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Abstract

Symmetric Positive Definite (SPD) matrices have be-
come popular to encode image information. Accounting for
the geometry of the Riemannian manifold of SPD matrices
has proven key to the success of many algorithms. How-
ever, most existing methods only approximate the true shape
of the manifold locally by its tangent plane. In this paper,
inspired by kernel methods, we propose to map SPD matri-
ces to a high dimensional Hilbert space where Euclidean
geometry applies. To encode the geometry of the manifold
in the mapping, we introduce a family of provably positive
definite kernels on the Riemannian manifold of SPD ma-
trices. These kernels are derived from the Gaussian ker-
nel, but exploit different metrics on the manifold. This lets
us extend kernel-based algorithms developed for Euclidean
spaces, such as SVM and kernel PCA, to the Riemannian
manifold of SPD matrices. We demonstrate the benefits of
our approach on the problems of pedestrian detection, ob-
ject categorization, texture analysis, 2D motion segmenta-
tion and Diffusion Tensor Imaging (DTI) segmentation.

1. Introduction
Many mathematical entities in computer vision do not

form vector spaces, but reside on non-linear manifolds. For

instance, 3D rotation matrices form the SO(3) group, linear

subspaces of the Euclidean space form the Grassmann man-

ifold, and normalized histograms form the unit n-sphere

Sn. Symmetric positive definite (SPD) matrices are another

class of entities lying on a Riemannian manifold. Exam-

ples of SPD matrices in computer vision include covariance

region descriptors [19], diffusion tensors [13] and structure

tensors [8].

Despite the abundance of such manifold-valued data,

computer vision algorithms are still primarily developed for

data points lying in Euclidean space (Rn). Applying these

algorithms directly to points on non-linear manifolds, and

thus neglecting the geometry of the manifold, often yields
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poor accuracy and undesirable effects, such as the swelling

of diffusion tensors in the case of SPD matrices [2, 13].

Recently, many attempts have been made to general-

ize algorithms developed for R
n to Riemannian mani-

folds [20, 8]. The most common approach consists in com-

puting the tangent space to the manifold at the mean of the

data points to obtain a Euclidean approximation of the man-

ifold [20]. The logarithmic and exponential maps are then

iteratively used to map points from the manifold to the tan-

gent space, and vice-versa. Unfortunately, the resulting al-

gorithms suffer from two drawbacks: The iterative use of

the logarithmic and exponential maps makes them compu-

tationally expensive, and, more importantly, they only ap-

proximate true distances on the manifold by Euclidean dis-

tances on the tangent space.

To overcome this limitation, one could think of follow-

ing the idea of kernel methods, and embed the manifold

in a high dimensional Reproducing Kernel Hilbert Space

(RKHS), to which many Euclidean algorithms can be gen-

eralized. In R
n, kernel methods have proven effective for

many computer vision tasks. The mapping to a RKHS relies

on a kernel function, which, according to Mercer’s theorem,

must be positive definite. The Gaussian kernel is perhaps

the most popular example of such positive definite kernels

on R
n. It would therefore seem natural to adapt this kernel

to account for the geometry of Riemannian manifolds by re-

placing the Euclidean distance in the Gaussian kernel with

the geodesic distance on the manifold. However, a kernel

derived in this manner is not positive definite in general.

In this paper, we aim to generalize the successful and

powerful kernel methods to manifold-valued data. In partic-

ular, we focus on the space of d× d SPD matrices, Sym+
d ,

which, endowed with an appropriate metric, forms a Rie-

mannian manifold. We present a family of provably pos-

itive definite kernels on Sym+
d derived by accounting for

the non-linear geometry of the manifold.

More specifically, we propose a theoretical framework

to analyze the positive definiteness of the Gaussian kernel

generated by a distance function on any non-linear mani-

fold. Using this framework, we show that a family of met-

rics on Sym+
d define valid positive definite Gaussian ker-

nels when replacing the Euclidean distance with the dis-
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tance corresponding to these metrics. A notable special case

of such metrics is the log-Euclidean metric, which has been

shown to define a true geodesic distance on Sym+
d . We

demonstrate the benefits of our manifold-based kernel by

exploiting it in four different algorithms. Our experiments

show that the resulting manifold kernel methods outperform

the corresponding Euclidean kernel methods, as well as the

manifold methods that use tangent space approximations.

