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Abstract
For scene understanding, one popular approach has

been to model the object-object relationships. In this paper,
we hypothesize that such relationships are only an artifact
of certain hidden factors, such as humans. For example, the
objects, monitor and keyboard, are strongly spatially cor-
related only because a human types on the keyboard while
watching the monitor. Our goal is to learn this hidden hu-
man context (i.e., the human-object relationships), and also
use it as a cue for labeling the scenes. We present Infinite
Factored Topic Model (IFTM), where we consider a scene
as being generated from two types of topics: human config-
urations and human-object relationships. This enables our
algorithm to hallucinate the possible configurations of the
humans in the scene parsimoniously. Given only a dataset
of scenes containing objects but not humans, we show that
our algorithm can recover the human object relationships.
We then test our algorithm on the task of attribute and object
labeling in 3D scenes and show consistent improvements
over the state-of-the-art.

1. Introduction
We make the world we live in and shape our own
environment. Orison Swett Marden (1894).

For reasoning about cluttered human environments, for

example in the task of 3D scene labeling, it is critical we

reason through humans. Human context provides a natu-

ral explanation of why the environment is built in particu-

lar ways. Specifically, consider the scene in Fig. 1, with a

chair, table, monitor and keyboard. This particular config-

uration that is commonly found in offices, can be naturally

explained by a sitting human pose in the chair and work-

ing with the computer. Moreover, from the point of view

of modeling and learning, this explanation is parsimonious

and efficient as compared to modeling the object-object

relationships [19] such as chair-keyboard, table-monitor,

monitor-keyboard, etc.1

1For n objects, we only need to model how they are used by humans,

i.e., O(n) relations, as compared with modeling O(n2) if we were to

model object to object context naively.

Figure 1: Left: Previous approaches model the relations between

observable entities, such as the objects. Right: In our work, we

consider the relations between the objects and hidden humans. Our

key hypothesis is that even when the humans are never observed,

the human context is helpful.

In fact, several recent works have shown promise in

using human and object affordances to model the scenes.

Jiang, Lim and Saxena [14, 17] used hallucinated humans

for learning the object arrangements in a house in order

to enable robots to place objects in human-preferred loca-

tions. However, they assumed that the objects have been

detected. Our goal in this work is different, where we start

with 3D point-clouds obtained from RGB-D sensors and la-

bel them using their shape, appearance and hallucinated hu-

man context. Gupta et al. [10] proposed predicting stable

and feasible human poses given an approximate 3D geom-

etry from an image. While inspired by these prior works,

the key idea in our work is to hallucinate humans in order to

learn a generic form of object affordance, and to use them

in the task of labeling 3D scenes. While a large corpus of

scenes with objects is available, humans and their interac-

tions with objects are observed only a few times for some

objects. Therefore, using hallucinated humans gives us the

advantage of considering human context while not limited

to data that contains real human interactions.

However, if the humans are not observed in the scene

and we do not know the object affordances either (i.e., how

humans use objects), then learning both of them is an ill-

posed problem. For example, one trivial, but useless, so-

lution would be having one human configuration for every

object in the scene. The key idea in our work is to prefer

parsimony in our model as follows. First, while the space of

potential unobserved human configurations are large, only

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.385

2991

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.385

2991

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.385

2993



few are likely, and so are the object affordances. For ex-

ample, if standing on furniture (such as tables and chairs)

is very unlikely in the prior, we are less likely to learn af-

fordances such as humans stepping on books. Second, we

encourage fewer humans per scene resulting in different ob-

jects sharing same human configurations. This allows us to

explain, but not over-fit, a scene with as few human config-

urations as necessary.

In order to model the scene through hallucinated human

configurations and object affordances, we propose a new

topic model, which we call Infinite Factored Topic Model

(IFTM). Each object in the scene is generated by two types

of topics jointly: human-configuration topics and object-

affordance topics. We use a sampling algorithm to estimate

the human pose distribution in scenes and to optimize the

affordance functions that best explain the given scenes. The

learned topics are later used as features for building a scene

labeling classifier.

We test our approach on the tasks of labeling objects

and attributes in 3D scenes, and show that the human-object

context is informative in that it increases performance over

classifier based on object appearance and shapes. More in-

terestingly, we show that object-object context and human-

object context are complementary in nature and their com-

bination improves the state-of-the-art.

