Patches

Given a patch P , we estimate the counts from three dif-

ferent and complementary sources, alongside confidences

for those counts. The three sources are later combined to

obtain a single estimate of count for that patch using the

individual counts and confidences.

3.1.1 HOG based Head Detections

The simplest approach to estimate counts is through human

detections. However, a quick glance at images of dense

crowds reveals that the bodies are almost entirely occluded,

leaving only heads for counting and analysis. We, therefore,

used Deformable Parts Model [7] trained on INRIA Person

dataset, and applied only the filter corresponding to head to

the images. Often, the heads are partially occluded, so we

used a much lower threshold for detection. There are many

false negatives and positives since the images are inherently

difficult (see Fig. 2). The detections are accompanied with

scale and confidence. For each patch, we use number of

detections, ηH , mean and variance of scale μH,s, σH,s and

confidence μH,c, σH,c. The consistency in scale and con-

fidence is a measure of how reliable head detections are in

that patch.

3.1.2 Fourier Analysis

When a crowd image contains thousands of individuals,

with each individual occupying only tens of pixels, espe-

cially those far away from the camera in an image with

perspective distortion, histograms of gradients do not im-

part any useful information. However, a crowd is inher-

ently repetitive in nature, since all humans appear the same

from a distance. The repetitions, as long as they occur con-
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Peaks = 195,
GT Count = 54

Peaks = 238
GT Count = 102

Peaks = 254
GT Count = 134

Figure 3: Counting through Fourier Analysis: The first row

shows three original patches, while the second row shows

corresponding reconstructed patches. The positive corre-

lation is evident from the number of local maximas in the

reconstructed patch, and the ground truth counts shown at

the bottom.

sistently in space, i.e., crowd density in the patch is uni-

form, can be captured by Fourier Transform, f(ξ), where

the periodic occurrence of heads shows as peaks in the fre-

quency domain. Specifically, for a given patch, we com-

pute the gradient image, ∇(P ), and apply a low-pass filter,

f(ξ) > f(ξo) = 0, to remove very high frequency content.

Next we discard low amplitude frequencies, which is fol-

lowed by reconstruction, Pr, through inverse Fourier Trans-

form. We find the number of local maximas in the recon-

structed image (Fig. 3) after alignment and non-maximal

suppression which serves as an estimate for the Fourier-

based count, ηF . In addition, we compute several other

measures, such as entropy as well as statistical measures re-

lated to first four moments - mean, variance, skewness and

kurtosis for both the reconstructed image and difference im-

age |Pr −∇(P )|. The count is normalized for the size of

the patch.

3.1.3 Interest Points based Counting

We use interest points not only to estimate counts but also to

get a confidence whether the patch represents crowd or not.

Since sky, buildings and trees naturally occur in outdoor im-

ages, and the fact that head detection gives false positives in

such regions (Fig. 2) and Fourier Analysis is crowd-blind,

it is important to discard counts from such patches. For

both counting and confidence, we obtain SIFT features, and

cluster them into a codebook of size c. In order to obtain

counts or densities using sparse SIFT features, we use Sup-

port Vector Regression using the counts computed at each

patch from ground truth.

From the perspective of Statistics, the number of indi-

viduals in a particular patch can be seen as spatial Poisson

Counting Process with parameter (corresponds to density),

λ, i.e., N(P ) ∼ Poisson(λ|P |), and expected value of
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0.19 0.40 0.31 0.24 0.18 0.29 0.40 0.18

0.24 0.19 0.29 0.20 0.26 0.20 0.08 0.27

0.31 0.12 0.21 0.16 0.07 0.17 0.08 0.03

-0.54 -0.34 -0.26 -0.29 -0.33 -0.35 -0.28 -0.23

-0.07 -0.24 -0.16 -0.15 -0.18 -0.25 -0.15 -0.21

0.11 0.03 0.00 0.03 0.01 0.05 0.06 0.11

0.27 0.20 0.17 0.21 0.36 0.17 0.26 0.13

0.22 0.31 0.27 0.43 0.37 0.44 0.47 0.34
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-0.01 0.04 -0.06 0.14 0.05 0.01 -0.03 0.02
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Figure 4: Images with their confidence maps: The images

on the left have confidence of crowd likelihood obtained

through Eq. 2. In the top image, the gap between stadium

tiers gets low confidence of crowd presence. Similarly,

patches containing the sky and flood lights in bottom im-

age have low probability of crowd.

