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Abstract

Despite significant progress, most existing visual dictio-
nary learning methods rely on image descriptors alone or
together with class labels. However, Web images are often
associated with text data which may carry substantial infor-
mation regarding image semantics, and may be exploited
for visual dictionary learning. This paper explores this
idea by leveraging relational information between image
descriptors and textual words via co-clustering, in addition
to information of image descriptors. Existing co-clustering
methods are not optimal for this problem because they ig-
nore the structure of image descriptors in the continuous
space, which is crucial for capturing visual characteris-
tics of images. We propose a novel Bayesian co-clustering
model to jointly estimate the underlying distributions of the
continuous image descriptors as well as the relationship be-
tween such distributions and the textual words through a
unified Bayesian inference. Extensive experiments on image
categorization and retrieval have validated the substantial
value of the proposed joint modeling in improving visual
dictionary learning, where our model shows superior per-
formance over several recent methods.

1. Introduction

Image representation is a starting point for visual under-
standing and retrieval. The histogram of (quantized) local
image descriptors like bag-of-visual-words (BoVW) is the
most popular image representation in computer vision. The
process is to first train a visual dictionary based on the ex-
tracted descriptors from an image collection and then to en-
code the descriptors of each image into a histogram based
on the learned dictionary. The crucial issue is how to build
a visual dictionary.

There has been considerable interest in visual dictionary
learning which can be classified into two paradigms. The
first paradigm is unsupervised learning such as K-means for
BoVW and LLC [25] for sparse representation. However,
these methods do not have any mechanism to retain dis-
criminative information (e.g., object or scene categories) in
visual dictionaries. The second one is the supervised learn-
ing, which incorporates class labels into the visual dictio-
nary [12, 30, 9, 10, 17]. However, it generally needs man-
ual labors to annotate class labels, which are difficult, if not
impossible, to obtain in many real-world problems.

Regardless of whether unsupervised or supervised, ex-
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isting visual dictionary learning methods are based on only
single-modal information, i.e., information of image de-
scriptors alone. On the other hand, besides the plain vi-
sual content, a huge number of Web images are augmented
with text descriptions. Photos in Flickr are frequently ac-
companied by tags and each picture in Wikipedia is associ-
ated with a document describing its semantic topics. Such
text information is generally noisy but provides semantic
cues about the image content, facilitating the design of mul-
timodal system for image understanding. A recent work
in [7] combines images and texts through multiple kernel
learning, and demonstrates that text information can signif-
icantly improve the performance of image classification.
These facts motivate us to consider leveraging textual
words for visual dictionary learning. Specifically, the prob-
lem can be stated as following: given a set of images and
their associated textual words, how to learn a visual dic-
tionary that incorporates both image and text information.
This is challenging due to the following two key issues.
First, there are a large number of local descriptors extracted
from the images, whose corresponding relations to the tex-
tual words are totally unknown, making it difficult to ex-
plore the multimodal correlation. Second, the visual and
textual spaces are completely different from each other: im-
age descriptors are generally in a continuous space (e.g.,
SIFT is typically represented as a 128-dimensional real-
valued vector) whereas textual words are in a discrete space.
Addressing these issues, we propose a novel approach
for learning a visual dictionary from both image and text
information. The whole framework is illustrated in Fig. 1.
Our approach is inspired by the co-clustering framework.
Given a relational (co-occurrence) matrix between image
descriptors and textual words, we perform clustering along
the image descriptors and textual words simultaneously and
obtain disjoint clusters for each modality, in which the im-
age descriptor clusters can be used as a visual dictionary
while the textual word clusters reveal the semantic topics of
the entire image collection. The clusters of image descrip-
tors are determined based on their relations with respect to
the textual word clusters, which well captures the multi-
modal correlation. Note that the textual word clusters are
important for discovering the significant multimodal corre-
lation, due to the fact that the individual word is noisy and
may not convey beneficial information while the clusters of
multiple words can reflect the semantic topic of the consti-
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Figure 1. Illustration of the proposed framework of multimodal visual dictionary learning. (a) Given a set of training images and associ-
ated textual words, we first form a relational matrix that represents the relationship between image descriptors (rows) and textual words
(columns), where each element is 1 if the corresponding pair is extracted from an identical image and O otherwise. (b) Our continuous-
discrete Bayesian co-clustering (CD-BCC) jointly estimates distributions of the continuous image descriptors as well as the relationship
between the image descriptor distributions and textual words. During a unified Bayesian inference process, a subset of image descriptors
from an identical distribution (represented by an ellipse) is aggregated into a single row, and the rows (distributions) are further grouped
into fewer number of clusters based on their co-occurrence frequencies with textual words. Each resulting cluster of image descriptors is
thus expected to (i) have consistently co-occurring textual words and (ii) be visually different from the other clusters. (c) These clusters
form the final visual dictionary and are used to encode an image into a single image representation vector (histogram).