2. Related Work
Context and 3D Scene Understanding. There is a signifi-

cant body of work that captures the relations between differ-

ent parts of the object [5] and between different objects [19].

In the past, 3D layout or depths have been used for improv-

ing object detection (e.g., [26, 27, 11, 21, 12, 22]), where

an approximate 3D geometry is inferred from 2D images.

Recent works [31, 19, 2, 28] address the problem of label-

ing 3D point clouds. Reasoning in 3D allows an algorithm

to capture stronger context, such as shape, stability and ori-

entation of the objects [15, 13, 16]. However, none of these

works consider human context for scene understanding.

Human activities. In most previous works, object detec-

tion and activity recognition have been addressed as sepa-

rate tasks. Only recently, some works [9, 32, 1, 25, 20] have

shown that modeling the interaction between human poses

and objects in 2D images and videos result in a better per-

formance on the tasks of object detection and activity recog-

nition. In contemporary work, Fouhey et al. [6] and Delaitre

et al. [4] observe humans in videos for estimating 3D ge-

ometry and estimating affordances respectively. However,

these works are unable to characterize the relationship be-

tween objects in 3D unless a human explicitly interacted

with each of the objects and are also limited by the quality

of the human poses inferred from 2D data. Our method can

extract the hidden human context even from static scenes

without humans, based on the object configurations found

in the human environments.

Object Affordances. The concept of affordances, pro-

posed by Gibson [7], has recently become the focus of many

works in cognitive vision (e.g., [24]) and robotics [14, 17].

Grabner et al. [8] apply this idea to detect the functionality

of the object (specifically, chairs), and then combine this in-

formation with visual object appearance to perform object

classification. However, they require explicit training data

specifying the human pose associated with an affordance

and demonstrated their method on a single object category

and affordance. In comparison, Jiang et al. [14] consider

many affordances in the form of human-object relation top-

ics which are obtained in a completely unsupervised man-

ner. While they employ the learned affordances to infer rea-

sonable object arrangements in human environments, in this

work, we combine these affordances, as functional cues,

with other visual and geometric cues to improve the per-

formance of scene labeling.

3. Representation of Human Configurations
and Object Affordances

We first define the representation of the human configu-

rations and object affordances in the following:

The Space of Human Configurations. A human config-

uration is comprised of its pose (relative position for every

joint), location and orientation. Each pose could be at any

X-Y-Z location and in different orientations ∈ [0, 2π) inside

the scene. For poses, we considered human poses from real

human activity data (Cornell Activity Dataset-60, [29]), and

clustered them using k-means algorithm giving us six types

(three sitting poses and three standing poses) of skeletons

showing in Fig. 2.

Figure 2: Six types of human poses extracted from Kinect 3D

data. From left: sitting upright, sitting reclined, sitting forward,

reaching, standing and leaning forward.

The Space of Object Affordances. A human can use the

objects at different distances and orientations from the hu-

man body. For example, small hand-held devices are typ-

ically held close to the human and in front of the person.

Other objects are used typically at a distance, such as a TV

and decoration pieces. For the goal of scene labeling, we

are interested in probability distribution of the 3D location

of the objects around humans. For visualization, we show

these probability distribution as heat-maps from top-view

and side-view (e.g., see Fig. 6 and Section 5.3).
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4. Human Context: a Double-Edged Sword
The human context is very important for understanding

our environment. In fact, even when no human is present

in an indoor scene, the potential human-object interactions

give such a strong cue for scene understanding that we want

to model it as latent variables in our algorithms.

However, the human context cannot be easily harnessed

because the space of possible human configurations and ob-

ject affordances is rather large. Furthermore, the humans

are not always observable and such latent nature leads to an

ill-posed problem while using it. For example, one potential

explanation of the scene could be humans floating in the air

and prefer stepping on every object as the affordance! The

key to modeling the large space of latent human context lies

in building parsimonious models and providing priors to

avoid physically-impossible models.