2. Related Work
SPD matrices find a variety of applications in computer

vision. For instance, covariance region descriptors are used

in object detection [20], texture classification [19], ob-

ject tracking, action recognition and face recognition [9].

Diffusion Tensor Imaging (DTI) was one of the pioneer-

ing fields for the development of non-linear algorithms on

Sym+
d [13, 2]. In optical flow estimation and motion seg-

mentation, structure tensors are often employed to encode

important image features, such as texture and motion [8].

In recent years, several optimization algorithms on man-

ifolds have been proposed for Sym+
d . In particular, Log-

itBoost on a manifold was introduced for binary classifica-

tion [20]. This algorithm has the drawbacks of approximat-

ing the manifold by tangent spaces and not scaling with the

number of training samples due to the iterative use of expo-

nential and logarithmic maps. Making use of our positive

definite kernels yields more efficient and accurate classifi-

cation algorithms on non-linear manifolds. Dimensional-

ity reduction and clustering on Sym+
d was demonstrated

in [8] with Riemannian versions of the Laplacian Eigen-

maps (LE), Locally Linear Embedding (LLE) and Hessian

LLE (HLLE). Clustering was performed in a low dimen-

sional space after dimensionality reduction, which does not

necessarily preserve all the information in the original data

distribution. We instead utilize our kernels to perform clus-

tering in a higher dimensional RKHS that embeds Sym+
d .

The use of kernels on Sym+
d has previously been ad-

vocated for locality preserving projections [10] and sparse

coding [9]. In the first case, the kernel, derived from the

affine-invariant distance, is not positive definite in gen-

eral [10]. In the second case, the kernel uses the Stein diver-

gence, which is not a true geodesic distance, as the distance

measure and is positive definite only for some values of the

Gaussian bandwidth parameter σ [9]. For all kernel meth-

ods, the optimal choice of σ largely depends on the data

distribution and hence constraints on σ are not desirable.

Moreover, many popular automatic model selection meth-

ods require σ to be continuously variable [5].

Other than for satisfying Mercer’s theorem to generate a

valid RKHS, positive definiteness of the kernel is a required

condition for the convergence of many kernel based algo-

rithms. For instance, the Support Vector Machine (SVM)

learning problem is convex only when the kernel is pos-

itive definite [14]. Similarly, positive definiteness of all

participating kernels is required to guarantee the convexity

in Multiple Kernel Learning (MKL) [22]. Although the-

ories have been proposed to exploit non-positive definite

kernels [12, 23], they have not experienced a widespread

success. Many of these methods first enforce positive def-

initeness of the kernel by flipping or shifting its negative

eigenvalues [23]. As a consequence, they result in a loss of

information and become inapplicable with large sized ker-

nels that are not uncommon in learning problems.

Recently, mean-shift clustering with a positive definite

heat kernel on Riemannian manifolds was introduced [4].

However, due to the mathematical complexity of the kernel

function, computing it is not tractable and hence only an

approximation of the true kernel was used in the algorithm.

Here, we introduce a family of provably positive definite

kernels on Sym+
d , and show their benefits in various kernel-

based algorithms and on several computer vision tasks.

3. Background
In this section, we introduce some notions of Rieman-

nian geometry on the manifold of SPD matrices, and dis-

cuss the use of kernel methods on non-linear manifolds.

3.1. The Riemannian Manifold of SPD Matrices

A differentiable manifold M is a topological space that

is locally similar to Euclidean space and has a globally de-

fined differential structure. The tangent space at a point p
on the manifold, TpM, is a vector space that consists of the

tangent vectors of all possible curves passing through p.

A Riemannian manifold is a differentiable manifold

equipped with a smoothly varying inner product on each

tangent space. The family of inner products on all tangent

spaces is known as the Riemannian metric of the manifold.

It enables to define various geometric notions on the mani-

fold such as the angle between two curves, or the length of

a curve. The geodesic distance between two points on the

manifold is defined as the length of the shortest curve con-

necting the two points. Such shortest curves are known as

geodesics and are analogous to straight lines in R
n.