N(P ) is simply λ|P |. Since we assumed the density is uni-

form in the patch, the process is homogenous and λ is not

a function of location (x, y). Moreover, the independence

assumption among patches gives, for the image, I:

N(I) = N(P1 ∪ P2 . . . Pn)

= N(P1) +N(P2) + . . .+N(Pn), (1)

where P1, P2, . . . Pn form a disjoint partition of I.

Furthermore, due to sparse nature of SIFT features,

the frequency γ of a particular feature i in a patch

can also be modeled as a Poisson R.V., p(γi|crowd) =
exp(−λ+

i ).(λ
+
i )

γi/γi! with expected value, λ+
i . Given a set

of positive(+) and negative examples(−), the relative den-

sities (frequencies normalized by area) of the feature vary

in positive and negative images, and can be used to identify

crowd patches from non-crowd ones. Assuming indepen-

dence among features, the log-likelihood ϕ(P ) of the ratio

of patch containing crowd to non-crowd is [1]:

log(γ1, γ2, . . . γc|crowd)− log(γ1, γ2, . . . γc|¬crowd)

=
c∑
i

(
λ−i − λ+

i + γi(logλ
+
i − logλ−i )

)
.

(2)

The above equation gives us a confidence for presence of

crowd in a patch. The resulting confidence maps are shown

in Fig. 4 for two images.

3.2. Fusion of Three Sources

For learning and fusion at the patch level, we densely

sample overlapping patches from the training images and
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Figure 5: The figure shown multi-scale Markov random

Field for inferring counts for the entire image. The patches

in each layer have independent data terms, thus requiring a

simultaneous solution for all layers.

using the annotation, obtain counts for the corresponding

patches. Computing counts and confidences from the three

sources, we scale individual features and regress using ε-
SVR, with the counts computed from the annotations.

3.3. Counting in Images

In order to impose smoothness among counts from dif-

ferent patches, we place them in an MRF framework with

grid structure. Furthermore, although small patches have

consistent density, they have fewer repetitions or periods

and can easily be affected by low-frequency noise. Larger

patches, if they have consistent density, have more people,

and therefore more periods and better relevant-to-irrelevant

frequency ratio. Moreover, it is difficult to ascertain in ad-

vance the right scale for analysis for a particular image.

This problem lends itself to a multi-scale MRF, an example

of which is shown in Fig. 5. The graph can be represented

with (V, E) and N are the four neighbors at the same level

and intermediate nodes that connect a patch to layers above

and below it. Note that, this multi-scale MRF is different

from other hierarchical models used for images, in that the

data term (unary cost) for a patch is evaluated independent

of the patches at layers above and below it, whereas in im-

age restoration and stereo, data cost for patch at higher level

is computed from layer directly below. The energy function

is thus given by:

E(	) =
∑
p∈V

Dp(	p) +
∑

(p,q)∈N
V (	p − 	q), (3)

where labeling 	 assigns a label 	p ∈ L =
{0, 1, 2, ..., Cmax} for every every patch p ∈ P . The

data term is quadratic, Dp(	p) = λ(ηp − 	p)
2 and

smoothness term is truncated quadratic, V (	p − 	q) =
min

(
(	p − 	q)

2, τ
)
.

The graph is inferred using Max-Product/Min-Sum BP

on grid structure [8]. At any time t, the message that node

p sends to q for a label 	q is given by, mt
p→q(	q):

min
�p

⎛
⎝V (	p − 	q) +Dp(	p) +

∑
s∈Np\q

mt−1
s→p(	p)

⎞
⎠, (4)

and the belief for a label 	q of node q at time t can be ob-

tained as:

btq(	q) = Dq(	q) +
∑
p∈Nq

mt
p→q(	q). (5)

The inference starts by sweeping in four directions at the

bottom level using Eq. 4, the beliefs are then evaluated for

each patch using Eq. 5. Then, the beliefs in the groups of

2×2 are added giving the beliefs for the intermediate nodes

bti above the bottom layer. After four sweeps at the middle

layer, the fifth sweep of messages goes from intermediate

nodes to the middle layer. This is followed by computation

of beliefs at the middle layer. This step repeats for the top

layer, and the whole process corresponds to one time step

t. Then, the process repeats but from top to bottom. The

beliefs at the intermediate nodes are divided for each of the

patch below, i.e., for each patch q in 2× 2 group below the

intermediate node, its share of beliefs from the layer above

is given by: bt+1
i,q (	q) = btq(	q).b

t+1
i (	q)/b

t
i(	q). After a

fixed number of iterations, the final beliefs can be computed

using Eq. 5, and the labels which have minimum cost in the

belief vectors are selected as the final labels. The sum of

labels (counts) at the bottom layer gives the count for the

image.