4.1. Model Parsimony
While there are infinite number of human configurations

in a scene and countless ways to interact with objects, only a

few human poses and certain common ways of using objects

are needed to explain most parts of a scene. These could be

shared across objects and be instantiated to numerous forms

in reality. We will do so by representing them as ‘topics,’

according to which objects in a scene are generated. This

is analogous to the document topics [30, 18], except that

in our case topics will be continuous distributions and fac-

tored. Similar to document topics, our human-context top-

ics can be shared across objects and scenes. As a result,

the model’s complexity, i.e., the number of parameters, is

significantly reduced. We describe the two types of topics

below:

Human Configuration Topics. In a scene, there are certain

human configurations that are used more commonly than

others. For instance, in an office a sitting pose on the chair

and a few poses standing by the desk, shelf and whiteboard

are more common. Most of the objects in an office are ar-

ranged for these human configurations.

Object Affordance Topics. An object affordance, despite

its large variety, can often be represented as a mixture of

several commonly shared object-affordance topics. For ex-

ample, both using a keyboard and reading a book require a

human pose to be close to objects. However, when books

are not in use, they can be stored away from humans. There-

fore, the affordance of a book would be a mixture of a

‘close-to’ and a ‘spread-out’ topic.

4.2. Physics-Based Priors
In order to obtain meaningful human-configuration and

object-affordance topics, we impose prior that follows

physics and conventions to those topics.

Human Configuration Prior. Our hallucinated human

configurations need to follow basic physics. Encoding

physics-based notions about objects has been shown to be

successful in 3D geometric interpretation [28, 15]. We con-

sider the following two properties as priors for the generated

human configurations [10]: 1) Kinematics. We perform col-

lision check so that the human pose is kinematically feasi-

ble. 2) Dynamics. We check if the human skeleton is sup-

ported by the nearby environments to ensure its stability.

Object Affordance Prior. In general, it is more likely for

an object to be close to humans while being used. Further-

more, most objects’ affordance should be symmetric in their

relative orientation to the humans’ left or right. We encode

this information in the design of the function quantifying

affordances and as Bayesian priors in the estimation of the

function’s parameters, see Section 5.3.

5. Infinite Factored Topic Model (IFTM)
In this work, we model the human configurations and ob-

ject affordances as two types of ‘factored’ topics. In our pre-

vious work [18], we presented finite factored topic model

that discovers different types of topics from text data. Each

type of topic is modeled by an independent topic model

and a data point is jointly determined by a set of topics,

one from each type. By factorizing the original parameter

(topic) space into smaller sub-spaces, it uses a small number

of topics from different sub-spaces to effectively express a

larger number of topics in the original space.

In this work, we extend our idea to Infinite Factored

Topic Models (IFTM), which can not only handle multiple

types of topics but also unknown number of topics in each

type. Furthermore, unlike text data, our topics are continu-
ous distributions in this work that we model using Dirichlet

process mixture model (DPMM) [30]. In the following, we

first briefly review DPMM, and then describe our IFTM and

show how to address the challenges induced by the coupling

of the topics from different types.

5.1. Background: Dirichlet Process Mixture Model
A DPMM describes a generative process of drawing data

point x from a set of topics, each of which is parameterized

by θk. Specifically, it first draws infinite number of topics

from a base distribution G, and the topic proportion π:

θk ∼ G, bk ∼ Beta(1, α), πk = bk
∏k−1
i=1 (1− bi).

Then each data point x is drawn from one of the topics. The

topic assignment z is sampled from the topic proportion π.

z|π ∼ π; x|z, θ ∼ F (θz).

Figure 3(a) shows the graphical representation of DPMM.

In practice, zi is sampled according to the Chinese restau-

rant process:

zi = z|z−i =

{
n−i
z

N−1+α if z is previously used
α

N−1+α otherwise
(1)
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(a) DPMM
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z2i

G2

θ2k
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k = 1...∞ k = 1...∞

i = 1...N

(b) 2D infinite factored topic model

Figure 3: DPMM and our 2D infinite factored topic model.

where superscript −i denotes everything except the ith in-

stance, n−i
z equals the number of data points assigned to

the component z excluding xi, and N is the total number

of data-points. Using this conditional distribution, one can

apply Gibbs sampling method to approximate the marginal

distribution of zi and θk.

