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Abstract

Principal Component Analysis (PCA) is a widely used to
learn a low-dimensional representation. In many applica-
tions, both vector data X and graph data W are available.
Laplacian embedding is widely used for embedding graph
data. We propose a graph-Laplacian PCA (gLPCA) to learn
a low dimensional representation of X that incorporates
graph structures encoded in W . This model has several
advantages: (1) It is a data representation model. (2) It
has a compact closed-form solution and can be efficiently
computed. (3) It is capable to remove corruptions. Exten-
sive experiments on 8 datasets show promising results on
image reconstruction and significant improvement on clus-
tering and classification.

1. Introduction
In many computer vision applications, the dimensional-

ity of data are usually very high. An effective approach

is dimensionality reduction: in low-dimensional space the

class distribution becomes more apparent which signifi-

cantly improves the machine learning results. There are

several dimension reduction methods suitable for different

data types. If the input data are vector data with feature vec-

tors, Principal Component Analysis (PCA) and Linear Dis-

criminative Analysis (LDA) are the two most widely used

algorithms because of their relative simplicity and effective-

ness. These methods generally deal with the case where

data mainly lie in a linear data manifold. Other methods in-

clude Locally Linear Embedding[12], Local Tangent Space

Alignment[15], etc., which can deal with the case with data

lying in nonlinear manifolds.

When the input data are graph data in the form of pair-

wise similarities (or distances) as the graph edge weights,

Laplacian Embedding is a classical method[8, 1]. In addi-

tion, Manifold learning is also one important class of pop-

ular approaches such as Isomap[14], Locality Preserving

Projections[9], etc. These methods generally deal with the

case where data mainly lie in a nonlinear data manifold.

Of course, given a vector data, we can use kernel to build

similarity matrix and thus the graph data. And from a graph

data, we can produce low dimensional embedding that re-

sults in vector data. Thus the distinction between vector

data and graph is sometimes blurred. A recent trend is to

use multiple data sources to achieve better results. Another

direction is multi-view learning that learn multiple cluster-

ings from multiple sources and then combine them together.

In these approaches, the input data types are assumed to be

same, either all graph data, or all vector data. However, as

mentioned above, one may transform data from one type to

another type to match the requirement that data be of same

type in these learning approaches.

In this paper, we assume the input data contains vector

data X and graph data W . Our task is to learn a low dimen-

sional data representation of X that incorporates the clus-

ter information encoded in graph data W . We propose to

use Laplacian embedding coordinates directly into the data

representation for X . The resulting graph-Laplacian PCA

(gLPCA) model has three aspects: (1) data representation,

(2) data embedding, (3) a closed form solution which can be

efficiently computed. We run the model on 8 datasets and

demonstrate various capabilities.

2. PCA vs. Laplacian Embedding

We start with a brief introduction of principal component

analysis and Laplacian embedding.

2.1. Principal Component Analysis

Let the input data matrix X = (x1, ..., xn) ∈ Rp×n con-

tains the collection of n data column vectors in p dimension

space. In image processing, each column xi is linearized

array of pixels gray levels. PCA [10, 3] finds the optimal

low-dimensional (k-dim) subspace defined by the principal

directions U = (u1, ..., uk) ∈ Rp×k. The projected data

points in the new subspace are V T = (v1, ..., vn) ∈ Rk×n.

PCA finds U and V by minimizing

min
U,V

‖X − UV T ‖2F s.t. V TV = I (1)
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In addition, PCA relates closely to K-means clustering natu-

rally [4]. The principal components V are actually the con-

tinuous solution of the cluster membership indicators in the

K-means clustering method. This provides a motivation to

relate PCA to Laplacian embedding whose primary purpose

is clustering.

2.2. Manifold Embedding using Graph Laplacian

PCA provides an embedding for the data lying on a linear

manifold. However, in many applications, data lie in a non-

linear manifold. One popular method is to use graph Lapla-

cian based embedding. Given the pairwise similarity data

matrix W ∈ Rn×n containing the edge weights on a graph

with n nodes, Laplacian embedding [8, 1] preserves the lo-

cal geometrical relationships and maximizes the smooth-

ness with respect to the intrinsic manifold of the data set

in the low embedding space. Let QT = (q1, q2, · · · qn) ∈
Rk×n be the embedding coordinates of the n data points.