tutive words more sufficiently.

Specifically, we investigate how to perform co-clustering
along a continuous image descriptor space and a discrete
textual word space simultaneously, and propose continuous-
discrete Bayesian co-clustering (CD-BCC). Previous co-
clustering methods [3, 4, 5, 22] may not be optimal for
visual dictionary learning because they perform clustering
relying on only the relational information of image descrip-
tors and textual words, which do not have a potential to in-
corporate any visual properties into the visual dictionary. A
straightforward approach may be first to quantize image de-
scriptors using K-means and then to co-cluster quantized
descriptors (visual words) and textual words. However,
such two step approach is inevitably subject to information
loss and may degrade the performance. Unlike these, our
CD-BCC simultaneously estimates the underlying distribu-
tions of image descriptors over the continuous space and
the relationship between the distributions and textual words
via a unified Bayesian inference framework. Consequently,
each image descriptor cluster used to construct each dimen-
sion of the final image representation vector is ideally con-
sistent to a set of textual words with consistent semantic
topic as well as visually different from the other clusters.

Extensive experiments on five different datasets will
demonstrate that the proposed multimodal visual dictio-
nary learning approach can achieve significant performance
gains when evaluated over various tasks including image
classification and content-based image retrieval (CBIR). We
will also show clear evidences confirming the capabilities of
the method for capturing the multimodel information in the
learned visual dictionary.

2. Related Work

We review some recent studies on visual dictionary
learning, co-clustering, and multimodal topic modeling.
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Visual Dictionary Learning: Standard unsupervised meth-
ods like K-means, K-SVD [1], and LLC [25] train visual
dictionaries based on only information of images. There are
many supervised methods aiming at retaining discrimina-
tive information in visual dictionaries [12, 28, 31, 30, 9, 10,
17, 16]. [12] trains a dictionary so as to maximize the mu-
tual information. [28, 3 1] learns multiple class-specific dic-
tionaries. [30, 9, 10, 17, 16] learn a single visual dictionary
by jointly optimizing visual dictionaries and discriminative
functions. We aim to leverage weak textual words associ-
ated with images, instead of assuming strong class labels.
Prior supervised methods assume that class labels are mu-
tually exclusive, which may not be reasonable in our prob-
lem because there is often strong correlation among textual
words. Contrary, our approach is based on co-clustering and
takes into account textual word clusters which may effec-
tively guide visual feature clustering. Also ours is different
from multimodal image classifier learning methods [7, 20]
from the same view point.

Co-clustering: Co-clustering is an emerging paradigm that
is often used to cluster two types of variables simultane-
ously under given a relational matrix. Many co-clustering
methods have been proposed. Spectral co-clustering (SCC)
[3] solves the problem as spectral partitioning over a bi-
partite graph. Information theoretic co-clustering (ITCC)
[4] determines clusters so as to minimize the loss of mu-
tual information between a given relational matrix and its
co-clustering results. Non-negative matrix tri-factorization
(NMTF) [5] decomposes a matrix into three non-negative
matrices, where two of them correspond to row and col-
umn clusters respectively. The most relevant approach to
ours is Bayesian co-clustering (BCC) [22] which is a gener-
ative model of a relational matrix and estimates clusters of
rows and columns in a Bayesian inference framework. Sev-
eral extensions have also been developed so far [26, 18, 11].