DPMM is different from traditional mixture models be-

cause of that it incorporates base (prior) distribution of top-

ics and it allows the number of topics change according to

data. These two properties are desired for modeling our hu-

man context because we need to encode prior as described

in Section 4.2, and because the number of topics (i.e., the

number of affordances and human poses) is unknown and

can vary from scene to scene.

5.2. IFTM
In our IFTM, data is generated jointly by several inde-

pendent topics. Particularly, an L-dimensional IFTM has L
different mixture models, each having K� components pa-

rameterized by θ�k. Now, generating a data point x involves

choosing a topic z� ∈ {1, . . . ,K�} for each of the L di-

mensions. Given Θ = (θ�k)
�=1...L
k=1...K� and z = (z1, . . . , zL),

we then draw x from the distribution parameterized by the

selected L topics together:

z�|π� ∼ π�, � = 1, . . . , L; x|z,Θ ∼ F (θ1z1 , . . . , θ
L
zL).

Note that the domain of the density function F is now a

Cartesian product of the domains of all L types of topics. In

our scene labeling application, we have two types of topics,

i.e., L = 2. In this case, the difference between DPMM to

our ITFM is shown in Fig. 3.

Since the topic assignment z is now a L-dimensional

vector. Directly applying Eq. (1) to compute the condi-

tional distribution is computationally inappropriate: First,

the complexity increases to O(
∏L
�=1K

�). Second, due to

the sparsity in nz , z would tend to uniformly distributed.

However, since our model assumes the two types of topic

spaces are independent, it is easy to show that the distribu-

tion of z can be factorized into the distribution of z�, each

of which follows Eq. (1).

5.3. IFTM for Human Context
We apply IFTM to learn the two types of human-context

topics. In the following, we use superscript H and O to dis-

tinguish symbols for human-configuration topic and object-

affordance topic. Namely, we use (GH , GO) to denote their

prior distribution, (θH , θO) for the topic’s parameters, and

(zHi , z
O
i ) for the two topic assignments for object xi.

Specifically, xi is the 3D location of ith object in the

scene. Its distribution F should reflect the likelihood of the

object being at this location given the human configuration

and affordance. We therefore define F as (see [14]):

F (xi; θ
H , θO) = FdistFrelFheight, (2)

where the three terms depict three types of spatial rela-

tionships between the object xi and the human pose θH :

Euclidean distance, relative angle and height (vertical) dis-

tance. We use log-normal, von Mises and normal distribu-

tions to characterize the probability of these measurements,

and the parameters of these distributions are given by the

object affordance topics, i.e., θO. The prior of these param-

eters, GO, are set to Normal distributions with large vari-

ance. GH is a uniform distribution over valid human poses

in the scene (see Section 4.2).

5.4. Learning Human-Context Topics
Given a scene, the location of an object xi is observed

and our goal is to estimate likely human configurations and

affordances in the scene. We use Gibbs sampling with aux-

iliary parameters [23] to sample θH and θO from their pos-

terior distribution. The process consists of two steps:

Step 1: Sampling topic assignments. The general idea

is, the distribution of zHi or zOi is proportional to two fac-

tors: 1) the likelihood, i.e., F (xi; θ
H , θO) with fixed topics;

2) the percentage of other objects also choosing the same

topic. Moreover, to incorporate the growth of the number

of topics, we add m auxiliary topics for a subject to choose

from [23]. These auxiliary topics are drawn from the base

distribution GH or GO, and the probability of choosing one

of these topics is equal to αH/m or αO/m. So the topic

assignments are sampled by:

zHi = z ∝
⎧⎨
⎩

nH
−i,z

N+m−1+αH F (xi, θ
H
z , θ

O
zOi

) nH−i,z ≥ 0,

αH/m
N+m−1+αH F (xi, θ

H
z , θ

O
zOi

) otherwise

zOi = z ∝
⎧⎨
⎩

nO
−i,z

N+m−1+αOF (xi, θ
H
zHi
, θOz ) nO−i,z ≥ 0,

αO/m
N+m−1+αOF (xi, θ

H
zHi
, θOz ) otherwise

where nO−i,z (or nH−i,z) is the number of other subjects

xj (j �= i) with zOj = z (or zHj = z), and N is the total

number of objects in the scene.