They are obtained by minimizing

min
Q

n∑
i,j=1

‖qi − qj‖2Wij = tr(QT (D −W )Q) (2)

s.t. QTQ = I

where D = diag(d1, ...dn) and di =
∑

j Wij . The solution

eigenvectors of D −W .

Laplacian embedding is closely connected with graph

clustering. In fact, the embedding vectors (q1, q2, ...qn) of

Eq.(2) provide an approximation solution for the Ration Cut

spectral clustering[2], i.e., they can be seen as the relaxation

solution of the cluster indicators (qi for data i) in the spec-

tral clustering objective function. This is similar to PCA

being the spectral relaxation of K-means clustering [4].

3. Graph-Laplacian PCA
Suppose we are given vector data X and pairwise simi-

larity W . We wish to learn a low dimensional data represen-

tation of X that incorporates data cluster structures inherent

in W , i.e., a representation regularized by the data manifold

encoded in W . Because vi in PCA is exactly the same role

of qi in Laplacian embedding, we set them equal and thus

propose to combine Eqs.(1,2) into the following model

min
U,Q

J = ‖X − UQT ‖2F + αTr (QT (D −W )Q) (3)

s.t. QTQ = I

where α ≥ 0 is a parameter balance the contribution from

the two parts.

This model has several aspects. (1) It is a data repre-

sentation, i.e., X � UQT . (2) It is a manifold embedding

using Q. (3) Although the model is not a convex problem, it

has a closed-form solution and can be efficiently computed.

We call this model graph-Laplacian PCA (gLPCA).
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Figure 1. Lowest 5 eigenvalues of Gβ for the AT&T and MNIST

datasets.

3.1. Closed-form Solution

gLPCA has the following compact closed-form solution:

Theorem 3.1 The optimal solution (U∗, Q∗) of gLPCA are
given by

Q∗ = (v1, v2, · · · , vk) (4)

U∗ = XQ∗, (5)

where v1, v2, · · · , vk are the eigenvectors corresponding to
the first k smallest eigenvalues of the matrix

Gα = −XTX + αL, L ≡ D −W. (6)

Note that data X is centered as in standard PCA.

Proof.

1. Solving for the optimal U∗ while fixing Q. This is given

by
∂J

∂U
= −2XQ+ 2U = 0. (7)

Thus U∗ = XQ.

2. Solve the optimal Q∗. Set U = XQ, Eq.(3) becomes

min
Q

J2(Q) = ‖X −XQQT ‖2F + αtrQTLQ (8)

s.t. QTQ = I

By some algebra, Eq.(8) is equivalent to the following

min
Q

trQT (−XTX + αL)Q (9)

s.t. QTQ = I

Thus, the optimal Q∗ can be obtained by computing eigen-

vectors corresponding to the first k smallest eigenvalues of

the matrix Gα. �

3.2. Properties of gLPCA

We use λn, the largest eigenvalue of kernel matrix XTX
to normalize XTX . Similar, we use ξn, the largest eigen-

value of Laplacian matrix L to normalize L. In this way,

the two terms in G of Eq.(6) (used in Eq.(9)) have similar

scale. We set

α =
β

1− β

λn

ξn
, (10)
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where β is the alternative model parameter instead of α.

Substituting α into Eq.(9), it is equivalent to

min
Q

Tr QT
[
(1− β)(I − XTX

λn
) + β

L

ξn

]
Q (11)

s.t. QTQ = I

Therefore, the solution of Q are given by the eigenvectors

of Gβ :

Gβ = (1− β)(I − XTX

λn
) + β

L

ξn
(12)

Clearly, parameter β should be in the range 0 ≤ β ≤ 1.

PCA limit: When β = 0, gLPCA reduces to standard

PCA. LE limit: When β = 1, gLPCA reduces to Laplacian

embedding. In this case, however, the data representation

gLPCA is still valid because U = XQ is well-defined and

xi � Uqi.

Proposition 3.2 The matrix Gβ has the following proper-
ties: (1) Gβ is semi-positive definite;
(2) e = (1 · · · 1)T is an eigenvector of Gβ:

Gβe = (1− β)e. (13)

(3) Any other eigenvector v is orthogonal to e.

