
3D-Based Reasoning with Blocks, Support, and Stability

Zhaoyin Jia†, Andrew Gallagher†, Ashutosh Saxena∗, Tsuhan Chen†
† School of Electrical and Computer Engineering, Cornell University.

∗ Department of Computer Science, Cornell University.
zj32@cornell.edu, andrew.c.gallagher@gmail.com, asaxena@cs.cornell.edu, tsuhan@ece.cornell.edu

Abstract

3D volumetric reasoning is important for truly under-
standing a scene. Humans are able to both segment each
object in an image, and perceive a rich 3D interpretation
of the scene, e.g., the space an object occupies, which ob-
jects support other objects, and which objects would, if
moved, cause other objects to fall. We propose a new ap-
proach for parsing RGB-D images using 3D block units for
volumetric reasoning. The algorithm fits image segments
with 3D blocks, and iteratively evaluates the scene based
on block interaction properties. We produce a 3D repre-
sentation of the scene based on jointly optimizing over seg-
mentations, block fitting, supporting relations, and object
stability. Our algorithm incorporates the intuition that a
good 3D representation of the scene is the one that fits the
data well, and is a stable, self-supporting (i.e., one that does
not topple) arrangement of objects. We experiment on sev-
eral datasets including controlled and real indoor scenar-
ios. Results show that our stability-reasoning framework
improves RGB-D segmentation and scene volumetric repre-
sentation.

1. Introduction
3D reasoning is a key ingredient for scene understand-

ing. Confronted with an image, a human perceives a 3D

interpretation of the scene rather than viewing objects as

groups of ‘flat’ color patches. Objects occupy volumes in

space, are supported and stable (in static scenes), and oc-

clude farther objects. All these properties require reasoning

beyond traditional object recognition.

In this paper, we propose a framework for reasoning with

3D volumes that incorporates the physical constraints of our

natural world. Our algorithm inputs RGB-D data, performs

3D box fitting of proposed object segments, and extracts

box representation features for scene reasoning, such as box

intersection and stability inference.

Past works for producing 3D interpretations represent

the world as a “pop-up” model, as piece-wise planar seg-

(a) (b)

(c) (d)

Figure 1. (a) The input RGB-D image. (b) Initial segmentation

from RGB-D data. (c) A 3D bounding box is fit to the 3D point

clouds of each segment, and several features are extracted for rea-

soning about stability. Unstable boxes are labeled in red. (d) The

segmentation is updated based on the stability analysis and it pro-

duces a better segmentation and a stable box representation.

ments, or as blocks constrained to rest on the ground. How-

ever, inferring a 3D interpretation is only part of the pic-

ture, a good scene interpretation should also follow physi-

cal rules: objects should be placed stably in the scene. If

we attempt to segment the scene purely based on appear-

ance or shape, we may end up with the segmentations that

do not make physical sense, as shown in Fig. 1c. Reasoning

about stability brings physics into our model, and encour-

ages more plausible segmentations and block arrangements

(see Fig. 1d).

The challenge is that objects can be arranged in com-

plicated configurations. While some recent work consid-

ers notions of support (e.g., [9, 14, 23]), they are limited to

single support or isolated objects on a flat surface. Thus,

these methods do not apply to more complicated stacking

arrangements of objects that can occur, for example, on

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.8

1

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.8

1

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.8

1

desks or other cluttered situations.

In detail, we first fit a 3D box to the point-cloud of each

segment, and then extract several features to reason about

the scene: 1) we define the box fitting error based on the 3D

points and box surfaces; 2) we ensure that 3D points lie on

the visible surfaces of the boxes given the camera position;

3) we find space violations when neighboring boxes inter-

sect one another; 4) we propose supporting relations and

the stability of the scene given the boxes. This evaluation of

the box representation allows us to refine the segmentation

based on these box properties through a learning process.

We experiment on several datasets, from a synthetic

block dataset to the NYU dataset of room scenes, and a new

Supporting Object Dataset (SOD) with various configura-

tions and supporting relations. Experimental results show

that our algorithm improves RGB-D segmentation. Fur-

thermore, the algorithm provides a 3D volumetric model of

the scene, and high-level information related to stability and

support.