Step 2: Sampling topics. Given topic assignments, we can

compute the posterior distribution of topics and sample top-

ics from it:

θHk = θH ∝ GH(θH)×∏i:zHi =k F (xi, θ
H , θO

zOi
)

θOj = θO ∝ GO(θO)×∏i:zOi =j F (xi, θ
H
zHi
, θO)
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(c) Iteration #100

Figure 4: An illustration of learning the object-affordance topics (top row, shown as heatmaps) and human-configuration topics (bottom)

using IFTM. It shows two affordance topics, labeled with the most common object label for understanding in this figure. For each, it also

shows the most probable human pose. In Iteration#1, the affordance is only based on the prior GO and hence is same for all objects. In

later iterations, our learning algorithm (Section 5.4) converges to reasonable topics.

In practice, the posterior sampling may be difficult when

not using conjugate priors. To handle this, we use the max-

imum a posteriori (MAP) estimate instead of sampling. For

example, an affordance topic θOj = (μd, σd, μr, κr, μh, σh)
is updated as follows:

The mean and variance (μd, σd) in Fdist. Given the dis-

tance between each object xi and its associated human pose

θH
zHi

, denoted by di, μd and σd are given by,

μd, σd = argmaxμ,σ G
O
dist(μ, σ)

∏
i:zOi =j Fdist(di;μ, σ)

The mean and concentration (μr, κr) in Frel. Let ri be the

angular difference between the object and the orientation of

the human pose, then

μr, κr = argmaxμ,κG
O
rel(μ, κ)

∏
i:zOi =j Frel(ri;μ, κ)

The mean and variance (μh, σh) in Fheight. Let hi be the

vertical difference, then

μh, σh = argmaxμ,σ G
O
height(μ, σ)

∏
i:zOi =j Fheight(hi;μ, σ)

We illustrate the learning process in Fig. 4. It shows how

θO and θH are sampled and refined progressively.

6. Affordance Features for Scene Labeling
Once having learned the human-context topics, how can

we use them for scene labeling? In the task of 3D scene la-

beling, the goal is to identify the class of each object in the

scene. As the object affordance is often strongly coupled

with the object classes, we use the affordance derived from

the learned topics as features that feed into other learning al-

gorithms, similar to the ideas using in supervised topic mod-

els [3]. Although IFTM itself is an unsupervised method, in

order to obtain more category-oriented topics, we initialize

zOi to its object category to encourage topics to be shared

by objects from the same class exclusively. Note that when

computing the affordance features (for both training and test

data), no object labels are used.

In detail, we compute the affordance features as follows.

We set the affordance topics as the top K sampled topics

θOk , ranked by the posterior distribution. Given a test scene,

repeatedly sample zHi and zOi and θHk same as in the learn-

ing phase. Then we use the histogram of sampled zOi as the

affordance features for object i.

7. Experiments and Results
7.1. Experimental Setting
Data. We used the Cornell RGB-D indoor dataset [19, 2]

for our experiments. This data consists full-scene RGB-

D point clouds of 24 offices and 28 homes obtained from

550 RGB-D views. The point-clouds are over-segmented

based on smoothness, and the goal is to label these seg-

ments with object labels and attribute labels. Each seg-

ment can have multiple attribute labels but has only one

object label. The attribute labels are: {wall, floor, flat-
horizontal-surfaces, furniture, fabric, heavy, seating-areas,
small-objects, table-top-objects, electronics} and the ob-

ject labels are: {wall, floor, tableTop, tableDrawer, table-
Leg, chairBackRest, chairBase, chairBack, monitor, print-
erFront, printerSide, keyboard, cpuTop, cpuFront, cpuSide,
book, paper, sofaBase, sofaArm, sofaBackRest, bed, bed-
Side, quilt, pillow, shelfRack, laptop}.
Baselines. We perform 4-fold cross-validation where we

train the model on data from three folds and tested on the

fourth fold of the unseen data. Table 1 presents the results

for object labeling and attribute labeling. In order to study

the effects of different algorithms, we compare with the fol-

lowing algorithms:

(a) Appearance. We run versions with both local image and

shape features [19].

(b) Human Context (Affordances). This is our affordance

and human configurations information being used in pre-

diction, without using object-object context.