Proof. First, because λn is the largest eigenvalue of XTX ,

thus I −XTX/λn is s.p.d. It is well-known that L is s.p.d.

Thus Gβ is s.p.d. Second, because X is centered, we have

Xe = 0. Thus e is an eigenvector of XTX with zero eigen-

value. Also, it is well-known that e is an eigenvector of

L with zero eigenvalue. This proves (2). Third, for any

symmetric real matrix Gβ , it non-degenerate eigenvectors

are mutually orthogonal. Since e is an eigenvector, thus all

other eigenvectors are orthogonal to e. �
By Proposition 3.2, we write the matrix Gβ as

Gβ = (1− β)(I − XTX

λn
) + β(

L

ξn
+

eeT

n
) (14)

Here, we added eeT /n in the Laplacian matrix part. By

Proposition 3.2, this does not change any eigenvectors and

eigenvalues, except it shifts the trivial eigenvector e up to

have eigenvalue 1, the largest eigenvalue of Gβ . This is use-

ful because it guarantees that the computed lowest k eigen-

vectors does not contain e. Two examples of eigenvalues

distributions are shown in Fig.1.

3.3. Illustrative examples

Image reconstruction. To illustrate the data represen-

tation aspect of gLPCA, we run gLPCA on the original

and occluded images from AT&T face dataset (more details

given in the Experiments section). Figure 2, 3 show the

Figure 2. Reconstructed images from PCA and gLPCA. In each

panel, 10 images of one person are: 1st line: original images; 2nd

line: PCA; 3rd - 5th lines: gLPCA at β = 0.3, 0.5, 1 respectively.

original image, reconstructed images of standard PCA and

gLPCA. In each panel, the top row contains 10 original im-

ages of one person, 2nd - 5th rows contain reconstructed im-

ages (columns of UQT ) at β = 0, 0.3, 0.5, 1, respectively.

β=0 results is standard PCA. Here we did two experiments,

one using the original images, another using occluded im-

ages. Only images of 2 persons (out of total 40 persons) in

each experiment are shown due to space limitation.

Here we can observe that (1) Large errors (occlusions)

are suppressed in gLPCA, but retained in standard PCA.

(2) gLPCA reconstructed images of same person tend to be

more similar than those in standard PCA. These features

indicate that the class structures are generally more apparent

in gLPCA representation, and motivate us to use it for data

clustering and semi-supervised learning tasks.

Data approximation. In Figure 4, we show the percent-

age residual ‖X − UQT ‖/‖X‖ on five datasets: AT&T,

MNIST, USPS, BinAlpha, and COIL20 datasets (details see

§5). In general, residual errors remain close to PCA at small

β, and go slightly higher at the Laplacian embedding (LE)

limit β = 1. This is a bit surprising because in this LE limit,

Q is entirely determined by Laplacian embedding and does

not involve the data X (although the graph similarity W
captures some relationship of the data). To understand this

349234923494



Figure 3. PCA and gLPCA reconstruction on partially occluded
AT&T face dataset. Details are same as Fig.2.
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Figure 4. Residual error ‖X − UQT ‖/‖X‖ at different β.

better, we compute a baseline by replacing D −W in Gβ

by a random symmetric matrix. The obtained Q satisfies

QTQ = I , but it contains no relevant information. This

baseline random-Q results are indeed much poorer com-

pared to gLPCA at LE limit: the residuals are shown in

Table 1.

Demonstration of embedding results. We demonstrate

the embedding aspect of gLPCA using 2D visualization.

We first randomly select 30 images of three persons (out

Table 1. Residual errors for gLPCA at Laplacian Embedding limit.

Dataset AT&T MNIST BinAlpha USPS COIL20

gLPCA 0.5620 0.8091 0.7565 0.7075 0.6539

Random 0.9479 0.9897 0.9832 0.9898 0.9854

of 40 persons) from AT&T face dataset as the input, and

then run PCA, Laplacian embedding and gLPCA, respec-

tively(more details are given in the Experiments Section).

The embedding results are shown in Figure 5. Clearly,

gLPCA results are in-between PCA and LE results. How-

ever, in gLPCA embedding, class structures are more ap-

parent than in PCA or LE.