The space of d × d SPD matrices, Sym+
d , is mostly

studied when endowed with a Riemannian metric and thus

forms a Riemannian manifold [13, 1]. In such a case, the

geodesic distance induced by the Riemannian metric is a

more natural measure of dissimilarity between two SPD

matrices than the Euclidean distance. Although a number

of metrics1 on Sym+
d have been recently proposed to cap-

ture its non-linearity, not all of them arise from a smoothly

varying inner product on tangent spaces and thus define a

true geodesic distance. The two most widely used distance

1The term metric refers to a distance function that satisfies the four met-

ric axioms, while Riemannian metric refers to a family of inner products.
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measures are the affine-invariant distance [13] and the log-

Euclidean distance [2]. The main reason for their popularity

is that they are true geodesic distances induced by Rieman-

nian metrics. For a review of metrics on Sym+
d , the reader

is referred to [7].

3.2. Kernel Methods on Non-linear Manifolds

Kernel methods in R
n have proven extremely effective in

machine learning and computer vision to explore non-linear

patterns in data. The fundamental idea of kernel methods is

to map the input data to a high (possibly infinite) dimen-

sional feature space to obtain a richer representation of the

data distribution.

This concept can be generalized to non-linear manifolds

as follows: Each point x on a non-linear manifold M is

mapped to a feature vector φ(x) in a Hilbert space H, the

Cauchy completion of the space spanned by real-valued

functions defined onM. A kernel function k : (M×M)→
R is used to define the inner product on H, thus making it

a Reproducing Kernel Hilbert Space (RKHS). According to

Mercer’s theorem, however, only positive definite kernels

define valid RKHS.

Since, in general, Riemannian manifolds are non-linear,

many algorithms designed for R
n cannot directly be uti-

lized on them. To overcome this, most existing methods

map the points on the manifold to the tangent space at one

point (usually the mean point), thus obtaining a Euclidean

representation of the manifold-valued data. Unfortunately,

such a mapping does not globally preserve distances and

hence yields a poor representation of the original data distri-

bution. In contrast, many algorithms on R
n can be directly

generalized to Hilbert spaces, where vector norms and in-

ner products are defined. As a consequence, there are two

advantages in using kernel functions to embed a manifold

in an RKHS. First, the mapping transforms the non-linear

manifold into a (linear) Hilbert space, thus making it pos-

sible to utilize algorithms designed for Rn with manifold-

valued data. Second, as evidenced by the theory of kernel

methods on R
n, it yields a much richer representation of the

original data distribution. These benefits, however, depend

on the condition that the kernel be positive definite. We ad-

dress this in the next section.

4. Positive Definite Kernels on Manifolds
In this section, we first present a general theory to ana-

lyze the positive definiteness of Gaussian kernels defined on

manifolds and then introduce a family of provably positive

definite kernels on Sym+
d .

4.1. The Gaussian Kernel on a Metric Space

The Gaussian radial basis function (RBF) has proven

very effective in Euclidean space as a positive definite ker-

nel for kernel based algorithms. It maps the data points

to an infinite dimensional Hilbert space, which, intuitively,

yields a very rich representation. In R
n, the Gaussian kernel

can be expressed as kG(xi,xj) := exp(‖xi − xj‖2/2σ2),
which makes use of the Euclidean distance between two

data points xi and xj . To define a kernel on a Rieman-

nian manifold, we would like to replace the Euclidean dis-

tance by a more accurate geodesic distance on the manifold.

However, not all geodesic distances yield positive definite

kernels.

We now state our main theorem, which states sufficient

and necessary conditions to obtain a positive definite Gaus-

sian kernel from a distance function.

Theorem 4.1. Let (M,d) be a metric space and define k :
(M × M) → R by k(xi, xj) := exp(−d2(xi, xj)/2σ2).
Then, k is a positive definite kernel for all σ > 0 if and
only if there exists an inner product space V and a function
ψ :M → V such that, d(xi, xj) = ‖ψ(xi)− ψ(xj)‖V .

Proof. The proof of Theorem 4.1 follows a number of steps

detailed below. We start with the definition of positive and

negative definite functions [3].

Definition 4.2. Let X be a nonempty set. A function f :
(X × X )→ R is called a positive (resp. negative) definite
kernel if and only if f is symmetric and

m∑
i,j=1

cicjf(xi, xj) ≥ 0 (resp. ≤ 0)

for all m ∈ N, {x1, . . . , xm} ⊆ X and {c1, ..., cm} ⊆ R,
with

∑m
i=1 ci = 0 in the negative definite case.

Given this definition, we make use of the following im-

portant theorem due mainly to Schoenberg [16].