Unlike these previous methods, our CD-BCC is for a pair of
continuous and discrete variables and jointly estimates the
distributions of image descriptors over the continuous space
and co-clusters of the distributions and textual words. To the
best of our knowledge, this is the first work that presents a
co-clustering method for continuous-discrete variable pairs.
Multimodal Topic Models: Topic modeling (e.g., latent
semantic analysis (LSA) and latent Dirichlet allocation
(LDA)) has become a popular paradigm to jointly model
multiple information sources. For instance, [29, 32] pro-
posed LSA-based methods to model visual and textual
words with an underlying latent topic space. [21] proposed
a cross-modal retrieval approach based on LDA with canon-
ical correlation analysis. More related approaches to ours
will be Bayesian multimodal topic models [2, 15, 24, 19, &,
14]. In particular, Li et al [14] proposed a Bayesian multi-
modal topic model for visual dictionary learning. Our CD-
BCC is also a Bayesian model for visual dictionary learn-
ing — but ours is a co-clustering model, not a topic model.
Specifically, topic models assume some mixture distribu-
tions over visual words as well as textual words. Our CD-
BCC also assumes a mixture over image descriptors, but
does not assume any distributions over textual words. In-
stead, we assume a mixture over a relational matrix that en-
courages the model to identify the significant multimodal
correlation from sparse and noisy relational data.

3. Multimodal Visual Dictionary Learning

We assume the typical image descriptor extraction pro-
cess: a set of key points are detected from each training
image first, and then an image descriptor (e.g., SIFT) is ex-
tracted from each key point. Let us introduce some nota-
tions on observation variables first. Suppose we have N
image descriptors X = {z1,...,xn}, where z; € R is
a descriptor extracted from an training image, and (at least
a subset of) the training images are associated with words,
where each word is one entity from a vocabulary indexed by
{1,...,W}. Assuming that a pair of an image descriptor
and a word from the same image are “related”, the relation-
ship between N image descriptors and W unique words is
naturally represented as an N x W initial relational matrix
R = {r;;}, where r; ; = 1 if i-th image descriptor and
j-th word are related and O otherwise. Note that each row
corresponds to each image descriptor, thus the i-th row is
associated with a descriptor z; € R%. Then our problem is:
given the initial relational matrix R and the corresponding
set of image descriptors X, the goal is to find K clusters of
image descriptors X used to form a visual dictionary with
the assistance of the relational matrix R.

3.1. Visual Dictionary Learning with
Continuous-Discrete Bayesian Co-clustering
We propose CD-BCC to solve the problem. The motiva-
tion of the model is to find out unknown K image descriptor
clusters depending on both of the distributions of image de-
scriptors X over a continuous space and their relationship
with respect to the words presented in the relational matrix
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Figure 2. (a) Graphlcal representation of continuous-discrete
Bayesian co-clustering (CD-BCC), where the hyperparameters are
omitted for simplicity. Illustrations of generative processes: (b)
image descriptor generation and (c) relational matrix generation.

R. To achieve this, CD-BCC is designed as a Bayesian gen-
erative model, i.e., a joint distribution of image descriptors
X, the relational matrix R, and image descriptor clusters.
Based on the joint distribution, the image descriptor clusters
are estimated based on its Bayesian posterior distributions
under given X and R.. We first introduce the generative pro-
cess of our CD-BCC, and then provide the inference scheme
to estimate the posterior distributions.

3.1.1 Generative Process

Fig. 2 shows a graphical representation of our CD-BCC. In
CD-BCC, X and R are generated via seamlessly integrated
two sub-processes. In the image descriptor generation pro-
cess, all image descriptors X are generated from a mixture
of V descriptor distributions over the continuous image de-
scriptor space. In the relational matrix generation process,
we consider a (new) relational matrix R that represents the
co-occurrence between each pair of V' descriptor distribu-
tions and W words, and assume that the relational matrix
R is generated from K x L co-occurrence blocks, each of
which is a co-cluster of descriptor distributions and words
and measures the mutual dependency among the constitu-
tive image descriptors and words.

Mathematically, the each sub-process is described as fol-
lows. Without loss of generality, we assume that X are
sifted so as to be zero-mean hereafter.