4. Robust gLPCA
We can formulate a robust version of the above gLPCA

using L21 norm as following

min
U,Q

‖X − UQT ‖2,1 + αTr QT (D −W )Q (15)

s.t. QTQ = I

where the matrix L2,1 norm is first introduced in [6] and is

defined as ‖A‖2,1 =
∑n

j=1

√∑p
i=1 A

2
ij . We call Eq.(15)

as Robust graph Laplacian PCA (RgLPCA).

In the following, we present an efficient updating algo-

rithm to solve this model. Firstly, Eq.(15) can be rewritten

equivalently as

min
U,Q,E

‖E‖2,1 + αTrQT (D −W )Q (16)

s.t. E = X − UQT , QTQ = I

We use the Augmented Lagrange Multiplier (ALM) method

to solve this problem. ALM solves a sequences of sub-

problems

min
U,Q,E

‖E‖2,1 + Tr CT (E −X + UQT )

+
μ

2
‖E −X + UQT ‖2F + αTr QTLQ (17)

s.t. QTQ = I

where C is Lagrange multipliers and μ is the penalty param-

eter. There are two major parts of this algorithm: solving

the sub-problem and updating parameters (C, μ) .

Solving the sub-problems
The objective of Eq.(17) can be written as

min
U,Q,E

‖E‖2,1 + μ

2
‖E −X + UQT +

C

μ
‖2F + αTr(QTLQ)

First, we solve U,Q while fixing E. This is

min
U, QTQ=I

μ

2
‖E−X+UQT +

C

μ
‖2F +αtr(QTLQ) (18)
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Figure 5. 2D Embedding results on three faces on AT&T dataset using PCA (left), gLPCA (middle) and Laplacian embedding (right)

which is the form of gLPCA and is solved by Theorem 3.1.

Second, we solve E while fixing U,Q. This is

min
E

‖E‖2,1 + μ

2
‖E −A‖2F (19)

where A = X −UQT −C/μ. Let ei be the i-th column of

matrix E. Similarly for ai. Eq.(19) is decomposed into n
independent problems

min
ei

‖ei‖+ μ

2
‖ei − ai‖2 (20)

The solution of this proximal operator is known [11] to be

ei = max(1− 1

μ‖ai‖ , 0)ai. (21)

Updating parameters
At the end of each ALM iteration, C, μ are updated as

C = C + μ(E −X + UQT ) (22)

μ = ρμ (23)

where ρ > 1. In practice, ρ = 1.1− 1.5 are good choices.

5. Experiments
To validate the effectiveness of our models, we run

gLPCA and RgLPCA on eight datasets, including AT&T,

Bin-alpha1, MNIST, USPS, COIL202 and three UCI

datasets3 (ISOLET1, Libras Movement (LMove) and Mul-

tiple Feature Data Set (MFeat)). Table 2 summarizes the

characteristics of them. We do both clustering and semi-
supervised learning on these datasets.

5.1. Results for gLPCA

The primary goal of the evaluation is to compare gLPCA

results with standard PCA and Laplacian Embedding (LE)

1http://olivier.chapelle.cc/ssl-book/benchmarks.html
2http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multi-

class.html
3http://archive.ics.uci.edu/ml/datasets.html

Table 2. Dataset descriptions.

Dataset # Size # Dimension # Class

AT&T 400 644 40

MNIST 500 784 10

Bin-alpha 1014 320 36

USPS 1000 256 10

COIL 20 1440 784 72

ISOLET1 1560 617 26

LMove 360 91 15

MFeat 2000 216 10

results because gLPCA is a combination of the two mod-

els. To be complete, we also compare to some other embed-

ding methods including the Locality Preserving Projections

(LPP)[9] and Normalized Cut (Ncut)[13, 7]4 and original

data.

First we perform clustering task on PCA, LE, LPP, Ncut

and original data representations to evaluate them. We use

K-means and semi-NMF clustering [5] algorithms for this

evaluation. We use accuracy (ACC), normalized mutual in-

formation (NMI) and purity (PUR) as the measurements of

the clustering qualities. We run K-means with random ini-

tialization 50 times and use the average clustering results.