Theorem 4.3. LetX be a nonempty set and f : (X ×X )→
R be a function. The kernel exp(−tf(xi, xj)) is positive
definite for all t > 0 if and only if f is negative definite.

Proof. We refer the reader to Chapter 3, Theorem 2.2 of [3]

for a detailed proof of this theorem.

Although the origin of this theorem dates back to

1938 [16], it has received little attention in the computer

vision community. Theorem 4.3 implies that positive def-

initeness of the Gaussian kernel induced by a distance is

equivalent to negative definiteness of the squared distance

function. Therefore, to prove the positive definiteness of k
in Theorem 4.1, we only need to prove that d2 is negative

definite. We formalize this in the next theorem:

Theorem 4.4. Let X be a nonempty set, V be an inner
product space, and ψ : X → V be a function. Then, f :
(X ×X )→ R defined by f(xi, xj) := ‖ψ(xi)− ψ(xj)‖2V ,
is negative definite.

757575



Metric Name Formula
Geodesic

Distance

Positive Definite

Gaussian Kernel ∀σ > 0

Log-Euclidean ‖ log(S1)− log(S2)‖F Yes Yes
Affine-Invariant ‖ log(S−1/2

1 S2S
−1/2
1 )‖F Yes No

Cholesky ‖ chol(S1)− chol(S2)‖F No Yes

Power-Euclidean 1
α‖Sα

1 − Sα
2 ‖F No Yes

Root Stein Divergence
[
log det

(
1
2S1 +

1
2S2

)− 1
2 log det(S1S2)

]1/2
No No

Table 1: Properties of different metrics on Sym+
d . We analyze positive definiteness of Gaussian kernels generated by

different metrics. While Theorem 4.1 applies to the metrics claimed to generate positive definite Gaussian kernels, examples

of non-positive definite Gaussian kernels exist for other metrics.

Proof. Based on Definition 4.2, we need to prove that∑m
i,j=1 cicjf(xi, xj) ≤ 0 for all m ∈ N, {x1, . . . , xm} ⊆

X and {c1, ..., cm} ⊆ R with
∑m

i=1 ci = 0.

m∑
i,j=1

cicjf(xi, xj) =

m∑
i,j=1

cicj

∥∥∥ψ(xi)− ψ(xj)
∥∥∥
2

V

=
m∑

i,j=1

cicj

〈
ψ(xi)− ψ(xj), ψ(xi)− ψ(xj)

〉
V

=
m∑
j=1

cj

m∑
i=1

ci

〈
ψ(xi), ψ(xi)

〉
V

− 2
m∑

i,j=1

cicj

〈
ψ(xi), ψ(xj)

〉
V

+
m∑
i=1

ci

m∑
j=1

cj

〈
ψ(xj), ψ(xj)

〉
V

= −2
m∑

i,j=1

cicj

〈
ψ(xi), ψ(xj)

〉
V

= −2
∥∥∥∥∥

m∑
i=1

ciψ(xi)

∥∥∥∥∥
2

V
≤ 0.

Combining Theorem 4.4 and Theorem 4.3 proves the

forward direction of Theorem 4.1, which is useful for the

work presented in this paper. The converse can be proved

by combining Theorem 4.3 and Proposition 3.2 in Chapter

3 of [3], we omit the details due to space limitations.

4.2. Kernels on Sym+
d

We now discuss the different metrics on Sym+
d that can

be used to define positive definite Gaussian kernels. In par-

ticular, we focus on the log-Euclidean distance which is a

true geodesic distance on Sym+
d [2].

The log-Euclidean distance for Sym+
d was derived by

exploiting the Lie group structure of Sym+
d under the

group operation Xi 	 Xj := exp(log(Xi) + log(Xj))
for Xi,Xj ∈ Sym+

d where exp(·) and log(·) denote the

usual matrix exponential and logarithm operators (not to be

confused with exponential and logarithmic maps of the log-

Euclidean Riemannian metric, which are point dependent

and take more complex forms [1]). Under the log-Euclidean

framework, a geodesic connecting Xi,Xj ∈ Sym+
d is

defined as γ(t) = exp((1 − t) log(Xi) + t log(Xj)) for

t ∈ [0, 1]. The geodesic distance between Xi and Xj can

be expressed as

dg(Xi,Xj) = ‖ log(Xi)− log(Xj)‖F , (1)

where ‖ · ‖F denotes the Frobenius matrix norm induced by

the Frobenius matrix inner product 〈., .〉F .