To summarize, our major contributions are:

1. A volumetric representation of the RGB-D segments

using boxes.

2. Novel features based on box representation and stabil-

ity reasoning.

3. A learning framework for inferring the object segmen-

tation in the scene.

4. A new supporting objects dataset including human

segmentation and support information.

2. Related work
Geometric inference from a single color image has been

investigated in [11] and [21, 22] for estimating the depth of

each segment using only color features. The results appear

either in the format of “pop-up images” [5]: segments stand

like billboards in different depth layers, and have empty

space behind, or as piecewise planar segments [22]. The

limitation is obvious: these models do not align with our

understanding of the scene, where each object actually oc-

cupies some space in 3D, as we do in this work (Fig. 1d).

To overcome this limitation, Gupta et al. [9] proposed

a block world representation to fit 2D color segments. Seg-

ments in outdoor scenes are represented by one of eight pre-

defined box types that represent a box viewed from various

positions. Although the buildings in these outdoor scenes

often fit nicely into one of the block categories, this assump-

tion is not true for general images of stacked objects, where

the orientations of objects are not limited to eight. Zheng

et al. [25] also used blocks representation for objects, but

required interactive human labelings for non-box objects.

Xiao et al. [24] propose detecting 3D cuboids solely in RGB

images, and Bleyer et al. [2] show box fitting for improved

stereo. In this work, we use RGB-D data and fit boxes with

depth information for volumetric and stability reasoning.

In addition, researchers have studied indoor environment

reasoning on color images, where the 3D geometric infer-

ence can be approximated as a Manhattan World [6] [10]

[18]. Indoor images have strong clues of lines and planes

as well as a fixed composition of ceiling, wall and ground.

However, these approaches will likely to fail if only par-

tial or no wall/floor are captured, and at a close-up views of

small objects lying on the table.

Previous work has shown that integrating depth with

color information improves many vision problems, such as

segmentation [23], object recognition ([12], [13] and [17]),

scene labeling [15], and activity detection [16]. These al-

gorithms usually treat depth as another information channel

without explicitly reasoning about the space that an object

occupies. For example, if one object is partially observed, it

remains hollow inside. In this way, segmentation and sup-

porting inference are transformed into a classification prob-

lem in a 2.5-D space. In contrast, we explicitly reason about

full 3D models by fitting boxes to objects. This leads to a

more natural interpretation of the scene, provided by better

segmentation and support inference.

Grabner et.al. [8] analyzes the interaction between hu-

man and objects such as chairs in 3D space. The algorithm

finds the object support, and shows that a 3D model can pre-

dict well where a chair supports the person. This also helps

chair detection. However, in this paper, we perform a more

general analysis of the 3D objects in the scene through box

fitting and stability reasoning.

Jiang et al. [14] reason about stability for object arrange-

ment, but their task is different from ours: given a few ob-

jects, their goal is to place them in the environment sta-

bly. In other recent works, Silberman et al. [23] iden-

tify which image segments support which other segments.

However, reasoning about support and stability are two dif-

ferent things. Past work on support pre-supposes that seg-

mentations are already stable, and implicitly assumes that

all regions need only one region to support them, without

checking any physics-based model of stability. We use sta-

bility reasoning to verify whether a given volumetric rep-

resentation of a scene could actually support itself without

toppling, and adjust the segmentation accordingly.

We use a simple model for evaluating the stability of our

block arrangements, although more complicated physics-

based simulators [1] could be employed. One approach

could be to consider all possible reasonable segmentations,

and plug each into a simulator. However, this would result

in an exponential number of evaluations, and would still be

susceptible to noise and other unknown physical parame-

ters (e.g., coefficients of friction). Our approach for sta-

bility evaluation is based on a simple Newtonian model: the

center of gravity of each adjacent object subset must project

within its region of support. This simple model is justified

by the ideas of intuitive physics [20] that humans even have

222

Figure 2. An overview of our algorithm.