To see how gLPCA model performs at different regulariza-

tion parameter β, we show in Figure 6 the K-means clus-

tering accuracy on five datasets: AT&T, MNIST, USPS, Bi-

nAlpha, and COIL20 datasets. Here we can see that (1)

gLPCA results are fairly stable in the entire β range. (2)

gLPCA results are generally in-between PCA (at β = 0) re-

sults and Laplacian embedding (at β = 1) results. (3) There

are always some range (mostly β = 0.4 ∼ 0.9) of β where

gLPCA is better than PCA and LE.

The complete clustering results are shown in Table 3.

From Table 3, we observe that (1) both PCA and LE usu-

ally provide better clustering results than original data does,

demonstrating the usefulness of PCA and LE. (2) gLPCA

consistently performs better than classic PCA, Laplacian

embedding and other methods. This is consistent with the

4Ncut uses eigenvectors Q of (D −W ) with QTDQ = I orthonor-

malization.
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Table 3. Clustering Results using K-means and semi-NMF on original data, standard PCA, LE, LPP, Ncut and gLPCA.

Dataset Metric
K-means semi-NMF

Original PCA LE Ncut LPP gLPCA Original PCA LE Ncut LPP gLPCA

AT & T
ACC 0.6701 0.6755 0.7193 0.6856 0.7160 0.7236 0.6145 0.6721 0.7355 0.7136 0.7013 0.7521
NMI 0.8426 0.8477 0.8592 0.8482 0.8594 0.8665 0.7723 0.8386 0.8628 0.8568 0.8573 0.8635
PUR 0.6935 0.7091 0.7568 0.7365 0.7550 0.7692 0.6415 0.7188 0.7633 0.7491 0.7457 0.7658

MNIST
ACC 0.5495 0.5624 0.5849 0.5760 0.5757 0.6028 0.4949 0.5562 0.5918 0.5742 0.5626 0.6124
NMI 0.5137 0.5077 0.6114 0.6163 0.5584 0.6254 0.4022 0.4867 0.6151 0.6185 0.5450 0.6412
PUR 0.5842 0.5895 0.6310 0.6339 0.6227 0.6573 0.5036 0.5777 0.6426 0.6372 0.6159 0.6779

BinAlf
ACC 0.5982 0.6032 0.6108 0.6004 0.6167 0.6284 0.4498 0.5836 0.6115 0.6147 0.6134 0.6321
NMI 0.7196 0.6641 0.7401 0.7353 0.7338 0.7448 0.5365 0.6978 0.7390 0.7438 0.7145 0.7445
PUR 0.6269 0.6351 0.6524 0.6400 0.6528 0.6650 0.4607 0.6177 0.6514 0.6474 0.6432 0.6666

USPS
ACC 0.6138 0.6215 0.6667 0.6153 0.6371 0.6868 0.6051 0.5911 0.6854 0.6491 0.6509 0.6958
NMI 0.5517 0.5800 0.6208 0.6282 0.5779 0.6294 0.4910 0.4840 0.6344 0.6501 0.5900 0.6420
PUR 0.6211 0.6057 0.6407 0.6561 0.6567 0.7054 0.5942 0.5874 0.7151 0.6769 0.6728 0.7161

COIL20
ACC 0.5695 0.5907 0.5804 0.5739 0.5823 0.6315 0.4771 0.5976 0.6788 0.6457 0.6143 0.6542
NMI 0.7238 0.7336 0.7633 0.7518 0.7492 0.7789 0.5939 0.7294 0.7951 0.7757 0.7365 0.7852
PUR 0.6046 0.6361 0.6559 0.6540 0.6539 0.6647 0.4844 0.6272 0.6781 0.6750 0.6463 0.6819

ISOLET1
ACC 0.6006 0.5860 0.5545 0.5981 0.6318 0.6431 0.5744 0.5653 0.5513 0.5558 0.6165 0.6472
NMI 0.7551 0.7248 0.7218 0.7306 0.7598 0.7669 0.6715 0.6602 0.7329 0.7224 0.7239 0.7618
PUR 0.6474 0.6295 0.5707 0.6330 0.6797 0.6638 0.6002 0.5895 0.5782 0.5804 0.6446 0.6686