Image descriptor generation: N image descriptors X
are generated from a mixture of V' descriptor distributions
Norm(py, 25) (v =1,..., V) as the following process:

1. For each descriptor distribution v, draw mean
iy o ~ Norm(0, ).
2. Draw mixture proportion of descriptor distributions
77y, V ~ Dir(y/V).
3. For each image descriptor z;
(a) Draw descriptor distribution assignment
w;i; T ~ Mult(r)
(b) Draw image descriptor
| p, wis Xg ~ Norm(pig,; X))
In Step 1, mean vectors of V' descriptor distributions, g, are
generated. Step 2 generates the mixture proportion 7 that
controls how much frequently each descriptor distribution
is used. In Step 3, for each image descriptor x;, (a) one
descriptor distribution w; € {1,...,V} is chosen with the



probability Mult(r), and then (b) x; is generated from w;-th
descriptor distribution Norm( i, , X5 ).

Relational matrix generation: The relational matrix R is
generated from Poisson(6y, ;) as the following process:

4. For each block (k,1) (i.e., each pair of image descrip-
tor cluster and word cluster), draw co-occurrence fre-
quency 0y ;; 5, ¢ ~ Gamma(3, ¢).

. Draw image descriptor cluster proportion x;(, X ~
Dir(¢/K) and word cluster proportion \;7, L
Dir(n/L) respectively.

. For each descriptor distribution v and each word j,
draw image descriptor cluster assignment zI|xk ~
Mult(x) and word cluster assignment 2|\ ~ Mult(})
respectively.

. For each pair of descriptor distribution and word (v, j),
draw element of relational matrix
Tv,5©, 25, 2 ~ Poisson(. .v).

LNV ad]

Step 4 generates K x L block co-occurrence frequencies
®. The image descriptor cluster of v-th descriptor distribu-
tion, z¥ € {1,..., K}, (and the word cluster of j-th word,
2 € {1,..., L}) is generated in Step 6. The (v, j)-th el-
ement of the relational matrix R, 7, ;, is generated from
Poisson(@zﬁ,z}u) in Step 7. Note that r,, ; denotes the num-
ber of times image descriptors in v-th descriptor distribu-
tions co-occurs with j-th word'.

3.1.2 Visual Dictionary Inference

Observing the image descriptors X and the relational ma-
trix R, we compute the posterior distributions to infer the
image descriptor clusters z” and the mean vectors of the
descriptor distributions g used as the visual dictionary.
The above generative process determines the joint distribu-
tion p(X, R, w, 2%, 2", m, k, \, i, ®). Then what we want
to know is the posterior p(w, z%, z%, 7, k, A\, u, O|X, R).
However, this is computationally intractable. Fortunately,
because CD-BCC is designed as a full conjugate model,
samples from the posterior can be efficiently obtained by
collapsed Gibbs sampler. Specifically, we integrate out
™, K, A\, i, and © from the joint distribution, and sam-
ples only w, 2%, and z" using the marginal distribution
p(X,R,w, 2%, z%) at each iteration step (the actual sam-
pling distributions are shown in Appendix). Regarding the
computation time, one iteration typically takes around 10
minutes using 64-bit Matlab on a machine with 2.4 GHz
Xeon CPU and 32GB RAM. After iterations, the mean
vectors g of V' descriptor distributions are estimated as
Ho = Zz s.t.wi=v Ly

Note that @ determines the distributions of the image de-
scriptors while z” determines the clusters of these distribu-
tions based on their correlation to word clusters. Therefore,
they can be used as the visual dictionary to generate image
representation for the new images. In the next section, we

~

ntroducing an index matrix £ = {@s,v} such that w; , = 1if w;
v and O otherwise, this is efficiently computed as R = QTRO, where Rg

is the initial relational matrix between /N image descriptors and W words.
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will explain how to utilize them to generate textual infor-
mation embedded image representation.

3.2. Encoding Methods

With the trained g and 2%, a test image represented as
a set of I descriptors {x1,...,Z4,..., 2} is encoded into
a K dimensional image-level representation c. In computer
vision, dictionary learning and coding are seen as indepen-
dent processes (e.g., K-means dictionaries are used for vec-
tor quantization, sparse coding [27], or LLC [25]). We here
consider two possible coding approaches: maximum likeli-
hood (ML) coding and sparse coding.
Maximum Likelihood (ML) Coding: One natural way
is ML coding that uses p and z% as “plug-in” estima-
tors. Each image descriptor x, is efficiently encoded into

zqg € {1,..., K} without any iterative inference:
wg = argmaxp(ze|pe; Xs) ey
Zg = Zg, (2)

The final image representation c is obtained by counting fre-
quencies of {1,...,K} in {z1,...,2,...,21} (average-
pooling).