(a) (b)

Figure 3. (a) A bounding box fit based on minimum volume may

not be a good representation for RGB-D images, where only par-

tially observed 3D data is available. (b) A better fit box will not

only enclose a small volume, but also have many points near the

box surface. Data points are projected in 2D for illustration.

a sense of stability at a glance. Our algorithm is not a perfect

reflection of the physical world, but it is accurate enough to

achieve our goal of improved 3D scene parsing.

3. Approach Overview
Our input is an initial RGB-D over-segmentation. First,

we fit a 3D bounding box to each segment in the 3D point-

cloud. Next, we compute features between boxes and pro-

pose supporting relations, perform stability reasoning, and

adjust the box orientation based on the supporting sur-

faces. Finally, we extract features on the single and pairwise

neighboring segments from these 3D boxes, and model the

segmentation with an energy function based on learned re-

gressors using these features. Fig. 2 shows an overview.

4. Single box fitting

RGB-D data is observed from only one viewpoint, and

fitting 3D bounding boxes with minimum volumes [3] may

fail. Fig. 3a gives an illustration. A minimum volume box

covers all the data points but might not give the correct ori-

entation of the object, and fails to represent the object well.

A well-fit box should have many 3D points near box sur-

faces, as shown in Fig. 3b.1. We use a RANSAC based al-

gorithm (details below) to fit boxes to point clouds.

1Recent related work [19] considered cylinder fitting of 3D points to

the surface but did not consider visibility.

4.1. Minimum surface distance
The orientation of a 3D bounding box is determined by

two perpendicular normal vectors (the third normal is per-

pendicular to these two vectors). The idea is to find the two

principle orientations of the 3D bounding box so that the 3D

points are as close as possible to the box surfaces. Given a

set of 3D points {Pi} and a proposed 3D box, we calculate

the distance of each point to the 6 surfaces of the box, and

assign each point to this nearest-face distance {Dmin(Pi)}.
The objective for our box fitting algorithm is to minimize

this sum for all the 3D points:
∑

iDmin(Pi).
We use RANSAC to find a plane to fit all the 3D points

within one segment, and it provides the first surface S1.

Next, we collect the outlier 3D points not near S1, and

project them to surface S1 as 2D points {pj}. Then we re-

trieve the boundary points {pj,boundary} that form the con-

vex hull of {pj}, and fit a line to {pj,boundary} also us-

ing RANSAC. This line gives the second surface orientation

perpendicular to S1.

The above steps give the orientations that aligns with

many points. The minimum volume is determined by find-

ing the extent of the 3D points given the box orientation.

Note that there are usually noisy depth points: If a segment

mistakenly includes a few points from other segments be-

fore or behind, it can lead to a large increase of the box

volume. Therefore, we allow for up to 5% outliers in the

3D points.

With the final 3D bounding box, the sum of the minimum

surface distance of the point,
∑

iDmin, is calculated. The

whole process is repeated several times and the best fitting

box (smallest distance
∑

iDmin) is chosen.

4.2. Visibility
We identify which box surfaces are visible to the camera.

If the objects in the scene are mostly convex, then most 3D

points should belong to the visible box surfaces instead of

hidden faces.

Fig. 4 illustrates the visibility feature for our box fitting.

Surface visibility is determined by the position of the cam-

era center and the surface normal. We define the positive

normal direction of a surface as the normal pointing away

from the box center, and then a surface is visible if the cam-

era center lies at its positive direction. Each box has at most

three visible surfaces. We compute the percentage of the

333

(a) (b)

Figure 4. Given the camera position and a proposed bounding box,

we determine the visible surfaces of the box, shown as a solid

parallel black line to the box surface. (a) This box may give a

compact fit, but most of the points lie on the hidden surfaces. (b)

With a better box fit, most of the points lie on the visible surfaces

of the two boxes.

(a) (b)

Figure 5. (a) Well fit boxes should not intersect much with neigh-

boring boxes. (b) If two segments are merged incorrectly, e.g., the

two books in the image, then the new box fit to the segment is

likely to intersect with neighboring boxes, e.g., the box shown in

red.

points that belong to visible surfaces, and use this as the

feature for later processing.

5. Pairwise box interaction
We examine the two pairwise relations between nearby

boxes: box intersection, and box support.