LMove
ACC 0.4414 0.4454 0.4461 0.4521 0.4524 0.4687 0.4378 0.4372 0.4709 0.4637 0.4719 0.4861
NMI 0.5746 0.5830 0.5964 0.5961 0.6082 0.6178 0.5456 0.5448 0.6056 0.6098 0.6046 0.6154
PUR 0.4723 0.4797 0.4948 0.4963 0.4921 0.5052 0.4630 0.4621 0.4979 0.4956 0.5092 0.5131

MFeat
ACC 0.5928 0.5803 0.6326 0.6402 0.6341 0.6477 0.5927 0.5912 0.6458 0.6628 0.6439 0.7223
NMI 0.6009 0.5909 0.6987 0.7006 0.6965 0.7043 0.6010 0.5980 0.7042 0.7103 0.6969 0.7346
PUR 0.6323 0.6183 0.6819 0.6907 0.6936 0.6899 0.6303 0.6289 0.6867 0.7030 0.6994 0.7465
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Figure 6. Clustering accuracy using gLPCA representation.

observations in §3.3 that class structures are more apparent

in gLPCA representation.

Second, we perform classification on PCA, LE and orig-

inal data representations using regression and KNN classi-

fication methods. We randomly select 20%, 30% of labeled

data for each class, and use the rest as unlabeled data. We

repeat this 5 times and the average classification accuracy

are summarized in Table 4. Here, we observe that, in all

cases, we obtain higher classification accuracy in gLPCA

representation.

5.2. Results for Robust gLPCA (RgLPCA)

We run the proposed RgLPCA model on several image

datasets, including AT&T, Bin-alpha, MNIST, USPS and

COIL 20. For each class, we corrupt 20% images man-

ually. The size of corruption is 25% of the image. We

perform clustering and classification tasks on these datasets

and compare with several other models, including the orig-

inal data, standard PCA and L21PCA[6]. We use K-means

and regression algorithms for clustering and classification,

respectively. For clustering, the accuracy (ACC), normal-

ized mutual information (NMI) and purity (PUR) are used

as the measurements of the clustering qualities. We run

K-means with random initialization 50 times and use the

average clustering results. The results are shown in Table

5. For classification, we randomly select 20%, 30% of la-

beled data for each class, and use the rest as unlabeled data.

We repeat 5 times and the average classification accuracy

are summarized in Table 6. From table 5, 6 we observe

that (1) PCA performs poorly on these occluded data, in-

dicating that PCA is sensitive to outlying observations. (2)

L21PCA can generally return better performance than the

original data and standard PCA on all the datasets. This

suggests that L21PCA are robust to the gross noise. (3)

RgLPCA generally performs better than other data repre-

sentation models.

6. Summary

Graph-Laplacian PCA incorporates PCA and Lapla-

cian embedding (LE) simultaneously to provide a low-

dimensional representation that incorporates graph struc-

tures. It has a closed-form solution and can be efficiently

computed. The robustness of gLPCA against data corrup-

tions as shown in Figures 2 and 3 are probably the most

significant new findings of this work. The robustness orig-

inates from that Q contains the cluster structure (manifold)

information due to LE. The minor residual increase at the

LE limit (β = 1) in Fig.4 shows that the embedding Q ob-
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Table 4. Accuracy results of semi-supervise learning using Regression and KNN on original data, PCA, LE, LPP, Ncut and gLPCA.

Dataset Labeling
Regression kNN(k = 1) kNN(k = 5)

Original PCA LE Ncut LPP gLPCA Original PCA LE Ncut LPP gLPCA Original PCA LE Ncut LPP gLPCA

AT & T
20% 79.0 77.7 78.5 80.5 82.3 85.8 80.1 76.1 82.4 83.1 82.0 84.8 70.4 68.5 79.1 79.1 75.2 81.8
30% 87.4 89.3 81.4 82.9 88.5 90.7 90.7 88.6 88.3 89.3 91.2 92.3 82.4 82.2 82.4 82.9 85.0 85.8

MNIST
20% 63.1 66.6 67.1 66.4 68.2 71.6 74.9 71.7 73.7 71.6 71.7 80.3 73.3 72.5 74.0 72.9 71.8 78.8
30% 62.9 68.1 67.5 66.4 68.1 72.3 81.1 75.7 75.0 73.9 75.1 83.2 78.8 77.1 75.4 74.7 76.2 82.8