The main reason to exploit the log-Euclidean distance in

our experiments is that it defines a true geodesic distance

that has proven an effective distance measure on Sym+
d .

Furthermore, it yields a positive definite Gaussian kernel as

stated in the following corollary to Theorem 4.1:

Corollary 4.5 (Theorem 4.1). Let kR : (Sym+
d ×

Sym+
d ) → R : kR(Xi,Xj) := exp(−d2g(Xi,Xj)/2σ

2),
with dg(Xi,Xj) = ‖ log(Xi)− log(Xj)‖F . Then, kR is a
positive definite kernel for all σ ∈ R.

Proof. Directly follows Theorem 4.1 with the Frobenius

matrix inner product.

A number of other metrics have been proposed for

Sym+
d [7]. The definitions and properties of these metrics

are summarized in Table 1. Note that only some of them

were derived by considering the Riemannian geometry of

the manifold and hence define true geodesic distances. Sim-

ilar to the log-Euclidean metric, from Theorem 4.1, it di-

rectly follows that the Cholesky and power-Euclidean met-

rics also define positive definite Gaussian kernels for all val-

ues of σ. Note that some metrics may yield a positive def-

inite Gaussian kernel for some value of σ only. This, for

instance, was shown in [18] for the root Stein divergence

metric. No such result is known for the affine-invariant met-

ric. Constraints on σ are nonetheless undesirable, since σ
should reflect the data distribution and automatic model se-

lection algorithms require σ to be continuously variable [5].
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5. Kernel-based Algorithms on Sym+
d

A major advantage of being able to compute positive def-

inite kernels on a Riemannian manifold is that it directly al-

lows us to make use of algorithms developed for Rn, while

still accounting for the geometry of the manifold. In this

section, we discuss the use of four kernel-based algorithms

on Sym+
d . The resulting algorithms can be thought of as

generalizations of the original ones to non-linear manifolds.

In the following, we use k(., .), H and φ(X) to denote the

kernel function defined in Theorem 4.1, the RKHS gener-

ated by k, and the feature vector inH to which X ∈ Sym+
d

is mapped, respectively. Although we use φ(X) for expla-

nation purposes, following the kernel trick, it never needs

be explicitly computed.

5.1. Kernel Support Vector Machines on Sym+
d

We first consider the case of using kernel SVM for bi-

nary classification on a manifold. Given a set of training

examples {(Xi, yi)}m1 , where Xi ∈ Sym+
d and the label

yi ∈ {−1, 1}, kernel SVM searches for a hyperplane in H
that separates the feature vectors of the positive and negative

classes with maximum margin. The class of a test point X
is determined by the position of the feature vector φ(X) in

H relative to the separating hyperplane. Classification with

kernel SVM can be done very fast, since it only requires to

evaluate the kernel at the support vectors.

Kernel SVM on Sym+
d is much simpler to implement

and less computationally demanding in both training and

testing phases than the current state-of-the-art binary clas-

sification algorithms on Sym+
d , such as LogitBoost on a

manifold [20], which involves iteratively combining weak

learners on different tangent spaces. Weighted mean calcu-

lation in LogitBoost on a manifold involves an extremely

expensive gradient descent procedure at each boosting it-

eration, which makes the algorithm scale poorly with the

number of training samples. Furthermore, while LogitBoost

learns classifiers on tangent spaces used as Euclidean ap-

proximates of the manifold, our approach makes use of a

rich high dimensional feature space. As will be shown in

our experiments, this yields better classification results.

5.2. Multiple Kernel Learning on Sym+
d

The core idea of Multiple Kernel Learning (MKL) is to

combine kernels computed from different descriptors (e.g.,

image features) to obtain a kernel that optimally separates

two classes for a given classifier. Here, we follow the for-

mulation of [22], and make use of an SVM classifier. As a

feature selection method, MKL has proven more effective

than conventional feature selection methods such as wrap-

pers, filters and boosting [21].