5.1. Box intersection
Box intersection gives an important clue for volume rea-

soning. Ideally, a box fit to an object should contain the ob-

ject’s depth points, and not intrude into neighboring boxes.

If a proposed merging of two segments produces a box that

intersects with many other boxes, it is likely an incorrect

merge. An example is shown in Fig. 5.

We explicitly compute the box intersection, and the min-

imum separation distance between box pairs and direction.

Since 3D bounding boxes are convex, we apply the Separat-

ing Axis Theorem (SAT) [7], used in computer graphics for

collision detection. We present a 2D illustration of finding

the distance of the box intersection in Fig. 6. The distance

D shown in Fig. 6b is the minimum moving distance to sep-

arate two intersecting boxes.

Extending this algorithm to 3D bounding boxes is

straight-forward: since three surface orientations of a box

are orthogonal to one another, we examine a plane parallel

(a) (b)

Figure 6. Separating Axis Theorem in 2D: (a) to separate two

boxes, we rotate the axis perpendicular to any of the edge, and

project all the vertices to this rotated axis. (b) If two bounding

boxes are separate, there exists an axis that has a zero overlap dis-

tance (D in the image). We examine all the possible axis rotations

(in this case four possibilities), and choose the minimum overlap

distance. This gives the orientation and the minimum distance re-

quired to separate two boxes.

to each surface, and project the vertexes of the two pair-

wise boxes to this plane. We compute the convex hull of the

projection of each box, check whether the two convex hulls

intersect and find their minimum separating distance D.

This process gives both separating distance, and the

orientation θsep to separate the two boxes with the mini-

mum distance. θsep is used when determining the pairwise

supporting relations between boxes. For non-intersecting

boxes, we choose the orientation and the distance that max-

imally separate the two boxes as their intersection features.

5.2. Box supporting relation
In order to address various supporting scenarios, we de-

fine three supporting relations between the boxes: 1) sur-

face on-top support (and object is supported by a surface

from below); 2) partial on-top support (an object is tilted

and only partially supported from below); 3) side support.

Examples are shown in Fig. 7 (a) to (c).

To classify supporting relations, we detect the ground

and compute the ground orientation following [23]. We de-

fine the 3D axis as the follows: the xz-plane is parallel to

the ground plane, and y = −1 is the downward gravity vec-

tor. We align the point-cloud with this axis.

Given the box representation of the scene, we classify

pairwise supporting relations with the following set of rules:

1) we use the separating orientation θsep to distinguish be-

tween “on-top” support and the “side” support: an “on-top”

support has a separating direction nearly parallel to y axis

(< 20◦), while the “side” support has a separating direc-

tion close to parallel to the xz-plane (ground plane); 2) for

“on-top” supporting relations, there are two possibilities:

an even on-top support, shown in Fig. 7a, and a tilted on-

top support, shown in Fig. 7b. We distinguish these two

types by examining the two closest surfaces of the pairwise

444

(a) (b) (c) (d) (e) (f) (g)

Figure 7. (a) to (c): three different supporting relations: (a) surface on-top support (black arrow); (b) partial on-top support (red arrow);

(c) side support (blue arrow). Different supporting relations give different supporting areas plot in red dashed circles. (d) to (e): stability

reasoning: (e) considering only the top two boxes, the center of the gravity (in black dashed line) intersects the supporting area (in red

dashed circle), and appears (locally) stable. (e) When proceeding further down, the new center of the gravity does not intersect the

supporting area, and the configuration is found to be unstable. (f) to (g) supporting area with multi-support: (f) one object can be supported

by multiple other objects. (g) The supporting area projected on the ground is the convex hull of all the supporting areas.

boxes. If these two surfaces have a large angle difference

(> 20◦) with each other, and have different orientations to

the ground plane, then it is classified as a partial “on-top”

support, i.e., the object on top is tilted. Otherwise it is a

“surface on-top” support.