Fig. 6 shows three instances where the estimated count

of patch was improved based on neighbors (both spatial and

layer). In all cases, the patch under consideration lies in the

center of 3 × 3 patch set. In the first two columns, after

imposing the smoothness constraint using MRF, the over-

estimated counts are reduced, becoming closer to ground

truth. A special case is shown in the last column. The

patch in the middle had a much lower count than neigh-

bors which after inference increased becoming similar to its

neighbors. Although the new estimate is closer to ground

truth, the increase is not necessarily correct since the lower

count was due to presence of a non-human object (an am-

bulance). The last column belongs to the image which had

the highest count in the dataset.

4. Experiments
We collected the dataset from publicly available web im-

ages, including Flickr. As mentioned in the introduction, it
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43 18 45

44 42 46
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41 42 41

42 42 42

96 103 118

101 51 86

80 80 89

6 16 21

16 13 14

10 11 10

18 22 16

21 31 16

21 10 18

14 14 12

13 14 13

14 12 12

14 16 11

12 13 11

13 10 8

34 28 21

28 38 36

30 30 14

25 25 24

23 23 23

22 23 22

Patches

Ground Truth

Before MRF

After MRF

Figure 6: Results after MRF-based inference: Three nonets

from different images are shown in first row. The sec-

ond row shows the ground truth counts, and the estimated

counts before and after MRF inference are shown in third

and fourth rows, respectively. The patches from only one

layer are shown in this figure.

consists of 50 images with counts ranging between 94 and

4543 with an average of 1280 individuals per image. Much

like the range of counts, the scenes in these images also be-

long to a diverse set of events: concerts, protests, stadiums,

marathons, and pilgrimages. One of the images is a paint-

ing while another is an abstract depiction of a crowd (the

one with the least count, shown in Fig. 7a). Using a simple

tool for marking the ground truth positions of individuals,

we obtained 63705 annotations in the fifty images. Some

examples of images with the associated ground truth counts

can be seen in Fig. 7.

For experiments, we randomly divided the dataset into

sets of 10, reduced the maximum dimension to 1024
for computational efficiency, and performed 5−fold cross-

validation. We used two simple measures to quantify the

results: mean and deviation of Absolute Difference (AD),

and mean and deviation of Normalized Absolute Difference

(NAD), which was obtained by normalizing the absolute

difference with the actual count for each image. Since we

divide the image into patches, we report our results for both

patches and images. The quantitative results are presented

in Table 1.

The first row in Table 1 shows the results of using counts

from Fourier Analysis only, giving AD of 703.9 and NAD

Minimum Error - Error: 2
 Ground Truth: 426  Estimated: 428 

Maximum Error - Error: 2046
 Ground Truth: 3333  Estimated: 1287

Least GT Count - Error: 34
Ground Truth: 94  Estimated: 128  

Most GT Count - Error: 1993
 Ground Truth: 4543  Estimated: 2550

(a) (b)

(c) (d)

Figure 7: Selected images with their respective counts and

errors: The first row shows the extreme ends of the dataset

in terms of counts. The second row shows the images with

lowest and highest error.

of 84.6. Supplementing it with confidences from various

sources including Eq. 2 improves AD by 181.8 and reduces

NAD by almost one-half. Including counts from head de-

tections improves AD marginally to 510.9. Adding counts

from regression on sparse SIFT features reduces error in

both measures, giving values of 468.0 and 32.2, respec-

tively. Finally, inferring counts for complete images us-

ing counts from patches through multi-scale MRF further

improves AD taking it to 419.5. It can be observed from

the table, that standard deviation follows the same trend as

mean, the values reducing as we add more sources.

Figs. 8a-b shows AD and NAD for patches in the indi-

vidual images, respectively. The mean per patch are shown

with black asterisks, deviations with red bars, and olive dots

in Fig. 8a show average of actual counts per patch in that

image. For easier analysis, the x-axis shows images sorted

with respect to actual counts in both plots. It can be seen

that AD per patch increases as the actual counts increases,

except for the images in the range 25 to 45 with correspond-

ing actual counts in the range of 1000−2500 per image. Not

only does this range boast lowest mean in AD and NAD,

but lowest deviations as well, which means the approach

consistently predict correct counts for patches in this range.