Sparse Coding: Note that ¢ and 2% can be regarded as a set
of V basis vectors of R? and a projection from {1,...,V}
to {1,..., K} (KX < V) respectively. Inspired by the fact,
we apply sparse coding [27] with the dictionary g to gener-
ate an initial code w, and then reduce its dimensionality:

3)
“

where Z = {z, 1} is a matrix such that z, , = 1if 2 = k
and O otherwise. The final image representation c is ob-
tained by applying max-pooling to {z1,...,24,..., 21}
To show the significance of z”, we provide examples of
image representation vectors by ML coding in Fig. 3. The
final image representations with both z* and p are sparser
than initial representations with only . Moreover, average
lo distances between images of the same category (differ-
ent categories) based on the final representations are smaller
(larger) than those by initial representations. This can be a
clear evidence that our CD-BCC successfully captures dis-
criminative information from textual words via z*.

wg = argmax |zg — w ' plla + N|w]1

T
zg = qu

3.3. Non-parametric Extension

We note that we need to manually setup the following
three parameters: the final dictionary size K, the number of
descriptor distributions V' and the number of word clusters
L. As long as we are interested in only the final dictionary
size K, the other two, V' and L, are parameters. Adjusting
such parameters often requires much effort because these
are manually determined through a number of preliminary
experiments. We therefore consider a non-parametric ex-
tension of CD-BCC to estimate these two parameters auto-
matically based on the training data.
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Figure 3. Examples of image representations encoded with the vi-
sual dictionary trained by our CD-BCC on UIUC-Sport dataset.
Image representation vectors of three images from each of “polo”
and “snow boarding” categories are shown. The third and fourth
columns show initial and final image representations computed by
Eq. (1) (377 dimensional) and Eq. (2) (128 dimensional) respec-
tively. Different colors mean the results of different images. We
also show average intra- and cross-category ls distances. This is
best viewed in color.

Consider Step 2 and Step 3 (a) in the generative pro-
cess. Let us assume a stochastic process p(w;|wi.i—1;7)
instead of Dir(/V') and Mult(w). Because these two are
Dirichlet-multinomial conjugate pair, they can be immedi-
ately replaced by Chinese restaurant process (CRP) [23] by
taking infinite limit V' — oo of p(w; |wy.i—157):

i mye >0
plwi = tlwrii—1;7) {ZEYJW ( ih ) )
P e (otherwise)
Similarly p(z}’[2{";_1;7) is also given as
(> 0)
p(z;”“ = b|z"i’fj71;n) x {9 ,17+” ( t; se) (6)
1, (otherwise

where m;’ is the number of words assigned to b-th clus-
ter. Based on these, collapsed Gibbs sampler for the non-
parametric version is derived immediately (see Appendix).
In all the experiments conducted in the next section, we con-
sistently use this non-parametric version. Note that our CD-
BCC always requires V' > K. To satisfy it, we initialize
V = K, and in case if V' < K during iterations then we
sample (K — V') new clusters at a time”.

4. Experimental Results

We analyze the performance of our approach for the
tasks of image categorization and CBIR using five different
datasets. For all the experiments, we use only a single image

2 Actually such a situation has never been observed through all the ex-
periments conducted in this paper.
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Table 1. Categorization accuracy on UIUC-Sport and LabelMe
datasets. The results of [14, 24] are directly extracted from each
paper. For the results of K-means, four co-clustering methods and
Ours, average over 50 runs (different training/testing splits) are
reported. K = 256.