(c) Object-Object context. In this case, we use the learning

algorithm presented in [19] that uses Markov Random Field

with log-linear node and pairwise edge potentials.
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Table 1: Object and Attribute Labeling Results. The table shows average micro precision/recall, and average macro precision and recall

for home and office scenes. Computed with 4-fold cross-validation.

Algorithm
Image &

Shape

Human

Context

Obj-obj

Context

Object Labeling Attribute Labeling
Office Scenes Home Scenes Office Scenes Home Scenes

micro macro micro macro micro macro micro macro

P/R prec recall P/R prec recall prec recall prec recall prec recall prec recall

chance 5.88 5.88 5.88 5.88 5.88 5.88 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5

max class 26.33 26.33 5.88 29.38 29.38 5.88 22.89 22.89 22.89 12.5 31.4 31.4 31.4 12.5

Affordances � 29.13 16.28 16.67 33.62 16.37 15.30 47.93 32.04 42.85 29.83 53.92 36.07 41.19 26.21

Appearance � 77.97 69.44 66.23 56.50 37.18 34.73 85.82 66.48 86.58 62.52 77.80 55.21 60.01 42.20

Afford. + Appear. � � 79.71 73.45 69.76 59.00 38.86 37.54 87.05 68.88 87.24 65.42 79.02 59.02 70.45 46.57

Koppula et al. [19] � � 84.06 80.52 72.64 73.38 56.81 54.80 87.92 71.93 84.04 67.96 83.12 70.03 76.04 58.18

Full Model � � � 85.22 83.20 74.11 72.50 59.07 56.02 88.40 76.73 85.58 74.16 83.42 70.28 79.93 64.27

Figure 5: Top sampled human poses in different scenes. The first two are from stitched point-cloud from multiple RGB-D views, and the

last three scenes are shown in RGB-D single views.

(d) Full model. Here we combine the human context (from

affordances and human configurations) with object-object

context. In detail, we append the node features of each seg-

ment with the affordance topic proportions derived from the

learned object-affordance topics and learn the semantic la-

beling model as described in [19].

We report precision and recall using both micro and

macro aggregation. Since we predict only one label for each

segment in case of predicting object labels, our micro pre-

cision and recall is the same as the percentage of correctly

classified segments. The macro precision and recall are the

average of precision and recall of all classes respectively.

7.2. Results and Discussion
Table 1 shows that our algorithm performs better than

the state-of-the-art in both object as well as attribute label-

ing experiment. Our approach is able to predict the correct

labels for majority of the classes as can be seen from the

strong diagonal in the confusion matrices. We discuss our

results in the light of the following questions.

Are the sampled human poses meaningful? Being able

to hallucinate sensible human poses is critical for learning

object affordances. To verify that our algorithm can sample

meaningful human poses, we plot a few top sampled poses

in the scenes, shown in Fig. 5. In the first home scene, some

sampled human poses are sitting on the edge of the bed

while others standing close to the desk (so that they have

easy access to objects on the table or the shelf-rack). In the

next office scene (Fig. 5-b), there is one L-shaped desk and

two chairs on each side. It can be seen that our sampled hu-

man poses are not only on these chairs but also with correct

orientation. Also, as can be seen in Fig. 4-c, our algorithm

successfully identifies the workspaces in the office scene.

Note that these poses naturally explain why the monitors,

keyboards and CPUs are arranged in this particular way. It

is these correctly sampled human poses that give us possi-

bility to learn correct object affordances.

Are the discovered affordances meaningful? During

training, we are given scenes with the objects and their la-

bels, but not humans. Our goal is to learn object affordance

for each class. Fig. 6 shows the affordances from the top-

view and side-view respectively for typical object classes.

Here the X-Y dimensions of the box are 5m×5m, and the

height axis’s range is 3m. The person is in the center of the

box. From the side views, we can see that for objects such

as wall and cpuTop, the distributions are more spread out

compared to objects such as floor, chairBase and keyboard.