Reasoning about stability requires that we compute cen-

ters of mass for object volumes, and determine areas of sup-

port (i.e., regions or points of the object that are supported,

either on side or beneath). Stability requires that the pro-

jection of the center of mass of the object along the gravity

vector falls within the region of support. We use an ob-

ject’s supporting relation to find the supporting area pro-

jected on the ground, and different supporting relations pro-

vide different supporting areas. For “surface on-top” sup-

port, we project the vertexes of the two 3D bounding box

to the ground, compute the convex hull for each projection,

and use their intersection area on the ground plane as the

supporting area. For “partial on-top” and “side” support,

we assume there is only one edge touching between two

boxes, and project this touching edge on the ground plane

as the supporting area. Examples of the supporting areas

are shown as red dashed circles in Fig. 7 (a) to (c).

6. Global stability
Box stability is a global property: boxes can appear to

be fully supported locally, but still be in a globally unstable

configuration. Fig. 7 (d) and (e) provide an illustration.

We perform a top-down stability reasoning by iteratively

examining the current gravity center and supporting areas.

This process is shown in Fig. 7. For simplicity we assume

each box has the same density.

We begin with the top box by finding the box center of

mass, and check whether its gravity projection intersects the

supporting area. If so, we mark the current box stable, and

proceed to another box beneath for reasoning. Following

the constant density assumption, the center of mass Pc =
[x, y, z] for a set of boxes is calculated by averaging the

volume Vi of each box i:

Pc = (
∑

i

Pc,i · Vi)/
∑

i

Vi (1)

We iteratively update the center of mass by adding the

boxes below until we reach the ground. If we found that

the current supporting area does not support the center of

mass, we label the current box unstable, shown in Fig. 7e.

For the set of boxes with multiple supports, we compute the

convex hull of the multi-supporting areas as the combined

supporting area, shown in Fig. 7 (f) to (g).

Support reasoning: Stability reasoning helps delete unnec-

essary supports. For example, side-to-side nearly touching
objects do not necessarily support one another. We trim

these unnecessary supporting relations by examining the

support relations in the order: surface on-top, partial on-top

and side support. If the object has a “surface on-top” sup-

port and the configuration can be stable, then additional sup-

port relations are unnecessary and can be trimmed. If not,

then we find a minimum combination of the on-top supports

(both surface and partial) and at most two side supports to

see if the object can be stable. If so, all other support rela-

tions for this object are deleted.

Box fitting: Stability reasoning and supporting relations are

used to refine the orientation of a box. If the box is fully

supported through a “surface on-top” relation, then we re-

fit the 3D bounding box of the object on top, confining the

rotation of the first principle surface S1 to be the same as the

supporting surface. We repeat the supporting relation infer-

ence and stability reasoning with the re-fitted boxes. This

improves the box representation and support interpretation

of the scene.

7. Integrating box-based features
For the segmentation application, we start with some ini-

tial segments generated with features from [23]. Then, us-

ing the ground-truth segmentation, we label the segments

that should be merged as y = 1, and the others as y = 0. We

extract a set of features x based on the box fitting, pairwise

box relation, and the global stability, shown in Table 1. For

example, for a merge move, we record the minimum sur-

face distances of two neighboring boxes before merging (2

dimensions, noted as B), and the minimum surface distance

of the box after merging (1 dimension, noted as A), as well

555

Table 1. Features based on volumetric and stability reasoning. B:

the feature before a move; A the feature after a move; D: the dif-

ference of the feature before and after a move. Possible moves are

merging and splitting.

Single/Pairwise features dim
Box orientation with respect to the ground (B, A) 3

mean of the minimum surface distance (B, A, D) 5

Percentage of the visible points (B, A) 3

Percentage increase in the invisible points after a move 1

Number of intersecting boxes (B, A, D) 5

Average intersecting distance of the boxes (B, A, D) 5

Average intersecting distance of the boxes (B, A, D)

with respect to volume

5

Pairwise supporting relations 1

Stability features dim
Global stability (B, A, D) 3

Stabilities of the objects (B, A) 3

Distance of the projected gravity center to the support-

ing area center (B, A, D)

5

Difference for the three supporting relations 3

Average over number segments of the three supporting

relations (B, A)

6

as the difference of this criterion before and after merging

(1 dimension for each box before merging, 2 dimensions in

total, noted as D).