] | UIUC-Sport | LabelMe |

K-means 652+ 14 749 £ 0.9
Wang [24] 66 76

Li[14] 69.1 76.3

SCC [3] 747+ 1.1 82.1£0.8
ITCC [4] 7294+ 1.2 | 80.5+0.8
NMTF [5] 6294+ 1.6 | 799+ 1.1
BCC [22 69.1£1.6 | 825+0.8
Ours 751 +14 | 83.1+09

descriptor for our CD-BCC, i.e., 128-dimensional grayscale
SIFT extracted in a dense sampling manner, and fix hyper-
parameters of our CD-BCC as v = 100, = 5, ( = 5,
Yo =0.117,%, = 0.11, 8 = 1, and ¢ = 1 (other settings
gave similar performance).
4.1. Image Categorization

We first analyze the image categorization performance
on three datasets for event, scene, and object categorization
tasks: UIUC-Sport, LabelMe, and Caltech101. The perfor-
mance is measured by image categorization accuracy.

4.1.1 Evaluation on UIUC-Sport & LabelMe

We first evaluate our approach on UIUC-Sport’ and
LableMe*. These datasets are selected for direct compar-
ison to a state-of-the-art Bayesian multimodal topic model
for dictionary learning [14]. In addition, we compare our
approach to single-modal (image only) K-means, another
recent Bayesian multimodal topic model [24], and four co-
clustering methods (SCC [3], ITCC [4], NMTF [5], and
BCC [22]). These existing co-clustering methods require
both variables to be discrete, so we first apply K-means
based vector quantization to discretize image descriptors
into 2K codewords, and then apply each co-clustering
method to derive final dictionaries of size K. We follow
the same setting as [14, 24]:

UIUC-Sport: This dataset contains 1579 images of 8 sports
categories: “badminton” (200 images), “bocce” (137 im-
ages), “croquet” (236 images), “polo” (182 images), “rock
climbing” (194 images), “rowing” (250 images), “sailing”
(190 images), and “snow boarding” (190 images). We ran-
domly split each class evenly and construct the training data
and the testing data. Each image has 15 textual words on av-
erage. We select the 30 most frequent words (W = 30).
LabelMe: This dataset is a subset of LabelMe that has 8 im-
age categories: “coast”, “forest”, “highway”, “inside city”,
“mountain”, “open country”, “street” and “tall building”.
We randomly select 1600 images in total (200 images for
each class), and randomly separate them to 800 training
data and 800 testing data (100 images for each class in each

3http://vision.stanford.edu/lijiali/event_dataset/

‘http://labelme.csail.mit.edu/
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Sport, and (c) [14] and (d) ours on LabelMe.

’ Cluster ‘ ‘Words

#1 battledore, audience, net, wall, lamp, window,
floor, stuff, athlete

#2 oar, rowboat

#3 sailingboat, sky, building, house, water

#4 rope

#5 spectator, player

#6 mallet, wicket, croquet, ball, tree, grass, plant

#7 horse

#8 skier, ski

(b)
Figure 5. Co-clustering results on UIUC-Sport. The table above
shows word clusters. (a-c) Example of image descriptors (red cir-
cles) correlated to the word cluster #7 (“horse”) are overlaid on
images.
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data). Each image has 11 textual words on average. We
remove ones that occur less than 3 times, and obtain a vo-
cabulary of 186 unique words (W = 186).

For both datasets, we randomly sample 50000 image de-
scriptors (SIFT) extracted from the training data, and use
them for visual dictionary learning. For coding, we employ
ML coding (see 3.2) for CD-BCC and vector quantization
for K-means and co-clustering methods. We use kNN clas-
sifiers (k=5) based on the similarity of image representation
vectors encoded by the learned dictionary.

The results are shown in Table 1. First, our approach out-
performs all the other methods with statistical significance
p < 0.05. This may be because that the unified learning
of the intermediate descriptor distributions and their corre-
lation to the textual words allows the visual dictionary to
capture both visual and textual properties of the training
images. Second, most of the multimodal learning meth-
ods outperform K-means. This result suggests that text
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butions V' at each iteration step.
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information significantly improves the performance of vi-
sual dictionaries for image categorization. Third, most co-
clustering methods show higher performance than the state-
of-the-art Bayesian dictionary learning [14]. This suggests
that co-clustering can be more promising than multimodal
topic modeling for multimodal visual dictionary learning.
Note that [24] compared their model to two other Bayesian
topic models, CorrLDA [2] and a hierarchical Bayesian
model [6], and consistently outperformed these two meth-
ods. Therefore our CD-BCC is also better than these two
models in the same setting.