More specifically, given training examples {(xi, yi)}m1 ,

where xi ∈ X , yi ∈ {−1, 1}, and a set of descriptor gener-

ating functions {gj}N1 where gj : X → Sym+
d , we seek to

learn a binary classifier f : X → {−1, 1} by selecting and

optimally combining the different descriptors generated by

g1, . . . , gN . Let K(j) be the kernel matrix generated by gj

and k as K
(j)
pq = k(gj(xp), gj(xq)). The combined kernel

can be expressed as K∗ =
∑

j λjK
(j), where λj ≥ 0 for

j = 1 . . . N guarantees the positive definiteness of K∗. The

weights λ can be learned using a min-max optimization pro-

cedure with an L1 regularizer on λ to obtain a sparse com-

bination of kernels. For more details, we refer the reader

to [22] and [21]. Note that convergence of MKL is only

guaranteed if all the kernels are positive definite.

5.3. Kernel PCA on Sym+
d

We now describe the key concepts of kernel PCA on

Sym+
d . Kernel PCA is a non-linear dimensionality reduc-

tion method [17]. Since it works in feature space, kernel

PCA may, however, extract a number of dimensions that

exceeds the dimensionality of the input space. Kernel PCA

proceeds as follows: All points Xi ∈ Sym+
d of a given

dataset {Xi}mi=1 are mapped to feature vectors in H, thus

yielding the transformed set, {φ(Xi)}mi=1. The covariance

matrix of this transformed set is then computed, which re-

ally amounts to computing the kernel matrix of the original

data using the function k. An l-dimensional representation

of the data is obtained by computing the eigenvectors of

the kernel matrix. This representation can be thought of as

a Euclidean representation of the original manifold-valued

data. However, owing to our kernel, it was obtained by ac-

counting for the geometry of Sym+
d .

5.4. Kernel k-means on Sym+
d

For clustering problems, we propose to make use of ker-

nel k-means on Sym+
d . Kernel k-means maps points to a

high-dimensional Hilbert space and performs k-means on

the resulting feature space [17]. More specifically, a given

dataset {Xi}mi=1, with each Xi ∈ Sym+
d , is clustered into

a pre-defined number of groups in H, such that the sum of

the squared distances from each φ(Xi) to the nearest clus-

ter center is minimum. The resulting clusters can then act

as classes for the {Xi}mi=1 .

The unsupervised clustering method on Sym+
d proposed

in [8] clusters points in a low dimensional space after di-

mensionality reduction on the manifold. In contrast, our

method performs clustering in a high dimensional RKHS

which, intuitively, better represents the data distribution.

6. Applications and Experiments
We now present our experimental evaluation of the ker-

nel methods on Sym+
d described in Section 5. In the re-

mainder of this section, we use Riemannian kernel and Eu-
clidean kernel to refer to the kernel defined in Corollary 4.5

and the standard Euclidean Gaussian kernel, respectively.
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6.1. Pedestrian Detection

We first demonstrate the use of our Riemannian

kernel for the task of pedestrian detection with kernel

SVM and MKL on Sym+
d . Let {(Wi, yi)}mi=1 be the

training set, where each Wi ∈ R
h×w is an image

window and yi ∈ {−1, 1} is the class label (back-

ground or person) of Wi. Following [20], we use

covariance descriptors computed from the feature vector[
x, y, |Ix|, |Iy|,

√
I2x + I2y , |Ixx|, |Iyy|, arctan

(
|Ix|
|Iy|

)]
,

where x, y are pixel locations and Ix, Iy, . . . are intensity

derivatives. The covariance matrix for an image patch of

arbitrary size therefore is an 8× 8 SPD matrix. In a h× w
window W, a large number of covariance descriptors can

be computed from subwindows with different sizes and

positions sampled from W. We consider N subwindows

{wj}Nj=1 of size ranging from h/5 × w/5 to h × w, posi-

tioned at all possible locations. The covariance descriptor

of each subwindow is normalized using the covariance

descriptor of the full window to improve robustness against

illumination changes. Such covariance descriptors can be

computed efficiently using integral images [20].