As a base model (Stability), we train an SVM regression

y = f(x) based on these features x and labels y. During

testing, we greedily merge the neighboring segments based

on the output prediction of the regression f , fit a new bound-

ing box for the segment, perform stability reasoning, and

re-extract the features for regression. We repeat the above

steps until the classifier does not suggest merging.

8. Splitting and Merging with MCMC
In this Section, we improve our model (Stability) from

Section 7 by introducing an energy function with unary and

pairwise terms based on the volumetric boxes, their support

relations, and stability (MCMC). We use si to represent

one individual segment in a segmentation. Given a segmen-

tation S = {s1, ..., sN} with N segments and M pairs of

neighboring segments,2 we define the energy function:

E(S) =
1

N

∑

i

φ(si) +
1

M

∑

i,j

ψ(si, sj), (2)

where φ(si) is a regression score of a segment si describing

the quality of the segment when compared with the ground-

truth, and it is learned using single box features and its sta-

bility. ψ(si, sj) is a regression score of two neighboring

boxes learned using pairwise box features and their support

relations.

Our goal is to minimize this energy function and find the

optimal segmentation S∗: S∗ = argminS E(S). Note that

2Here {S} represents the space of all possible segmentations

Figure 8. Examples of the RGB-D Block Dataset (left) and Sup-

porting Object Dataset (right).

this energy function is non-convex, and the space of possi-

ble segmentations {S} is very large. However, only a few

segmentations are likely. In order to explore the space, we

adopt a Markov-Chain-Monte-Carlo (MCMC) [4] approach

to this problem, where we design appropriate moves to ex-

plore the space. We start with an initial segmentation, and

move to a new set of segmentations by either: (a) merging

two neighboring segments into one; or (b) splitting one seg-

ment into two smaller segments based on the boundary be-

liefs from [11]. We then re-evaluate the segmentations after

making one move, and take the top K (= 5 in our setting)

segmentations for the next iteration. In practice, this algo-

rithm optimizes our energy function to a reasonable local

minima in about 10-15 iterations.

9. Experiments
We experiment on three datasets: a block dataset, a sup-

porting object dataset, and a dataset of indoor scenes [23].

9.1. Block dataset
We apply our algorithm to a toy block dataset. This

dataset has 50 RGB-D images of blocks, shown in Fig. 8,

left. For each block, we manually provide the ground-truth

segment labels, as well as the orientations of two perpendic-

ular surfaces. Ground-truth surface orientations are labeled

by manually clicking at least 8 points on the same surface,

and fitting a plane to these labeled 3D points. Supporting

relations of each block are also labeled.

First we evaluate our box fitting algorithm. The follow-

ing algorithms are compared:

Min-vol: the baseline algorithm from [3] of fitting mini-

mum volume bounding box .

Min-surf: the proposed box fitting algorithm of finding the

minimum surface distance.

Supp-surf: use our proposed algorithm Min-surf to find

the initial boxes, and adjust the orientation of the box based

on the supporting relations and stability.

We compare the orientation of the bounding box from

each algorithm to the ground-truth, and calculate the av-

erage angle difference. Table 9.1 shows that our proposed

minimum surface distance provides a better box fitting com-

pared to the minimum volume criteria, reducing the errors

in angle to 40%. With stability reasoning, the fitting de-

creases error by another 15%.

We then analyze the performance of our stability reason-

ing. We compare with the ground truth supporting relations,

666

Table 2. Average angle error on the bounding box orientation.

Min-vol Min-surf Supp-surf
15.41◦ 9.75◦ 7.02◦

Table 3. Supporting relation accuracy for different dataset.

neighbor stability
Block 80.59% 91.68%
SOD 52.88% 72.86%

Figure 9. Fitting results on the block dataset. Left, Min-vol. Mid-

dle, Min-surf. Right, Supp-surf. Blocks with large fitting error

in orientation are labeled as a red “x”.

Figure 10. The predicted supporting relations on block dataset.

Three different types of the supporting relations are colored in

black (surface-top), red (partial-top), and blue (side). The ground

plane center is plot as a green dashed circle.

and count an object as correct if all its supporting objects are

predicted. We compare our proposed algorithm (stability)

that reasons about the stability of each block and deletes the

false supporting relations with the baseline (neighbor) that

assumes one block is supported by its neighbors, i.e., the

initialization of the supporting relations.