We also report confusion matrices in Fig. 4. Our ap-
proach successfully identifies most categories correctly. On
UIUC-Sport, we found that “bocce” is still difficult to dis-
tinguish from others. However, ours better distinguishes
some categories than the method in [14] (e.g., “polo” from
“croquet” and “badminton”). On LabelMe, some category
pairs like “coast” and “open country” are commonly con-
fused by both methods. However, our approach better dis-
tinguishes “street” from “inside city” and “highway” from
“open country”. One reason can be that CD-BCC success-
fully discovers image descriptor clusters related to a specific
image category via co-clustered textual words. For instance,
as shown in Fig. 5, our CD-BCC discovered a word cluster
related to “horse” (#7), which is clearly relevant to “polo”
but irrelevant to “croquet” and “badminton”. Fig. 5(a-c)
show that image descriptors correlated to the “horse” word
cluster are actually extracted from the parts of horses.

We also analyze the performance when varying dictio-
nary size K and the number of training samples (image
descriptors). The results are shown in Fig. 6 (a) and (b),
respectively. Similar to the most existing visual dictionary
learning methods, the performance is somewhat sensitive to
K. On the other hand, surprisingly, the performance is not



Table 2. Categorization accuracy on Caltech101 dataset. Top two
scores in each setting are highlighted.

] | #train=5 | 10 | 15 [ 20 [ 25 | 30 |

ScSPM [27] - - 67.0 - - 73.2
K-SVD [1] 49.8 59.8 | 65.2 | 68.7 | 71.0 | 73.2
LLC [25] 51.2 59.8 | 654 | 67.7 | 70.2 | 73.4
SCC [3] 51.2 60.4 | 652 | 67.7 | 69.5 | 72.8
ITCC [4] 51.1 588 | 65.8 | 67.5 | 70.2 | 73.0
NMTF [5] 49.9 553 | 59.6 | 62.8 | 653 | 69.3
BCC [22] 50.2 60.1 | 65.2 | 68.1 | 70.3 | 73.2
Ours 51.5 60.5 | 66.2 | 68.6 | 70.4 | 73.2

significantly affected by the number of training samples in
spite of the fact that we have randomly chosen training sam-
ples. The major reason can be that our CD-BCC trains a
visual dictionary based on a statistical relationship between
distributions of image descriptors and textual words, which
can be stable (robust) against the number of training sam-
ples as well as ways to choose them.

Fig. 7 shows estimated V' (the number of descriptor dis-
tributions) and L (the number of clusters for text words) at
each Gibbs sampler iteration step. For both datasets, V" and
L are converged after about 200 iterations.

4.1.2 Evaluation on Caltech101 Dataset

We next analyze the performance on Caltechl101 dataset.
We select this dataset because this is frequently used to eval-
uate the performance of visual dictionary learning meth-
ods. We follow the common experimental settings for this
dataset, i.e., we use 5, 10, 15, 20, 25 and 30 images per
category for training visual dictionaries and classifiers, and
test on the rest. Caltech101 originally does not include any
textual words, we thus directly use the class labels as textual
words. We employ sparse coding with SPM [13] and linear
SVM to perform image categorization based on the visual
dictionary trained by our CD-BCC. We compare ours to Sc-
SPM [27] (sparse coding and SPM with K-means dictionary
+ linear SVM), two visual dictionary learning methods (K-
SVD [1] and LLC [25]), and four co-clustering based meth-
ods (SCC, ITTC, NMTF, and BCC). We fix K = 1024.

The results are shown in Table 2. Our CD-BCC is highly
competitive to the other methods and shows the best perfor-
mance when the number of training images is small. Note
that our method is also comparable to some other recent su-
pervised visual dictionary learning methods like [12, 30].
The performance may be further improved by combining
our visual dictionary with more sophisticated coding ap-
proaches like LLC.