Let X
(j)
i ∈ Sym+

8 denote the covariance descriptor of

the jth subwindow of Wi. To reduce this large number of

descriptors, we pick the best 100 subwindows that do not

mutually overlap by more than 75%, by ranking them ac-

cording to their variance across all training samples. Since

the descriptors lie on a Riemannian manifold, for each de-

scriptor X(j) we compute the variance across all positive

training samples as

var(X(j)) =
1

m+

∑
i:yi=1

dpg(X
(j)
i , X̄(j)) (2)

where m+ is the number of positive training samples and

X̄ is the Karcher mean of {Xi}i:yi=1 given by X̄ =

exp
(

1
m+

∑
i:yi=1 log(Xi)

)
under the log-Euclidean met-

ric. We set p = 1 in Eq.(2) to make the statistic less sensi-

tive to outliers. We then use the SVM-MKL framework de-

scribed in Section 5.2 to learn the final classifier, where each

kernel is defined on one of the 100 selected subwindows. At

test time, detection is achieved in a sliding window manner

followed by a non-maxima suppression step.

To evaluate our approach, we made use of the INRIA

person dataset [6]. Its training set consists of 2,416 posi-

tive windows and 1,280 person-free negative images, and

its test set of 1,237 positive windows and 453 negative im-

ages. Negative windows are generated by sampling negative

images [6]. We first used all positive samples and 12,800

negative samples (10 random windows from each negative

image) to train an initial classifier. We used this classifier to

find hard negative examples in the training images, and re-

trained the classifier by adding these hard examples to the
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Figure 1: Pedestrian detection. Detection-Error tradeoff

curves for the proposed manifold MKL approach and state-

of-the-art methods on the INRIA dataset. The curves for the

baselines were reproduced from [20].

training set. Cross validation was used to determine the hy-

perparameters including the parameter σ of the kernel. We

used the evaluation methodology of [6].

In Figure 1, we compare the detection-error tradeoff

(DET) curves of our approach and state-of-the-art methods.

The curve for our method was generated by continuously

varying the decision threshold of the final MKL classifier.

We also evaluated our MKL framework with a Euclidean

kernel. Note that the proposed MKL method with a Rie-

mannian kernel outperforms MKL with a Euclidean kernel,

as well as LogitBoost on the manifold. This suggests the

importance of accounting for the geometry of the manifold.

6.2. Visual Object Categorization
We next tackle the problem of unsupervised object cat-

egorization. To this end, we used the ETH-80 dataset [11]

which contains 8 categories with 10 objects each and 41

images per object. We used 21 randomly chosen images

from each object to compute the parameter σ and the rest to

evaluate clustering accuracy. For each image, we used a sin-

gle 5× 5 covariance descriptor calculated from the features

[x, y, I , |Ix| , |Iy|], where x, y are pixel locations and I ,

Ix, Iy are intensity and derivatives. To obtain object cate-

gories, the kernel k-means algorithm on Sym+
5 described

in Section 5.4 was employed to perform clustering.

One drawback of k-means and its kernel counterpart is

their sensitivity to initialization. To overcome this, we ran

the algorithm 20 times with different random initializations

and picked the iteration that converged to the minimum sum

of point-to-centroid squared distances. For kernel k-means

on Sym+
5 , distances in the RKHS were used. Note that we

assumed k to be known.

To set a benchmark, we evaluated the performance of
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Nb. of
Euclidean Cholesky Power-Euclidean Log-Euclidean

classes KM KKM KM KKM KM KKM KM KKM

3 72.50 79.00 73.17 82.67 71.33 84.33 75.00 94.83
4 64.88 73.75 69.50 84.62 69.50 83.50 73.00 87.50
5 54.80 70.30 70.80 82.40 70.20 82.40 74.60 85.90
6 50.42 69.00 59.83 73.58 59.42 73.17 66.50 74.50
7 42.57 68.86 50.36 69.79 50.14 69.71 59.64 73.14
8 40.19 68.00 53.81 69.44 54.62 68.44 58.31 71.44

Table 2: Object categorization. Sample images and percentages of correct clustering on the ETH-80 dataset using k-means

(KM) and kernel k-means (KKM) with different metrics.

both k-means and kernel k-means on Sym+
5 with different

metrics that generate positive definite Gaussian kernels (see

Table 1). For the power-Euclidean metric, we used α = 0.5,

which achieved the best results in [7]. For all non-Euclidean

metrics with (non-kernel) k-means, the Karcher mean [7]

was used to compute the centroid. The results of the dif-

ferent methods are summarized in Table 2. Manifold ker-

nel k-means with the log-Euclidean metric performs signif-

icantly better than all other methods in all test cases. These

results also outperform the results with the heat kernel re-

ported in [4]. Note, however, that [4] only considered 3 and

4 classes without mentioning which classes were used.