Table 3 reports the supporting relation accuracy. Since

the segments in the dataset are perfect blocks, the neigh-

boring rule gives a high accuracy at over 80% for predict-

ing support. However, our proposed stability reasoning im-

proves the supporting relation accuracy by an absolute 10%,

achieving over 90% of accuracy. Exemplar images of the

predicted supporting relations are shown in Fig. 10.

9.2. Supporting object dataset
We collect a new Supporting Object Dataset (SOD) com-

posing of 307 RGB-D images. Various daily objects are

randomly placed in scenes in different configurations of

support. For each object, we manually label the segment

and the other objects supporting it. See Fig. 8, right, for a

few examples.

First, we measure the prediction of the supporting rela-

tions with the ground truth segmentation. The results of us-

ing the baseline neighbors and our stability reasoning sta-
bility are shown in Table. 3, bottom row. In this dataset

with irregular shaped objects and complicated support con-

figurations, using the touching neighbors to infer supporting

Table 4. Pixel-wise segmentation score.

[23] S/P Stability MCMC
SOD 60.2% 64.7% 66.7% 70.0%
NYU 60.1% 60.8% 61.0% 61.7%

Figure 12. We qualitatively show our box fitting algorithm (left) on

daily objects with ground-truth image segmentation and the sup-

porting relation prediction after stability reasoning (right). Boxes

for large surfaces (like the back wall and the ground) are not dis-

played for better visualization. The ground plane is plot as a green

dashed circle for showing the support inference results.

relations has an accuracy of 52%. Stability reasoning gives

an absolute 20% boost, reaching over 72% accuracy. Fig. 12

presents the exemplar results of our box fitting and support

prediction from the supporting object dataset.

We also evaluate the segmentation performance with our

proposed features based on box properties. We randomly

choose half of the images for training, and the other half

for testing. We follow the procedure in [23] and use their

color and depth features as the baseline. Then we add our

features using the single and pairwise box relations (S/P),

and our full feature set with stability reasoning (stability)

with the model proposed in Section 7. Finally we perform

our final model based on the energy function with MCMC

sampling allowing both merging and splitting (MCMC).

The segmentation accuracy is scored by pixel-wise over-

lapping with the ground-truth segments, proposed in [11]

and [23]. Table 4, top row, shows the performance com-

parison with different feature sets for our proposed dataset

(evaluating only on the object segments because the back-

ground is shared across the images). Reasoning about

each object as a box gives around 4% boost in segmenta-

tion accuracy, and adding the stability features further im-

proves the performance by 2%. Our final energy model with

MCMC sampling gives the best results with another 3% im-

provement. Testing results are presented in Fig. 11.

777

Figure 11. Segmentation and box fitting results of our proposed algorithm on the testing images.

Figure 13. Qualitative result of box fitting (left) and supporting

relation inference (right) on indoor scenes. For better visualiza-

tion, boxes that are too large (wall, ground) or too small are not

displayed.

9.3. NYU indoor dataset
We evaluate segmentation performance on the newly re-

leased RGB-D NYU indoor dataset [23], and report the per-

formance in Table 4, bottom row. This dataset is proposed

for scene understanding instead of object reasoning, and

many large surfaces, such as counters and drawers, are not

labeled as boxes as the framework proposed in this paper.

Although these conditions limit the performance of the pro-

posed algorithm, adding the proposed features improves the

performance. We qualitatively present the box fitting and

supporting inference result with ground-truth segmentation

in Fig. 13.

10. Conclusion
In this paper, we propose analyzing RGB-D images

through physical-based stability reasoning. We begin with

box fitting on partially observed 3D point clouds, and then

introduce pairwise box interaction features. We explore

global stability reasoning on proposed box representations

of a scene. Segmentations associated with unstable box

configurations are not physically possible and are therefore

modified. Stability reasoning allows us to improve reason-

ing about supporting relations (by requiring enough support

to provide stability for each object) and improve box orien-

tation (by knowing when objects are fully or partially sup-

ported from below). Experiments show that our proposed

algorithm works in synthetic scenarios as well as real world

scenes, and leads to improvements in box fitting, support

detection, and segmentation.