The reason for better performance in the middle range is ob-

vious: the counts range from 94−4543, so the largest count

is a tremendous 4832% of the smallest count. Forcing the

learning algorithm to predict correct estimates at both ends

simultaneously, makes it overestimate the lower end and un-

derestimate the higher end, thereby working in favor of the

middle range, even though, we used RBF kernel for regres-

255025502552



AD NAD AD NAD

Fourier 13.8 ± 21.3 96.4 ± 200.4 703.9 ± 682.0 84.6 ± 157.3

F+confidence 11.0 ± 19.7 58.7 ± 74.9 522.1 ± 610.1 41.0 ± 31.0

Fc+Head 11.1 ± 19.3 63.3.0 ± 84.0 510.9 ± 587.3 41.8 ± 30.9

FHc+SIFT 10.2 ± 18.9 53.3.0 ± 69.5 468.0 ± 590.3 32.2 ± 27.1

FHSc+MRF (Proposed) - - 419.5 ± 541.6 31.3 ± 27.1

Rodriguez et al. - - 655.7 ± 697.8 70.6 ± 102.1

Lempitsky et al. - - 493.4 ± 487.1 61.2 ± 91.6

Per Patch Per Image

Error

Method

Table 1: Quantitative results of the proposed approach and comparison with Rodriguez et al. [20] and Lempitsky and

Zisserman [13] using mean and standard deviation of Absolute Difference and Normalized Absolute Difference from ground

truth. The influence of the individual sources is also quantified. The proposed approach outperforms the other two methods.
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Image number Image number (a) (b)

Figure 8: This figure shows analysis of patch estimates in

terms of absolute and normalized absolute differences. The

x-axis shows image number sorted with respect to actual

count. Means are shown in black asterisk, standard devia-

tions with red bars, and ground truth counts with olive dots.

sion on three sources.

For comparison, we used the methods of Rodriguez et al.

[20], and Lempitsky and Zisserman [13], which were suit-

able for this dataset since other methods for crowd counting

mostly deal with videos or use human detection, and cannot

be used for testing on this dataset. The method presented

in [20] relies on head detections, while [13] requires anno-

tated ground truth points for training, and learns a regres-

sion model using dense SIFT features on randomly selected

patches. The quantitative results are shown in Table 1. Fig.

9 breaks these numbers according to counts. The results

using [20] are in red, those in green use [13], and the re-

sults of the proposed approach are shown blue. In Fig. 9b,

the black curve represents the ground truth. In Fig. 9a, we

show NAD for ten groups of five images each, which are

sorted according to ground truth counts. The x-axis shows

the average counts of each of the 10 groups. Density aware

person detection [20] performs best around counts of 1000,

but its error increases as we move away. The reason be-

comes obvious when we look at the absolute counts output

by the method in Fig. 9b, as they are fairly steady across

the entire dataset and do not respond well to change in den-

sity. It overestimates at lower end and then underestimates

at the higher end, resulting in increased absolute errors on

both ends. The MESA-distance [13] on the other hand, per-

forms fairly well at higher counts, but gives high NAD at

lower counts. The reason lies in the algorithm itself, as it

is designed to minimize the maximum AD across images

when training, and since images with higher counts tend

to have higher AD, the learning focuses on such images.

The learner gets biased towards high density images, thus,

producing a lower AD overall, but overestimating at lower

counts (Fig. 9b), thus giving higher NAD. The proposed ap-

proach, on the other hand, performs well across the whole

range, giving steady NAD’s across all ten groups.

Finally, all methods underestimate the tenth set and this

can be due to several reasons. First, images in this group

are very high resolution and therefore it is less likely to

miss individuals while annotating. Since we fixed the max-

imum image size for experiments, the images in this group

had correct and therefore, more annotations than their low-

resolution counterparts. Second, a careful look at Fig. 8a

reveals that patch density increases super-linearly for this

group, which otherwise is linear for first nine groups. Since

there are few such images, their patch instances could have

been treated as outliers (have higher slack weights) for re-

gression. The last reason may be associated with histograms

of features that capture relative frequencies. At very high

density, the relative frequencies across patches with differ-

ent density may become similar, resulting in a loss of dis-

criminative power.

5. Conclusion

We presented an approach to count number of indi-

viduals in extremely dense crowds, on a scale not tackled

before. We fuse information from three sources in terms

of counts, confidences and different measures at the patch

level, and then enforce smoothness constraint on nearby

patches to improve estimates of incorrect patches, thereby
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Figure 9: Analysis of comparison: Bars and lines in red

depict [20], green show [13], blue shows the results using

proposed approach, while ground truth is shown in black.

(a) shows Normalized Absolute Difference (an error mea-

sure) and (b) shows the actual and estimated counts.

producing better estimates at the image level. We showed

that the proposed approach scales well to different densities

producing consistent error rates across images with diverse

counts. Possible improvements include explicit prepro-

cessed estimation of crowd density, and making regression

an explicit function of density so that it better adapts to

various crowd sizes. Furthermore, texton detection to

recognize repetitions can supplement frequency-domain

analysis.
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