6.3. Texture Recognition

We then utilized our Riemannian kernel to demonstrate

the effectiveness of manifold kernel PCA on texture recog-

nition. To this end, we used the Brodatz dataset [15], which

consists of 111 different 640×640 texture images. Each im-

age was divided into four subimages of equal size, two of

which were used for training and the other two for testing.

For each training image, covariance descriptors of ran-

domly chosen 50 128× 128 windows were computed from

the feature vector [I, |Ix|, |Iy|, |Ixx| , |Iyy|] [19]. Kernel

PCA on Sym+
5 with our Riemannian kernel was then used

to extract the top l principal directions in the RKHS, and

project the training data along those directions. Given a

test image, we computed 100 covariance descriptors from

random windows and projected them to the l principal di-

rections obtained during training. Each such projection was

classified using a majority vote over its 5 nearest-neighbors.

The class of the test image was then decided by majority

voting among the 100 descriptors. Cross validation on the

training set was used to determine σ. For comparison pur-

poses, we repeated the same procedure with the Euclidean

kernel. Results obtained for these kernels and different

values of l are presented in Table 3. The better recogni-

tion accuracy indicates that kernel PCA with the Rieman-

nian kernel more effectively captures the information of the

manifold-valued descriptors than the Euclidean kernel.

Kernel
Classification Accuracy

l = 10 l = 11 l = 12 l = 15
Riemannian 95.50 95.95 96.40 96.40
Euclidean 89.64 90.09 90.99 91.89

Table 3: Texture recognition. Recognition accuracies on

the Brodatz dataset with k-NN in a l-dimensional Euclidean

space obtained by kernel PCA.

6.4. Segmentation

Finally, we illustrate the use of our kernel to segment

different types of images. First, we consider DTI segmen-

tation, which is a key application area of algorithms on

Sym+
d . We utilized kernel k-means on Sym+

3 with our Rie-

mannian kernel to segment a real DTI image of the human

brain. Each pixel of the input DTI image is a 3 × 3 SPD

matrix, which can thus directly be used as input to the al-

gorithm. The k clusters obtained by the algorithm act as

classes, thus yielding a segmentation of the image.

Figure 2 depicts the resulting segmentation along with

the ellipsoid and fractional anisotropy representations of the

original DTI image. We also show the results obtained by

replacing the Riemannian kernel with the Euclidean one.

Note that, up to some noise due to the lack of spatial

smoothing, Riemannian kernel k-means was able to cor-

rectly segment the corpus callosum from the rest of the im-

age.

We then followed the same approach to perform 2D mo-

tion segmentation. To this end, we used a spatio-temporal

structure tensor directly computed on image intensities (i.e.,

without extracting features such as optical flow). The

spatio-temporal structure tensor for each pixel is computed

as T = K ∗ (∇I∇IT ), where ∇I = (Ix, Iy, It) and K∗
indicates convolution with the regular Gaussian kernel for

smoothing. Each pixel is thus represented as a 3 × 3 SPD

matrix and segmentation can be performed by clustering

these matrices using kernel k-means on Sym+
3 .

We applied this strategy to two images taken from the

Hamburg Taxi sequence. Figure 3 compares the results of

kernel k-means with our Riemannian kernel with the results

of [8] obtained by first performing LLE, LE, or HLLE on

Sym+
3 and then clustering in the low dimensional space.
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Figure 2: DTI segmentation. Segmentation of the corpus

callosum with kernel k-means on Sym+
3 .

Note that our approach yields a much cleaner segmentation

than the baselines. This might be attributed to the fact that

we perform clustering in a high dimensional feature space,

whereas the baselines work in a reduced dimensional space.

7. Conclusion
In this paper, we have introduced a family of provably

positive definite kernels on the Riemannian manifold of

SPD matrices. We have shown that such kernels could be

used to design Riemannian extensions of existing kernel-

based algorithms, such as SVM and kernel k-means. Our

experiments have demonstrated the benefits of these kernels

over the Euclidean Gaussian kernel, as well as over other

manifold-based algorithms on several tasks. Although de-

veloped for the Riemannian manifold of SPD matrices, the

theory of this paper could apply to other non-linear man-

ifolds, provided that their metrics define negative definite

squared distances. We therefore intend to study which man-

ifolds fall into this category. We also plan to investigate the

positive definiteness of non-Gaussian kernels.
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