BinAlf
20% 42.8 69.5 72.7 73.2 71.1 76.9 73.4 69.6 77.3 75.5 71.6 79.0 71.0 67.5 76.2 75.8 68.8 77.3
30% 24.0 73.7 74.6 73.7 75.0 78.3 78.3 76.8 79.3 78.4 77.0 82.8 77.8 75.5 78.5 79.0 75.4 81.3

USPS
20% 52.8 75.0 79.9 77.0 77.2 81.8 78.5 77.5 80.2 78.9 76.8 81.6 74.3 76.7 80.2 80.5 77.3 81.6
30% 44.7 75.9 78.3 77.0 77.7 82.5 83.1 81.3 82.6 81.4 79.4 84.1 79.4 80.4 81.7 82.5 79.9 83.7

COIL20
20% 82.8 81.7 84.7 80.5 79.0 87.5 91.3 92.0 84.8 86.5 88.9 94.5 81.4 83.6 82.9 83.5 83.1 89.3
30% 91.2 82.9 84.0 81.5 79.2 88.6 95.1 95.6 85.1 86.6 88.7 96.4 87.3 89.0 83.2 83.2 82.6 93.0

ISOLET1
20% 77.5 80.2 64.9 66.1 80.5 79.7 77.6 76.4 73.5 71.2 81.1 80.0 80.9 79.4 72.5 70.7 81.5 81.2
30% 80.9 80.2 65.1 66.8 81.0 81.7 80.6 79.8 75.8 74.0 84.0 82.6 82.1 82.2 76.8 73.5 84.5 84.1

LMove
20% 20.4 54.6 52.1 52.7 53.8 56.1 64.5 65.1 63.4 61.0 68.1 66.3 53.8 54.3 54.6 54.8 55.4 55.6
30% 27.8 56.1 52.4 53.6 56.1 59.9 73.5 72.7 68.3 66.7 75.0 75.9 61.5 61.6 60.1 61.2 64.6 65.9

MFeat
20% 53.6 80.8 81.2 81.4 84.8 84.5 88.4 84.0 87.5 85.4 89.5 89.6 87.1 83.9 86.1 84.9 90.1 89.4
30% 93.0 81.4 81.2 81.5 83.8 84.8 91.3 86.9 88.9 87.4 90.4 91.1 90.0 86.3 88.2 86.3 90.4 91.1

Table 5. Clustering results for RgLPCA

Dataset Metric
Data Representation

Original PCA L21PCA RgLPCA

AT & T
ACC 54.55 54.94 61.88 63.85
NMI 74.52 74.98 77.86 78.67
PUR 56.12 56.73 64.29 65.73

MNIST
ACC 53.07 55.46 57.63 59.88
NMI 49.18 47.83 55.83 56.53
PUR 56.63 56.64 60.83 62.19

BinAlf
ACC 53.56 55.47 57.01 58.07
NMI 65.49 66.20 67.54 68.84
PUR 56.68 58.54 59.47 61.55

USPS
ACC 61.21 59.42 67.29 69.05
NMI 54.21 51.67 60.70 62.05
PUR 62.31 60.60 68.91 71.03

COIL20
ACC 55.50 57.04 60.10 62.81
NMI 69.00 69.50 73.17 74.84
PUR 58.70 60.08 63.82 66.97

Table 6. Classification results for RgLPCA

Dataset Labeled
Data Representation

Original PCA L21PCA RgLPCA

AT & T
20% 71.85 62.81 76.55 80.55
30% 82.20 82.52 85.08 87.23

MNIST
20% 60.40 62.45 64.54 68.25
30% 59.80 63.63 65.94 68.89

BinAlf
20% 37.97 63.03 69.41 71.16
30% 21.24 68.48 70.43 73.40

USPS
20% 49.76 72.18 75.65 79.07
30% 42.61 73.31 76.71 80.46

COIL20
20% 69.00 69.50 73.17 74.84
30% 58.70 60.08 63.82 66.97

tained in gLPCA retains the correct manifold information.

The poor random baseline residual results corroborate this.

Overall, the properties exhibited in illustrative examples of

§3.3 are the basic reasons why gLPCA performs better in

clustering and semi-supervised learning as compared with

PCA, LE, and other methods.
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