Acknowledgement: We thank Daniel Jeng for useful dis-

cussions about stability reasoning. This work is supported

in part by NSF DMS-0808864.

References
[1] D. Baraff. Physically based modeling: Rigid body simulation. Tech-

nical report, Pixar Animation Studios, 2001. 2

[2] M. Bleyer, C. Rhemann, and C. Rother. Extracting 3D scene-

consistent object proposals and depth from stereo images. In ECCV,

2012. 2

[3] C. Chang, B. Gorissen, and S. Melchior. Fast oriented bounding box

optimization on the rotation group SO(3, R). ACM Transactions on
Graphics, 30(5), 2011. 3, 6

[4] J. Chang and J. W. Fisher. Efficient MCMC sampling with implicit

shape representations. In CVPR, 2011. 6

[5] H. D, A. A. Efros, and M. Hebert. Recovering surface layout from

an image. IJCV, 75(1):151–172, 2007. 2

[6] A. Flint, D. W. Murray, and I. Reid. Manhattan scene understanding

using monocular, stereo, and 3D features. In ICCV, 2011. 2

[7] S. Gottschalk. Separating axis theorem. Technical Report, 1996. 4

[8] H. Grabner, J. Gall, and L. J. V. Gool. What makes a chair a chair?

In CVPR, 2011. 2

[9] A. Gupta, A. A. Efros, and M. Hebert. Blocks world revisited: Image

understanding using qualitative geometry and mechanics. In ECCV,

2010. 1, 2

[10] V. Hedau, D. Hoiem, and D. A. Forsyth. Recovering free space of

indoor scenes from a single image. In CVPR, 2012. 2

[11] D. Hoiem, A. N. Stein, A. A. Efros, and M. Hebert. Recovering

occlusion boundaries from a single image. In ICCV, 2007. 2, 6, 7

[12] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz, K. Saenko, and

T. Darrell. A category-level 3-D object dataset: Putting the kinect to

work. In ICCV workshop, 2011. 2

[13] Y. Jiang, H. Koppula, and A. Saxena. Hallucinated humans as the

hidden context for labeling 3d scenes. In CVPR, 2013. 2

[14] Y. Jiang, M. Lim, C. Zheng, and A. Saxena. Learning to place new

objects in a scene. IJRR, 31(9), 2012. 1, 2

[15] H. Koppula, A. Anand, T. Joachims, and A. Saxena. Semantic label-

ing of 3D point clouds for indoor scenes. In NIPS, 2011. 2

[16] H. Koppula, R. Gupta, and A. Saxena. Learning human activities and

object affordances from rgb-d videos. IJRR, 2013. 2

[17] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-

view RGB-D object dataset. In ICRA, 2011. 2

[18] D. C. Lee, A. Gupta, M. Hebert, and T. Kanade. Estimating spatial

layout of rooms using volumetric reasoning about objects and sur-

faces. In NIPS, 2010. 2

[19] D. Ly, A. Saxena, and H. Lipson. Co-evolutionary predictors for

kinematic pose inference from rgbd images. In GECCO, 2012. 3

[20] M. McCloskey. Intuitive physics. Scientific American, 248(4):114–

122, 1983. 2

[21] A. Saxena, S. H. Chung, and A. Y. Ng. Learning depth from single

monocular images. In NIPS, 2005. 2

[22] A. Saxena, M. Sun, and A. Y. Ng. Make3D: Learning 3D scene

structure from a single still image. PAMI, 31(5), 2009. 2

[23] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmenta-

tion and support inference from RGBD images. In ECCV, 2012. 1,

2, 4, 5, 6, 7, 8

[24] J. Xiao, B. C. Russell, and A. Torralba. Localizing 3D cuboids in

single-view images. In NIPS, 2012. 2

[25] Y. Zheng, X. Chen, M. Cheng, K. Zhou, S. Hu, and N. J. Mitra.

Interactive images: cuboid proxies for smart image manipulation.

ACM Trans. Graph, 31(4):99, 2012. 2

888