4.2. CBIR

We analyze CBIR performance of our approach. We
used the following FLICKR and WIKIPEDIA datasets:
FLICKR: This dataset’ has originally been developed
based on Pascal VOC 2007 Flickr images for semi-
supervised multimodal learning [7]. We use this dataset
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Figure 8. CBIR performance (MAP) on (a) FLICKR dataset and
(b) WIKIPEDIA dataset. Results on various dictionary sizes K €
{8,16,32, 64,128, 256,512} are reported.

because this contains images with tags and manually an-
notated class labels, well fits to our scenario. Total 9963
images of 20 categories of objects (multiply labeled) are di-
vided into training/testing sets by the publisher: the training
set (for visual dictionary learning) consists of 5011 images
and 3095 out of them are associated with at least one tag
from 804 unique tags (/W = 804), where the testing set has
4952 images.

WIKIPEDIA: This dataset consists of Featured Articles in
Wikipedia6, and first used in [21] for image-text retrieval
task. We select this dataset because this contains Wikipedia
images, texts, and class labels just like FLICKR dataset.
Total 3482 articles consists of 21672 images were collected.
Each article is categorized into one out of 30 classes defined
by Wikipedia. We evenly and randomly split each class to
construct training and testing datasets. For textual words,
we first extracted only noun terms from all the documents,
and selected 300 most frequent words (W = 300).

We choose one from the test dataset as a query image,
and try to retrieve images from the rest in the same category
with the query. We use histogram intersection to perform
retrieval, and use mean average precision (MAP) to mea-
sure the performance. We compare our method to K-means
and four existing co-clustering methods (with BoOVW rep-
resentation). We employ ML coding for this experiment.

Fig. 8 shows the results. Except for the case of K = 8
on FLICKR, our approach shows the best performance. In
most cases, co-clustering approaches achieve higher MAP
than K-means. These results suggest that (i) leveraging tex-
tual words via co-clustering is effective for CBIR, and (ii)
our CD-BCC is the promising co-clustering approach for
this purpose. Fig. 9 shows precisions under different num-
ber of retrieved images. Our approach consistently outper-
forms all the other methods.

5. Conclusion

Focusing on the scenario where images are associated
with textual words, we presented a Bayesian approach to
multimodal visual dictionary learning. We proposed a novel
Bayesian co-clustering, CD-BCC, to learn a single visual
dictionary based on the distributions of image descriptors
over the continuous space, as well as the relationship be-
tween image descriptors and textual words. Extensive ex-
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Figure 9. Precision at different numbers of retrieved images: (a) K = 64 and (b) 256 on FLICKR, and (¢c) K = 64 and (d) 256 on
WIKIPEDIA.

periments validated values of textual words in improving
visual dictionary learning, where our model showed supe-
rior performance over several recent methods. Our future
work will focus on exploring faster alternative inference al-
gorithms like variational method or slice sampling.

A. Sampling Distribution

The sampling distributions for w, 2%, and z" are:

(wi =t X, Rw_;, 2%, 2Y)

mt —1 + V/V)
3 1/2 1 B o
X { |E t||mt/2 exp {—2trace (5,18 — ZtututT)} }
KxL i ) (me,1+8)
R" F _ 7
H mkl+6)(nk71¢+1) )
p(z) = a|X,R,w, 2%, 2V)

o (m§ _, +¢/K)

L ¢ (ma,1+8)
X Hr(ma,z +B) (W) (8
p(zj = b X, R,w, 2%, 2% )
o (miy_; +n/L)

K (mp,p+5)

¢ ) ‘
I _ 9
1;[ (mup + 6) (nk,bqﬁ—l— T )

where, m./m; _; is the number of image descriptors in t-
th descriptor distribution with/without z-th image descrip-
tor. my; and ng; are the sum of r, ; and the number of
elements in (k,[)-th block. mf _ (mj’_.) is the num-
ber of descriptor distributions (téxtual \A;ords) in k-th (-
th) cluster without v-th descriptor distribution (j-th textual
word). i IO S wiet Tis St =
St =gt S and RM =TT, skl TS
I" is Gamma function. The non-parametric version of sam-
pling distributions (discussed in Section 3.3) can also be de-
rived by replacing the first parentheses in Eq. (7) and Eq.
(9) by Eq. (5) and Eq. (6) respectively. For the detail of the
derivations, see the supplementary material.
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