This is because that that chairBase is often associated with

a sitting pose at similar heights, while CPUs can either be

on the table or on the floor. While this demonstrates that our

method can learn meaningful affordances, we also observe

certain biases in our affordances. For example, the wall is

more to the front as compared to the back, and monitor is bi-

ased to the side. We attribute to the limited data and imper-

fect generation of valid human skeletons. Note that while

the affordance topics are unimodal, the affordance for each

objects is a mixture of these topics and thus could be multi-

modal and more expressive.

Can we obtain object-object relations from object affor-
dances? Since objects are related to humans, it turns out

that we can infer object-object spatial relations (and object

co-occurences) from the human-object relations. For ex-

ample, if we convolve keyboard-human and human-monitor

relations, we obtain the spatial relations between keyboard

and monitor. More formally, we compute the conditional

distribution of one object xi given another xj as,

P (xi|xj) =

∫
P (xi|θH)P (θH |xj)dθH

∝
∫
F (xi; θ

H , θOzOi
)F (xj ; θ

H , θOzOi
)G0(θ

H)dθH
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Figure 6: Examples of learned object-affordance topics. An affordance is represented by the probabilistic distribution of an object in a

5× 5× 3 space given a human pose. We show both projected top views and side views for different object classes.

k
ey

b
o
ar

d
co

n
te

x
t

wall−keyboard

top side

tableTop−keyboard

top side

floor−keyboard

top side

monitor−keyboard

top side

paper−keyboard

top side

m
o
n
it

o
r

co
n
te

x
t tableTop−monitor

top side

floor−monitor

top side

tableDrawer−monitor

top side

printerSide−monitor

top side

books−monitor

top side

b
ed

co
n
te

x
t

floor−bed

top side

pillow−bed

top side

bedSide−bed

top side

quilt−bed

top side

laptopScreen−bed

top side

Figure 7: Object-object context obtained from our learned human context. Each pair of the top- and side-view of a heatmap with the title

of ‘obj1-obj2’ shows the distribution of obj1 given obj2 at the center facing right. For example, in the first row the keyboard is in the center

of the image and the heat-maps show the probability of finding other related objects such as table top, monitor, etc.

This illustrates that for n objects, we can model O(n2)
object-object relations with only O(n) human-object pa-

rameters. Some examples are shown in Fig. 7. We can find

that many object-object relationships are recovered reason-

ably from our learned affordances. For example, given a

keyboard, a monitor is likely to be found in front of and

above it while tableTop at the same height as it (sometimes

above it as the keyboard is often in a keyboard-tray in of-

fices). In home scenes, given a bed, we can find a pillow on

the head of the bed, quilt right above the bed and bedSide

slightly below it. This supports our hypothesis that object-

object relations are only an artifact of the hidden context of

human-object relations.

Does human context helps in scene labeling? Table. 1

shows that the affordance topic proportions (human context)

as extra features boosts the labeling performance. First,

when combining human context with the image- and shape-

features, we see a consistent improvement in labeling per-

formance in all evaluation metrics, regardless of the object-

object context. Second, when we add object-object con-

text, the performance is further boosted in the case of office

scenes and improves marco precision for home scenes. This

indicates that there is some orthogonality in the human-

object context and object-object context. In fact, adding

object-object context to human-object context was particu-

larly helpful for small objects such as keyboards and books

that are not always used by humans together, but still have

a spatial correlation between them.

We also show the confusion matrices in Fig. 8. We found

that while our algorithm can distinguish most of the objects,

it sometimes confuses objects with similar affordance. For

example, it confuses pillow with quilt and confuses book
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Figure 8: Confusion matrices for office dataset (left) and home

dataset (right) using the full model.

and paper with tableTop. Similarly, it confuses cpuTop

with chairBase because the CPU-top (placed on the ground)

could also afford sitting human poses!

Finally, we applied our method in the task of a robot de-

tecting and arranging objects in a room. For the robot video

(along with the data and code), please visit:

http://pr.cs.cornell.edu/hallucinatinghumans/

8. Conclusions
We presented infinite factored topic models (IFTM) that

enabled us to model the generation of a scene containing

objects through hallucinated (hidden) human configurations

and object affordances, both modeled as topics. Given only

a set of scenes containing objects, we showed that we can

discover meaningful human-object relations (affordances).

We then showed that such modeling improved the perfor-

mance of object and attribute labeling tasks over the state-

of-the-art.
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